/* * Copyright 1993-2003 NVIDIA, Corporation * Copyright 2007-2009 Stuart Bennett * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <drm/drmP.h> #include "nouveau_drm.h" #include "nouveau_reg.h" #include "hw.h" /****************************************************************************\ * * * The video arbitration routines calculate some "magic" numbers. Fixes * * the snow seen when accessing the framebuffer without it. * * It just works (I hope). * * * \****************************************************************************/ struct nv_fifo_info { int lwm; int burst; }; struct nv_sim_state { int pclk_khz; int mclk_khz; int nvclk_khz; int bpp; int mem_page_miss; int mem_latency; int memory_type; int memory_width; int two_heads; }; static void nv04_calc_arb(struct nv_fifo_info *fifo, struct nv_sim_state *arb) { int pagemiss, cas, width, bpp; int nvclks, mclks, pclks, crtpagemiss; int found, mclk_extra, mclk_loop, cbs, m1, p1; int mclk_freq, pclk_freq, nvclk_freq; int us_m, us_n, us_p, crtc_drain_rate; int cpm_us, us_crt, clwm; pclk_freq = arb->pclk_khz; mclk_freq = arb->mclk_khz; nvclk_freq = arb->nvclk_khz; pagemiss = arb->mem_page_miss; cas = arb->mem_latency; width = arb->memory_width >> 6; bpp = arb->bpp; cbs = 128; pclks = 2; nvclks = 10; mclks = 13 + cas; mclk_extra = 3; found = 0; while (!found) { found = 1; mclk_loop = mclks + mclk_extra; us_m = mclk_loop * 1000 * 1000 / mclk_freq; us_n = nvclks * 1000 * 1000 / nvclk_freq; us_p = nvclks * 1000 * 1000 / pclk_freq; crtc_drain_rate = pclk_freq * bpp / 8; crtpagemiss = 2; crtpagemiss += 1; cpm_us = crtpagemiss * pagemiss * 1000 * 1000 / mclk_freq; us_crt = cpm_us + us_m + us_n + us_p; clwm = us_crt * crtc_drain_rate / (1000 * 1000); clwm++; m1 = clwm + cbs - 512; p1 = m1 * pclk_freq / mclk_freq; p1 = p1 * bpp / 8; if ((p1 < m1 && m1 > 0) || clwm > 519) { found = !mclk_extra; mclk_extra--; } if (clwm < 384) clwm = 384; fifo->lwm = clwm; fifo->burst = cbs; } } static void nv10_calc_arb(struct nv_fifo_info *fifo, struct nv_sim_state *arb) { int fill_rate, drain_rate; int pclks, nvclks, mclks, xclks; int pclk_freq, nvclk_freq, mclk_freq; int fill_lat, extra_lat; int max_burst_o, max_burst_l; int fifo_len, min_lwm, max_lwm; const int burst_lat = 80; /* Maximum allowable latency due * to the CRTC FIFO burst. (ns) */ pclk_freq = arb->pclk_khz; nvclk_freq = arb->nvclk_khz; mclk_freq = arb->mclk_khz; fill_rate = mclk_freq * arb->memory_width / 8; /* kB/s */ drain_rate = pclk_freq * arb->bpp / 8; /* kB/s */ fifo_len = arb->two_heads ? 1536 : 1024; /* B */ /* Fixed FIFO refill latency. */ pclks = 4; /* lwm detect. */ nvclks = 3 /* lwm -> sync. */ + 2 /* fbi bus cycles (1 req + 1 busy) */ + 1 /* 2 edge sync. may be very close to edge so * just put one. */ + 1 /* fbi_d_rdv_n */ + 1 /* Fbi_d_rdata */ + 1; /* crtfifo load */ mclks = 1 /* 2 edge sync. may be very close to edge so * just put one. */ + 1 /* arb_hp_req */ + 5 /* tiling pipeline */ + 2 /* latency fifo */ + 2 /* memory request to fbio block */ + 7; /* data returned from fbio block */ /* Need to accumulate 256 bits for read */ mclks += (arb->memory_type == 0 ? 