/* * 3-axis accelerometer driver supporting following Bosch-Sensortec chips: * - BMC150 * - BMI055 * - BMA255 * - BMA250E * - BMA222E * - BMA280 * * Copyright (c) 2014, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ #include <linux/module.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/acpi.h> #include <linux/gpio/consumer.h> #include <linux/pm.h> #include <linux/pm_runtime.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/buffer.h> #include <linux/iio/events.h> #include <linux/iio/trigger.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> #define BMC150_ACCEL_DRV_NAME "bmc150_accel" #define BMC150_ACCEL_IRQ_NAME "bmc150_accel_event" #define BMC150_ACCEL_GPIO_NAME "bmc150_accel_int" #define BMC150_ACCEL_REG_CHIP_ID 0x00 #define BMC150_ACCEL_REG_INT_STATUS_2 0x0B #define BMC150_ACCEL_ANY_MOTION_MASK 0x07 #define BMC150_ACCEL_ANY_MOTION_BIT_X BIT(0) #define BMC150_ACCEL_ANY_MOTION_BIT_Y BIT(1) #define BMC150_ACCEL_ANY_MOTION_BIT_Z BIT(2) #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN BIT(3) #define BMC150_ACCEL_REG_PMU_LPW 0x11 #define BMC150_ACCEL_PMU_MODE_MASK 0xE0 #define BMC150_ACCEL_PMU_MODE_SHIFT 5 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK 0x17 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT 1 #define BMC150_ACCEL_REG_PMU_RANGE 0x0F #define BMC150_ACCEL_DEF_RANGE_2G 0x03 #define BMC150_ACCEL_DEF_RANGE_4G 0x05 #define BMC150_ACCEL_DEF_RANGE_8G 0x08 #define BMC150_ACCEL_DEF_RANGE_16G 0x0C /* Default BW: 125Hz */ #define BMC150_ACCEL_REG_PMU_BW 0x10 #define BMC150_ACCEL_DEF_BW 125 #define BMC150_ACCEL_REG_INT_MAP_0 0x19 #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE BIT(2) #define BMC150_ACCEL_REG_INT_MAP_1 0x1A #define BMC150_ACCEL_INT_MAP_1_BIT_DATA BIT(0) #define BMC150_ACCEL_INT_MAP_1_BIT_FWM BIT(1) #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL BIT(2) #define BMC150_ACCEL_REG_INT_RST_LATCH 0x21 #define BMC150_ACCEL_INT_MODE_LATCH_RESET 0x80 #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT 0x00 #define BMC150_ACCEL_REG_INT_EN_0 0x16 #define BMC150_ACCEL_INT_EN_BIT_SLP_X BIT(0) #define BMC150_ACCEL_INT_EN_BIT_SLP_Y BIT(1) #define BMC150_ACCEL_INT_EN_BIT_SLP_Z BIT(2) #define BMC150_ACCEL_REG_INT_EN_1 0x17 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN BIT(4) #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN BIT(5) #define BMC150_ACCEL_INT_EN_BIT_FWM_EN BIT(6) #define BMC150_ACCEL_REG_INT_OUT_CTRL 0x20 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL BIT(0) #define BMC150_ACCEL_REG_INT_5 0x27 #define BMC150_ACCEL_SLOPE_DUR_MASK 0x03 #define BMC150_ACCEL_REG_INT_6 0x28 #define BMC150_ACCEL_SLOPE_THRES_MASK 0xFF /* Slope duration in terms of number of samples */ #define BMC150_ACCEL_DEF_SLOPE_DURATION 1 /* in terms of multiples of g's/LSB, based on range */ #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD 1 #define BMC150_ACCEL_REG_XOUT_L 0x02 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS 100 /* Sleep Duration values */ #define BMC150_ACCEL_SLEEP_500_MICRO 0x05 #define BMC150_ACCEL_SLEEP_1_MS 0x06 #define BMC150_ACCEL_SLEEP_2_MS 0x07 #define BMC150_ACCEL_SLEEP_4_MS 0x08 #define BMC150_ACCEL_SLEEP_6_MS 0x09 #define BMC150_ACCEL_SLEEP_10_MS 0x0A #define BMC150_ACCEL_SLEEP_25_MS 0x0B #define BMC150_ACCEL_SLEEP_50_MS 0x0C #define BMC150_ACCEL_SLEEP_100_MS 0x0D #define BMC150_ACCEL_SLEEP_500_MS 0x0E #define BMC150_ACCEL_SLEEP_1_SEC 0x0F #define BMC150_ACCEL_REG_TEMP 0x08 #define BMC150_ACCEL_TEMP_CENTER_VAL 24 #define BMC150_ACCEL_AXIS_TO_REG(axis) (BMC150_ACCEL_REG_XOUT_L + (axis * 2)) #define BMC150_AUTO_SUSPEND_DELAY_MS 2000 #define BMC150_ACCEL_REG_FIFO_STATUS 0x0E #define BMC150_ACCEL_REG_FIFO_CONFIG0 0x30 #define BMC150_ACCEL_REG_FIFO_CONFIG1 0x3E #define BMC150_ACCEL_REG_FIFO_DATA 0x3F #define BMC150_ACCEL_FIFO_LENGTH 32 enum bmc150_accel_axis { AXIS_X, AXIS_Y, AXIS_Z, }; enum bmc150_power_modes { BMC150_ACCEL_SLEEP_MODE_NORMAL, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, BMC150_ACCEL_SLEEP_MODE_LPM, BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04, }; struct bmc150_scale_info { int scale; u8 reg_range; }; struct bmc150_accel_chip_info { u8 chip_id; const struct iio_chan_spec *channels; int num_channels; const struct bmc150_scale_info scale_table[4]; }; struct bmc150_accel_interrupt { const struct bmc150_accel_interrupt_info *info; atomic_t users; }; struct bmc150_accel_trigger { struct bmc150_accel_data *data; struct iio_trigger *indio_trig; int (*setup)(struct bmc150_accel_trigger *t, bool state); int intr; bool enabled; }; enum bmc150_accel_interrupt_id { BMC150_ACCEL_INT_DATA_READY, BMC150_ACCEL_INT_ANY_MOTION, BMC150_ACCEL_INT_WATERMARK, BMC150_ACCEL_INTERRUPTS, }; enum bmc150_accel_trigger_id { BMC150_ACCEL_TRIGGER_DATA_READY, BMC150_ACCEL_TRIGGER_ANY_MOTION, BMC150_ACCEL_TRIGGERS, }; struct bmc150_accel_data { struct i2c_client *client; struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS]; atomic_t active_intr; struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS]; struct mutex mutex; u8 fifo_mode, watermark; s16 buffer[8]; u8 bw_bits; u32 slope_dur; u32 slope_thres; u32 range; int ev_enable_state; int64_t timestamp, old_timestamp; const struct bmc150_accel_chip_info *chip_info; }; static const struct { int val; int val2; u8 bw_bits; } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08}, {31, 260000, 0x09}, {62, 500000, 0x0A}, {125, 0, 0x0B}, {250, 0, 0x0C}, {500, 0, 0x0D}, {1000, 0, 0x0E}, {2000, 0, 0x0F} }; static const struct { int bw_bits; int msec; } bmc150_accel_sample_upd_time[] = { {0x08, 64}, {0x09, 32}, {0x0A, 16}, {0x0B, 8}, {0x0C, 4}, {0x0D, 2}, {0x0E, 1}, {0x0F, 1} }; static const struct { int sleep_dur; u8 reg_value; } bmc150_accel_sleep_value_table[] = { {0, 0}, {500, BMC150_ACCEL_SLEEP_500_MICRO}, {1000, BMC150_ACCEL_SLEEP_1_MS}, {2000, BMC150_ACCEL_SLEEP_2_MS}, {4000, BMC150_ACCEL_SLEEP_4_MS}, {6000, BMC150_ACCEL_SLEEP_6_MS}, {10000, BMC150_ACCEL_SLEEP_10_MS}, {25000, BMC150_ACCEL_SLEEP_25_MS}, {50000, BMC150_ACCEL_SLEEP_50_MS}, {100000, BMC150_ACCEL_SLEEP_100_MS}, {500000, BMC150_ACCEL_SLEEP_500_MS}, {1000000, BMC150_ACCEL_SLEEP_1_SEC} }; static int bmc150_accel_set_mode(struct bmc150_accel_data *data, enum bmc150_power_modes mode, int dur_us) { int i; int ret; u8 lpw_bits; int dur_val = -1; if (dur_us > 0) { for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table); ++i) { if (bmc150_accel_sleep_value_table[i].sleep_dur == dur_us) dur_val = bmc150_accel_sleep_value_table[i].reg_value; } } else dur_val = 0; if (dur_val < 0) return -EINVAL; lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT; lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT); dev_dbg(&data->client->dev, "Set Mode bits %x\n", lpw_bits); ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_PMU_LPW, lpw_bits); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_pmu_lpw\n"); return ret; } return 0; } static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val, int val2) { int i; int ret; for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) { if (bmc150_accel_samp_freq_table[i].val == val && bmc150_accel_samp_freq_table[i].val2 == val2) { ret = i2c_smbus_write_byte_data( data->client, BMC150_ACCEL_REG_PMU_BW, bmc150_accel_samp_freq_table[i].bw_bits); if (ret < 0) return ret; data->bw_bits = bmc150_accel_samp_freq_table[i].bw_bits; return 0; } } return -EINVAL; } static int bmc150_accel_update_slope(struct bmc150_accel_data *data) { int ret, val; ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_6, data->slope_thres); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_int_6\n"); return ret; } ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_INT_5); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_int_5\n"); return ret; } val = (ret & ~BMC150_ACCEL_SLOPE_DUR_MASK) | data->slope_dur; ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_5, val); if (ret < 0) { dev_err(&data->client->dev, "Error write reg_int_5\n"); return ret; } dev_dbg(&data->client->dev, "%s: %x %x\n", __func__, data->slope_thres, data->slope_dur); return ret; } static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t, bool state) { if (state) return bmc150_accel_update_slope(t->data); return 0; } static int bmc150_accel_chip_init(struct bmc150_accel_data *data) { int ret; ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_CHIP_ID); if (ret < 0) { dev_err(&data->client->dev, "Error: Reading chip id\n"); return ret; } dev_dbg(&data->client->dev, "Chip Id %x\n", ret); if (ret != data->chip_info->chip_id) { dev_err(&data->client->dev, "Invalid chip %x\n", ret); return -ENODEV; } ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0); if (ret < 0) return ret; /* Set Bandwidth */ ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0); if (ret < 0) return ret; /* Set Default Range */ ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_PMU_RANGE, BMC150_ACCEL_DEF_RANGE_4G); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_pmu_range\n"); return ret; } data->range = BMC150_ACCEL_DEF_RANGE_4G; /* Set default slope duration and thresholds */ data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD; data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION; ret = bmc150_accel_update_slope(data); if (ret < 0) return ret; /* Set default as latched interrupts */ ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_RST_LATCH, BMC150_ACCEL_INT_MODE_LATCH_INT | BMC150_ACCEL_INT_MODE_LATCH_RESET); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_int_rst_latch\n"); return ret; } return 0; } static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val, int *val2) { int i; for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) { if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) { *val = bmc150_accel_samp_freq_table[i].val; *val2 = bmc150_accel_samp_freq_table[i].val2; return IIO_VAL_INT_PLUS_MICRO; } } return -EINVAL; } #ifdef CONFIG_PM static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data) { int i; for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) { if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits) return bmc150_accel_sample_upd_time[i].msec; } return BMC150_ACCEL_MAX_STARTUP_TIME_MS; } static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on) { int ret; if (on) ret = pm_runtime_get_sync(&data->client->dev); else { pm_runtime_mark_last_busy(&data->client->dev); ret = pm_runtime_put_autosuspend(&data->client->dev); } if (ret < 0) { dev_err(&data->client->dev, "Failed: bmc150_accel_set_power_state for %d\n", on); if (on) pm_runtime_put_noidle(&data->client->dev); return ret; } return 0; } #else static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on) { return 0; } #endif static const struct bmc150_accel_interrupt_info { u8 map_reg; u8 map_bitmask; u8 en_reg; u8 en_bitmask; } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = { { /* data ready interrupt */ .map_reg = BMC150_ACCEL_REG_INT_MAP_1, .