2 : 1) * arb->memory_width / 32; fill_lat = mclks * 1000 * 1000 / mclk_freq /* minimum mclk latency */ + nvclks * 1000 * 1000 / nvclk_freq /* nvclk latency */ + pclks * 1000 * 1000 / pclk_freq; /* pclk latency */ /* Conditional FIFO refill latency. */ xclks = 2 * arb->mem_page_miss + mclks /* Extra latency due to * the overlay. */ + 2 * arb->mem_page_miss /* Extra pagemiss latency. */ + (arb->bpp == 32 ? 8 : 4); /* Margin of error. */ extra_lat = xclks * 1000 * 1000 / mclk_freq; if (arb->two_heads) /* Account for another CRTC. */ extra_lat += fill_lat + extra_lat + burst_lat; /* FIFO burst */ /* Max burst not leading to overflows. */ max_burst_o = (1 + fifo_len - extra_lat * drain_rate / (1000 * 1000)) * (fill_rate / 1000) / ((fill_rate - drain_rate) / 1000); fifo->burst = min(max_burst_o, 1024); /* Max burst value with an acceptable latency. */ max_burst_l = burst_lat * fill_rate / (1000 * 1000); fifo->burst = min(max_burst_l, fifo->burst); fifo->burst = rounddown_pow_of_two(fifo->burst); /* FIFO low watermark */ min_lwm = (fill_lat + extra_lat) * drain_rate / (1000 * 1000) + 1; max_lwm = fifo_len - fifo->burst + fill_lat * drain_rate / (1000 * 1000) + fifo->burst * drain_rate / fill_rate; fifo->lwm = min_lwm + 10 * (max_lwm - min_lwm) / 100; /* Empirical. */ } static void nv04_update_arb(struct drm_device *dev, int VClk, int bpp, int *burst, int *lwm) { struct nouveau_drm *drm = nouveau_drm(dev); struct nvif_device *device = &nouveau_drm(dev)->device; struct nv_fifo_info fifo_data; struct nv_sim_state sim_data; int MClk = nouveau_hw_get_clock(dev, PLL_MEMORY); int NVClk = nouveau_hw_get_clock(dev, PLL_CORE); uint32_t cfg1 = nvif_rd32(device, NV04_PFB_CFG1); sim_data.pclk_khz = VClk; sim_data.mclk_khz = MClk; sim_data.nvclk_khz = NVClk; sim_data.bpp = bpp; sim_data.two_heads = nv_two_heads(dev); if ((dev->pdev->device & 0xffff) == 0x01a0 /*CHIPSET_NFORCE*/ || (dev->pdev->device & 0xffff) == 0x01f0 /*CHIPSET_NFORCE2*/) { uint32_t type; pci_read_config_dword(pci_get_bus_and_slot(0, 1), 0x7c, &type); sim_data.memory_type = (type >> 12) & 1; sim_data.memory_width = 64; sim_data.mem_latency = 3; sim_data.mem_page_miss = 10; } else { sim_data.memory_type = nvif_rd32(device, NV04_PFB_CFG0) & 0x1; sim_data.memory_width = (nvif_rd32(device, NV_PEXTDEV_BOOT_0) & 0x10) ? 128 : 64; sim_data.mem_latency = cfg1 & 0xf; sim_data.mem_page_miss = ((cfg1 >> 4) & 0xf) + ((cfg1 >> 31) & 0x1); } if (drm->device.info.family == NV_DEVICE_INFO_V0_TNT) nv04_calc_arb(&fifo_data, &sim_data); else nv10_calc_arb(&fifo_data, &sim_data); *burst = ilog2(fifo_data.burst >> 4); *lwm = fifo_data.lwm >> 3; } static void nv20_update_arb(int *burst, int *lwm) { unsigned int fifo_size, burst_size, graphics_lwm; fifo_size = 2048; burst_size = 512; graphics_lwm = fifo_size - burst_size; *burst = ilog2(burst_size >> 5); *lwm = graphics_lwm >> 3; } void nouveau_calc_arb(struct drm_device *dev, int vclk, int bpp, int *burst, int *lwm) { struct nouveau_drm *drm = nouveau_drm(dev); if (drm->device.info.family < NV_DEVICE_INFO_V0_KELVIN) nv04_update_arb(dev, vclk, bpp, burst, lwm); else if ((dev->pdev->device & 0xfff0) == 0x0240 /*CHIPSET_C51*/ || (dev->pdev->device & 0xfff0) == 0x03d0 /*CHIPSET_C512*/) { *burst = 128; *lwm = 0x0480; } else nv20_update_arb(burst, lwm); }