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA, .en_reg = BMC150_ACCEL_REG_INT_EN_1, .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN, }, { /* motion interrupt */ .map_reg = BMC150_ACCEL_REG_INT_MAP_0, .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE, .en_reg = BMC150_ACCEL_REG_INT_EN_0, .en_bitmask = BMC150_ACCEL_INT_EN_BIT_SLP_X | BMC150_ACCEL_INT_EN_BIT_SLP_Y | BMC150_ACCEL_INT_EN_BIT_SLP_Z }, { /* fifo watermark interrupt */ .map_reg = BMC150_ACCEL_REG_INT_MAP_1, .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM, .en_reg = BMC150_ACCEL_REG_INT_EN_1, .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN, }, }; static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev, struct bmc150_accel_data *data) { int i; for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++) data->interrupts[i].info = &bmc150_accel_interrupts[i]; } static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i, bool state) { struct bmc150_accel_interrupt *intr = &data->interrupts[i]; const struct bmc150_accel_interrupt_info *info = intr->info; int ret; if (state) { if (atomic_inc_return(&intr->users) > 1) return 0; } else { if (atomic_dec_return(&intr->users) > 0) return 0; } /* * We will expect the enable and disable to do operation in * in reverse order. This will happen here anyway as our * resume operation uses sync mode runtime pm calls, the * suspend operation will be delayed by autosuspend delay * So the disable operation will still happen in reverse of * enable operation. When runtime pm is disabled the mode * is always on so sequence doesn't matter */ ret = bmc150_accel_set_power_state(data, state); if (ret < 0) return ret; /* map the interrupt to the appropriate pins */ ret = i2c_smbus_read_byte_data(data->client, info->map_reg); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_int_map\n"); goto out_fix_power_state; } if (state) ret |= info->map_bitmask; else ret &= ~info->map_bitmask; ret = i2c_smbus_write_byte_data(data->client, info->map_reg, ret); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_int_map\n"); goto out_fix_power_state; } /* enable/disable the interrupt */ ret = i2c_smbus_read_byte_data(data->client, info->en_reg); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_int_en\n"); goto out_fix_power_state; } if (state) ret |= info->en_bitmask; else ret &= ~info->en_bitmask; ret = i2c_smbus_write_byte_data(data->client, info->en_reg, ret); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_int_en\n"); goto out_fix_power_state; } if (state) atomic_inc(&data->active_intr); else atomic_dec(&data->active_intr); return 0; out_fix_power_state: bmc150_accel_set_power_state(data, false); return ret; } static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val) { int ret, i; for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) { if (data->chip_info->scale_table[i].scale == val) { ret = i2c_smbus_write_byte_data( data->client, BMC150_ACCEL_REG_PMU_RANGE, data->chip_info->scale_table[i].reg_range); if (ret < 0) { dev_err(&data->client->dev, "Error writing pmu_range\n"); return ret; } data->range = data->chip_info->scale_table[i].reg_range; return 0; } } return -EINVAL; } static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val) { int ret; mutex_lock(&data->mutex); ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_TEMP); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_temp\n"); mutex_unlock(&data->mutex); return ret; } *val = sign_extend32(ret, 7); mutex_unlock(&data->mutex); return IIO_VAL_INT; } static int bmc150_accel_get_axis(struct bmc150_accel_data *data, struct iio_chan_spec const *chan, int *val) { int ret; int axis = chan->scan_index; mutex_lock(&data->mutex); ret = bmc150_accel_set_power_state(data, true); if (ret < 0) { mutex_unlock(&data->mutex); return ret; } ret = i2c_smbus_read_word_data(data->client, BMC150_ACCEL_AXIS_TO_REG(axis)); if (ret < 0) { dev_err(&data->client->dev, "Error reading axis %d\n", axis); bmc150_accel_set_power_state(data, false); mutex_unlock(&data->mutex); return ret; } *val = sign_extend32(ret >> chan->scan_type.shift, chan->scan_type.realbits - 1); ret = bmc150_accel_set_power_state(data, false); mutex_unlock(&data->mutex); if (ret < 0) return ret; return IIO_VAL_INT; } static int bmc150_accel_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct bmc150_accel_data *data = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_RAW: switch (chan->type) { case IIO_TEMP: return bmc150_accel_get_temp(data, val); case IIO_ACCEL: if (iio_buffer_enabled(indio_dev)) return -EBUSY; else return bmc150_accel_get_axis(data, chan, val); default: return -EINVAL; } case IIO_CHAN_INFO_OFFSET: if (chan->type == IIO_TEMP) { *val = BMC150_ACCEL_TEMP_CENTER_VAL; return IIO_VAL_INT; } else return -EINVAL; case IIO_CHAN_INFO_SCALE: *val = 0; switch (chan->type) { case IIO_TEMP: *val2 = 500000; return IIO_VAL_INT_PLUS_MICRO; case IIO_ACCEL: { int i; const struct bmc150_scale_info *si; int st_size = ARRAY_SIZE(data->chip_info->scale_table); for (i = 0; i < st_size; ++i) { si = &data->chip_info->scale_table[i]; if (si->reg_range == data->range) { *val2 = si->scale; return IIO_VAL_INT_PLUS_MICRO; } } return -EINVAL; } default: return -EINVAL; } case IIO_CHAN_INFO_SAMP_FREQ: mutex_lock(&data->mutex); ret = bmc150_accel_get_bw(data, val, val2); mutex_unlock(&data->mutex); return ret; default: return -EINVAL; } } static int bmc150_accel_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct bmc150_accel_data *data = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: mutex_lock(&data->mutex); ret = bmc150_accel_set_bw(data, val, val2); mutex_unlock(&data->mutex); break; case IIO_CHAN_INFO_SCALE: if (val) return -EINVAL; mutex_lock(&data->mutex); ret = bmc150_accel_set_scale(data, val2); mutex_unlock(&data->mutex); return ret; default: ret = -EINVAL; } return ret; } static int bmc150_accel_read_event(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct bmc150_accel_data *data = iio_priv(indio_dev); *val2 = 0; switch (info) { case IIO_EV_INFO_VALUE: *val = data->slope_thres; break; case IIO_EV_INFO_PERIOD: *val = data->slope_dur; break; default: return -EINVAL; } return IIO_VAL_INT; } static int bmc150_accel_write_event(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct bmc150_accel_data *data = iio_priv(indio_dev); if (data->ev_enable_state) return -EBUSY; switch (info) { case IIO_EV_INFO_VALUE: data->slope_thres = val & 0xFF; break; case IIO_EV_INFO_PERIOD: data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK; break; default: return -EINVAL; } return 0; } static int bmc150_accel_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct bmc150_accel_data *data = iio_priv(indio_dev); return data->ev_enable_state; } static int bmc150_accel_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, int state) { struct bmc150_accel_data *data = iio_priv(indio_dev); int ret; if (state == data->ev_enable_state) return 0; mutex_lock(&data->mutex); ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION, state); if (ret < 0) { mutex_unlock(&data->mutex); return ret; } data->ev_enable_state = state; mutex_unlock(&data->mutex); return 0; } static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev, struct iio_trigger *trig) { struct bmc150_accel_data *data = iio_priv(indio_dev); int i; for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) { if (data->triggers[i].indio_trig == trig) return 0; } return -EINVAL; } static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct bmc150_accel_data *data = iio_priv(indio_dev); int wm; mutex_lock(&data->mutex); wm = data->watermark; mutex_unlock(&data->mutex); return sprintf(buf, "%d\n", wm); } static ssize_t bmc150_accel_get_fifo_state(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct bmc150_accel_data *data = iio_priv(indio_dev); bool state; mutex_lock(&data->mutex); state = data->fifo_mode; mutex_unlock(&data->mutex); return sprintf(buf, "%d\n", state); } static IIO_CONST_ATTR(hwfifo_watermark_min, "1"); static IIO_CONST_ATTR(hwfifo_watermark_max, __stringify(BMC150_ACCEL_FIFO_LENGTH)); static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO, bmc150_accel_get_fifo_state, NULL, 0); static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO, bmc150_accel_get_fifo_watermark, NULL, 0); static const struct attribute *bmc150_accel_fifo_attributes[] = { &iio_const_attr_hwfifo_watermark_min.dev_attr.attr, &iio_const_attr_hwfifo_watermark_max.dev_attr.attr, &iio_dev_attr_hwfifo_watermark.dev_attr.attr, &iio_dev_attr_hwfifo_enabled.dev_attr.attr, NULL, }; static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val) { struct bmc150_accel_data *data = iio_priv(indio_dev); if (val > BMC150_ACCEL_FIFO_LENGTH) val = BMC150_ACCEL_FIFO_LENGTH; mutex_lock(&data->mutex); data->watermark = val; mutex_unlock(&data->mutex); return 0; } /* * We must read at least one full frame in one burst, otherwise the rest of the * frame data is discarded. */ static int bmc150_accel_fifo_transfer(const struct i2c_client *client, char *buffer, int samples) { int sample_length = 3 * 2; u8 reg_fifo_data = BMC150_ACCEL_REG_FIFO_DATA; int ret = -EIO; if (i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { struct i2c_msg msg[2] = { { .addr = client->addr, .flags = 0, .buf = ®_fifo_data, .len = sizeof(reg_fifo_data), }, { .addr = client->addr, .flags = I2C_M_RD, .buf = (u8 *)buffer, .len = samples * sample_length, } }; ret = i2c_transfer(client->adapter, msg, 2); if (ret != 2) ret = -EIO; else ret = 0; } else { int i, step = I2C_SMBUS_BLOCK_MAX / sample_length; for (i = 0; i < samples * sample_length; i += step) { ret = i2c_smbus_read_i2c_block_data(client, reg_fifo_data, step, &buffer[i]); if (ret != step) { ret = -EIO; break; } ret = 0; } } if (ret) dev_err(&client->dev, "Error transferring data from fifo\n"); return ret; } static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples, bool irq) { struct bmc150_accel_data *data = iio_priv(indio_dev); int ret, i; u8 count; u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3]; int64_t tstamp; uint64_t sample_period; ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_FIFO_STATUS); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_fifo_status\n"); return ret; } count = ret & 0x7F; if (!count) return 0; /* * If we getting called from IRQ handler we know the stored timestamp is * fairly accurate for the last stored sample. Otherwise, if we are * called as a result of a read operation from userspace and hence * before the watermark interrupt was triggered, take a timestamp * now. We can fall anywhere in between two samples so the error in this * case is at most one sample period. */ if (!irq) { data->old_timestamp = data->timestamp; data->timestamp = iio_get_time_ns(); } /* * Approximate timestamps for each of the sample based on the sampling * frequency, timestamp for last sample and number of samples. * * Note that we can't use the current bandwidth settings to compute the * sample period because the sample rate varies with the device * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That * small variation adds when we store a large number of samples and * creates significant jitter between the last and first samples in * different batches (e.g. 32ms vs 21ms). * * To avoid this issue we compute the actual sample period ourselves * based on the timestamp delta between the last two flush operations. */ sample_period = (data->timestamp - data->old_timestamp); do_div(sample_period, count); tstamp = data->timestamp - (count - 1) * sample_period; if (samples && count > samples) count = samples; ret = bmc150_accel_fifo_transfer(data->client, (u8 *)buffer, count); if (ret) return ret; /* * Ideally we want the IIO core to handle the demux when running in fifo * mode but not when running in triggered buffer mode. Unfortunately * this does not seem to be possible, so stick with driver demux for * now. */ for (i = 0; i < count; i++) { u16 sample[8]; int j, bit; j = 0; for_each_set_bit(bit, indio_dev->active_scan_mask, indio_dev->masklength) memcpy(&sample[j++], &buffer[i * 3 + bit], 2); iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp); tstamp += sample_period; } return count; } static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples) { struct bmc150_accel_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->mutex); ret = __bmc150_accel_fifo_flush(indio_dev, samples, false); mutex_unlock(&data->mutex); return ret; } static IIO_CONST_ATTR_SAMP_FREQ_AVAIL( "15.620000 31.260000 62.50000 125 250 500 1000 2000"); static struct attribute *bmc150_accel_attributes[] = { &iio_const_attr_sampling_frequency_available.dev_attr.attr, NULL, }; static const struct attribute_group bmc150_accel_attrs_group = { .attrs = bmc150_accel_attributes, }; static const struct iio_event_spec bmc150_accel_event = { .type = IIO_EV_TYPE_ROC, .dir = IIO_EV_DIR_EITHER, .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_PERIOD) }; #define BMC150_ACCEL_CHANNEL(_axis, bits) { \ .type = IIO_ACCEL, \ .modified = 1, \ .channel2 = IIO_MOD_##_axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_index = AXIS_##_axis, \ .scan_type = { \ .sign = 's', \ .realbits = (bits), \ .storagebits = 16, \ .shift = 16 - (bits), \ }, \ .event_spec = &bmc150_accel_event, \ .num_event_specs = 1 \ } #define BMC150_ACCEL_CHANNELS(bits) { \ { \ .type = IIO_TEMP, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_OFFSET), \ .scan_index = -1, \ }, \ BMC150_ACCEL_CHANNEL(X, bits), \ BMC150_ACCEL_CHANNEL(Y, bits), \ BMC150_ACCEL_CHANNEL(Z, bits), \ IIO_CHAN_SOFT_TIMESTAMP(3), \ } static const struct iio_chan_spec bma222e_accel_channels[] = BMC150_ACCEL_CHANNELS(8); static const struct iio_chan_spec bma250e_accel_channels[] = BMC150_ACCEL_CHANNELS(10); static const struct iio_chan_spec bmc150_accel_channels[] = BMC150_ACCEL_CHANNELS(12); static const struct iio_chan_spec bma280_accel_channels[] = BMC150_ACCEL_CHANNELS(14); enum { bmc150, bmi055, bma255, bma250e, bma222e, bma280, }; static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = { [bmc150] = { .chip_id = 0xFA, .channels = bmc150_accel_channels, .num_channels = ARRAY_SIZE(bmc150_accel_channels), .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G}, {19122, BMC150_ACCEL_DEF_RANGE_4G}, {38344, BMC150_ACCEL_DEF_RANGE_8G}, {76590, BMC150_ACCEL_DEF_RANGE_16G} }, }, [bmi055] = { .chip_id = 0xFA, .channels = bmc150_accel_channels, .num_channels = ARRAY_SIZE(bmc150_accel_channels), .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G}, {19122, BMC150_ACCEL_DEF_RANGE_4G}, {38344, BMC150_ACCEL_DEF_RANGE_8G}, {76590, BMC150_ACCEL_DEF_RANGE_16G} }, }, [bma255] = { .chip_id = 0xFA, .channels = bmc150_accel_channels, .num_channels = ARRAY_SIZE(bmc150_accel_channels), .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G}, {19122, BMC150_ACCEL_DEF_RANGE_4G}, {38344, BMC150_ACCEL_DEF_RANGE_8G}, {76590, BMC150_ACCEL_DEF_RANGE_16G} }, }, [bma250e] = { .chip_id = 0xF9, .channels = bma250e_accel_channels, .num_channels = ARRAY_SIZE(bma250e_accel_channels), .scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G}, {76590, BMC150_ACCEL_DEF_RANGE_4G}, {153277, BMC150_ACCEL_DEF_RANGE_8G}, {306457, BMC150_ACCEL_DEF_RANGE_16G} }, }, [bma222e] = { .chip_id = 0xF8, .channels = bma222e_accel_channels, .num_channels = ARRAY_SIZE(bma222e_accel_channels), .scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G}, {306457, BMC150_ACCEL_DEF_RANGE_4G}, {612915, BMC150_ACCEL_DEF_RANGE_8G}, {1225831, BMC150_ACCEL_DEF_RANGE_16G} }, }, [bma280] = { .chip_id = 0xFB, .channels = bma280_accel_channels, .num_channels = ARRAY_SIZE(bma280_accel_channels), .scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G}, {4785, BMC150_ACCEL_DEF_RANGE_4G}, {9581, BMC150_ACCEL_DEF_RANGE_8G}, {19152, BMC150_ACCEL_DEF_RANGE_16G} }, }, }; static const struct iio_info bmc150_accel_info = { .attrs = &bmc150_accel_attrs_group, .read_raw = bmc150_accel_read_raw, .write_raw = bmc150_accel_write_raw, .read_event_value = bmc150_accel_read_event, .write_event_value = bmc150_accel_write_event, .write_event_config = bmc150_accel_write_event_config, .read_event_config = bmc150_accel_read_event_config, .validate_trigger = bmc150_accel_validate_trigger, .driver_module = THIS_MODULE, }; static const struct iio_info bmc150_accel_info_fifo = { .attrs = &bmc150_accel_attrs_group, .read_raw = bmc150_accel_read_raw, .write_raw = bmc150_accel_write_raw, .read_event_value = bmc150_accel_read_event, .write_event_value = bmc150_accel_write_event, .write_event_config = bmc150_accel_write_event_config, .read_event_config = bmc150_accel_read_event_config, .validate_trigger = bmc150_accel_validate_trigger, .hwfifo_set_watermark = bmc150_accel_set_watermark, .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush, .driver_module = THIS_MODULE, }; static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct bmc150_accel_data *data = iio_priv(indio_dev); int bit, ret, i = 0; mutex_lock(&data->mutex); for_each_set_bit(bit, indio_dev->active_scan_mask, indio_dev->masklength) { ret = i2c_smbus_read_word_data(data->client, BMC150_ACCEL_AXIS_TO_REG(bit)); if (ret < 0) { mutex_unlock(&data->mutex); goto err_read; } data->buffer[i++] = ret; } mutex_unlock(&data->mutex); iio_push_to_buffers_with_timestamp(indio_dev, data->buffer, data->timestamp); err_read: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static int bmc150_accel_trig_try_reen(struct iio_trigger *trig) { struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig); struct bmc150_accel_data *data = t->data; int ret; /* new data interrupts don't need ack */ if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY]) return 0; mutex_lock(&data->mutex); /* clear any latched interrupt */ ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_RST_LATCH, BMC150_ACCEL_INT_MODE_LATCH_INT | BMC150_ACCEL_INT_MODE_LATCH_RESET); mutex_unlock(&data->mutex); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_int_rst_latch\n"); return ret; } return 0; } static int bmc150_accel_trigger_set_state(struct iio_trigger *trig, bool state) { struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig); struct bmc150_accel_data *data = t->data; int ret; mutex_lock(&data->mutex); if (t->enabled == state) { mutex_unlock(&data->mutex); return 0; } if (t->setup) { ret = t->setup(t, state); if (ret < 0) { mutex_unlock(&data->mutex); return ret; } } ret = bmc150_accel_set_interrupt(data, t->intr, state); if (ret < 0) { mutex_unlock(&data->mutex); return ret; } t->enabled = state; mutex_unlock(&data->mutex); return ret; } static const struct iio_trigger_ops bmc150_accel_trigger_ops = { .set_trigger_state = bmc150_accel_trigger_set_state, .try_reenable = bmc150_accel_trig_try_reen, .owner = THIS_MODULE, }; static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev) { struct bmc150_accel_data *data = iio_priv(indio_dev); int dir; int ret; ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_INT_STATUS_2); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_int_status_2\n"); return ret; } if (ret & BMC150_ACCEL_ANY_MOTION_BIT_SIGN) dir = IIO_EV_DIR_FALLING; else dir = IIO_EV_DIR_RISING; if (ret & BMC150_ACCEL_ANY_MOTION_BIT_X) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X, IIO_EV_TYPE_ROC, dir), data->timestamp); if (ret & BMC150_ACCEL_ANY_MOTION_BIT_Y) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_Y, IIO_EV_TYPE_ROC, dir), data->timestamp); if (ret & BMC150_ACCEL_ANY_MOTION_BIT_Z) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_Z, IIO_EV_TYPE_ROC, dir), data->timestamp); return ret; } static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private) { struct iio_dev *indio_dev = private; struct bmc150_accel_data *data = iio_priv(indio_dev); bool ack = false; int ret; mutex_lock(&data->mutex); if (data->fifo_mode) { ret = __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, true); if (ret > 0) ack = true; } if (data->ev_enable_state) { ret = bmc150_accel_handle_roc_event(indio_dev); if (ret > 0) ack = true; } if (ack) { ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_RST_LATCH, BMC150_ACCEL_INT_MODE_LATCH_INT | BMC150_ACCEL_INT_MODE_LATCH_RESET); if (ret) dev_err(&data->client->dev, "Error writing reg_int_rst_latch\n"); ret = IRQ_HANDLED; } else { ret = IRQ_NONE; } mutex_unlock(&data->mutex); return ret; } static irqreturn_t bmc150_accel_irq_handler(int irq, void *private) { struct iio_dev *indio_dev = private; struct bmc150_accel_data *data = iio_priv(indio_dev); bool ack = false; int i; data->old_timestamp = data->timestamp; data->timestamp = iio_get_time_ns(); for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) { if (data->triggers[i].enabled) { iio_trigger_poll(data->triggers[i].indio_trig); ack = true; break; } } if (data->ev_enable_state || data->fifo_mode) return IRQ_WAKE_THREAD; if (ack) return IRQ_HANDLED; return IRQ_NONE; } static const char *bmc150_accel_match_acpi_device(struct device *dev, int *data) { const struct acpi_device_id *id; id = acpi_match_device(dev->driver->acpi_match_table, dev); if (!id) return NULL; *data = (int) id->driver_data; return dev_name(dev); } static int bmc150_accel_gpio_probe(struct i2c_client *client, struct bmc150_accel_data *data) { struct device *dev; struct gpio_desc *gpio; int ret; if (!client) return -EINVAL; dev = &client->dev; /* data ready gpio interrupt pin */ gpio = devm_gpiod_get_index(dev, BMC150_ACCEL_GPIO_NAME, 0, GPIOD_IN); if (IS_ERR(gpio)) { dev_err(dev, "Failed: gpio get index\n"); return PTR_ERR(gpio); } ret = gpiod_to_irq(gpio); dev_dbg(dev, "GPIO resource, no:%d irq:%d\n", desc_to_gpio(gpio), ret); return ret; } static const struct { int intr; const char *name; int (*setup)(struct bmc150_accel_trigger *t, bool state); } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = { { .intr = 0, .name = "%s-dev%d", }, { .intr = 1, .name = "%s-any-motion-dev%d", .setup = bmc150_accel_any_motion_setup, }, }; static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data, int from) { int i; for (i = from; i >= 0; i++) { if (data->triggers[i].indio_trig) { iio_trigger_unregister(data->triggers[i].indio_trig); data->triggers[i].indio_trig = NULL; } } } static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev, struct bmc150_accel_data *data) { int i, ret; for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) { struct bmc150_accel_trigger *t = &data->triggers[i]; t->indio_trig = devm_iio_trigger_alloc(&data->client->dev, bmc150_accel_triggers[i].name, indio_dev->name, indio_dev->id); if (!t->indio_trig) { ret = -ENOMEM; break; } t->indio_trig->dev.parent = &data->client->dev; t->indio_trig->ops = &bmc150_accel_trigger_ops; t->intr = bmc150_accel_triggers[i].intr; t->data = data; t->setup = bmc150_accel_triggers[i].setup; iio_trigger_set_drvdata(t->indio_trig, t); ret = iio_trigger_register(t->indio_trig); if (ret) break; } if (ret) bmc150_accel_unregister_triggers(data, i - 1); return ret; } #define BMC150_ACCEL_FIFO_MODE_STREAM 0x80 #define BMC150_ACCEL_FIFO_MODE_FIFO 0x40 #define BMC150_ACCEL_FIFO_MODE_BYPASS 0x00 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data) { u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1; int ret; ret = i2c_smbus_write_byte_data(data->client, reg, data->fifo_mode); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_fifo_config1\n"); return ret; } if (!data->fifo_mode) return 0; ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_FIFO_CONFIG0, data->watermark); if (ret < 0) dev_err(&data->client->dev, "Error writing reg_fifo_config0\n"); return ret; } static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev) { struct bmc150_accel_data *data = iio_priv(indio_dev); int ret = 0; if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED) return iio_triggered_buffer_postenable(indio_dev); mutex_lock(&data->mutex); if (!data->watermark) goto out; ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, true); if (ret) goto out; data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO; ret = bmc150_accel_fifo_set_mode(data); if (ret) { data->fifo_mode = 0; bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false); } out: mutex_unlock(&data->mutex); return ret; } static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev) { struct bmc150_accel_data *data = iio_priv(indio_dev); if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED) return iio_triggered_buffer_predisable(indio_dev); mutex_lock(&data->mutex); if (!data->fifo_mode) goto out; bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false); __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false); data->fifo_mode = 0; bmc150_accel_fifo_set_mode(data); out: mutex_unlock(&data->mutex); return 0; } static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = { .postenable = bmc150_accel_buffer_postenable, .predisable = bmc150_accel_buffer_predisable, }; static int bmc150_accel_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct bmc150_accel_data *data; struct iio_dev *indio_dev; int ret; const char *name = NULL; int chip_id = 0; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); i2c_set_clientdata(client, indio_dev); data->client = client; if (id) { name = id->name; chip_id = id->driver_data; } if (ACPI_HANDLE(&client->dev)) name = bmc150_accel_match_acpi_device(&client->dev, &chip_id); data->chip_info = &bmc150_accel_chip_info_tbl[chip_id]; ret = bmc150_accel_chip_init(data); if (ret < 0) return ret; mutex_init(&data->mutex); indio_dev->dev.parent = &client->dev; indio_dev->channels = data->chip_info->channels; indio_dev->num_channels = data->chip_info->num_channels; indio_dev->name = name; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &bmc150_accel_info; if (client->irq < 0) client->irq = bmc150_accel_gpio_probe(client, data); if (client->irq >= 0) { ret = devm_request_threaded_irq( &client->dev, client->irq, bmc150_accel_irq_handler, bmc150_accel_irq_thread_handler, IRQF_TRIGGER_RISING, BMC150_ACCEL_IRQ_NAME, indio_dev); if (ret) return ret; /* * Set latched mode interrupt. While certain interrupts are * non-latched regardless of this settings (e.g. new data) we * want to use latch mode when we can to prevent interrupt * flooding. */ ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_RST_LATCH, BMC150_ACCEL_INT_MODE_LATCH_RESET); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_int_rst_latch\n"); return ret; } bmc150_accel_interrupts_setup(indio_dev, data); ret = bmc150_accel_triggers_setup(indio_dev, data); if (ret) return ret; ret = iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time, bmc150_accel_trigger_handler, &bmc150_accel_buffer_ops); if (ret < 0) { dev_err(&client->dev, "Failed: iio triggered buffer setup\n"); goto err_trigger_unregister; } if (i2c_check_functionality(client->adapter, I2C_FUNC_I2C) || i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_READ_I2C_BLOCK)) { indio_dev->modes |= INDIO_BUFFER_SOFTWARE; indio_dev->info = &bmc150_accel_info_fifo; indio_dev->buffer->attrs = bmc150_accel_fifo_attributes; } } ret = iio_device_register(indio_dev); if (ret < 0) { dev_err(&client->dev, "Unable to register iio device\n"); goto err_buffer_cleanup; } ret = pm_runtime_set_active(&client->dev); if (ret) goto err_iio_unregister; pm_runtime_enable(&client->dev); pm_runtime_set_autosuspend_delay(&client->dev, BMC150_AUTO_SUSPEND_DELAY_MS); pm_runtime_use_autosuspend(&client->dev); return 0; err_iio_unregister: iio_device_unregister(indio_dev); err_buffer_cleanup: if (indio_dev->pollfunc) iio_triggered_buffer_cleanup(indio_dev); err_trigger_unregister: bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1); return ret; } static int bmc150_accel_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct bmc150_accel_data *data = iio_priv(indio_dev); pm_runtime_disable(&client->dev); pm_runtime_set_suspended(&client->dev); pm_runtime_put_noidle(&client->dev); iio_device_unregister(indio_dev); bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1); mutex_lock(&data->mutex); bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0); mutex_unlock(&data->mutex); return 0; } #ifdef CONFIG_PM_SLEEP static int bmc150_accel_suspend(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct bmc150_accel_data *data = iio_priv(indio_dev); mutex_lock(&data->mutex); bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0); mutex_unlock(&data->mutex); return 0; } static int bmc150_accel_resume(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct bmc150_accel_data *data = iio_priv(indio_dev); mutex_lock(&data->mutex); if (atomic_read(&data->active_intr)) bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0); bmc150_accel_fifo_set_mode(data); mutex_unlock(&data->mutex); return 0; } #endif #ifdef CONFIG_PM static int bmc150_accel_runtime_suspend(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct bmc150_accel_data *data = iio_priv(indio_dev); int ret; dev_dbg(&data->client->dev, __func__); ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0); if (ret < 0) return -EAGAIN; return 0; } static int bmc150_accel_runtime_resume(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct bmc150_accel_data *data = iio_priv(indio_dev); int ret; int sleep_val; dev_dbg(&data->client->dev, __func__); ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0); if (ret < 0) return ret; ret = bmc150_accel_fifo_set_mode(data); if (ret < 0) return ret; sleep_val = bmc150_accel_get_startup_times(data); if (sleep_val < 20) usleep_range(sleep_val * 1000, 20000); else msleep_interruptible(sleep_val); return 0; } #endif static const struct dev_pm_ops bmc150_accel_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume) SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend, bmc150_accel_runtime_resume, NULL) }; static const struct acpi_device_id bmc150_accel_acpi_match[] = { {"BSBA0150", bmc150}, {"BMC150A", bmc150}, {"BMI055A", bmi055}, {"BMA0255", bma255}, {"BMA250E", bma250e}, {"BMA222E", bma222e}, {"BMA0280", bma280}, { }, }; MODULE_DEVICE_TABLE(acpi, bmc150_accel_acpi_match); static const struct i2c_device_id bmc150_accel_id[] = { {"bmc150_accel", bmc150}, {"bmi055_accel", bmi055}, {"bma255", bma255}, {"bma250e", bma250e}, {"bma222e", bma222e}, {"bma280", bma280}, {} }; MODULE_DEVICE_TABLE(i2c, bmc150_accel_id); static struct i2c_driver bmc150_accel_driver = { .driver = { .name = BMC150_ACCEL_DRV_NAME, .acpi_match_table = ACPI_PTR(bmc150_accel_acpi_match), .pm = &bmc150_accel_pm_ops, }, .probe = bmc150_accel_probe, .remove = bmc150_accel_remove, .id_table = bmc150_accel_id, }; module_i2c_driver(bmc150_accel_driver); MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("BMC150 accelerometer driver");