/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include <linux/slab.h> #include <linux/mutex.h> #include "kfd_device_queue_manager.h" #include "kfd_kernel_queue.h" #include "kfd_priv.h" #include "kfd_pm4_headers.h" #include "kfd_pm4_opcodes.h" static inline void inc_wptr(unsigned int *wptr, unsigned int increment_bytes, unsigned int buffer_size_bytes) { unsigned int temp = *wptr + increment_bytes / sizeof(uint32_t); BUG_ON((temp * sizeof(uint32_t)) > buffer_size_bytes); *wptr = temp; } static unsigned int build_pm4_header(unsigned int opcode, size_t packet_size) { union PM4_MES_TYPE_3_HEADER header; header.u32all = 0; header.opcode = opcode; header.count = packet_size/sizeof(uint32_t) - 2; header.type = PM4_TYPE_3; return header.u32all; } static void pm_calc_rlib_size(struct packet_manager *pm, unsigned int *rlib_size, bool *over_subscription) { unsigned int process_count, queue_count; BUG_ON(!pm || !rlib_size || !over_subscription); process_count = pm->dqm->processes_count; queue_count = pm->dqm->queue_count; /* check if there is over subscription*/ *over_subscription = false; if ((process_count > 1) || queue_count > PIPE_PER_ME_CP_SCHEDULING * QUEUES_PER_PIPE) { *over_subscription = true; pr_debug("kfd: over subscribed runlist\n"); } /* calculate run list ib allocation size */ *rlib_size = process_count * sizeof(struct pm4_map_process) + queue_count * sizeof(struct pm4_map_queues); /* * Increase the allocation size in case we need a chained run list * when over subscription */ if (*over_subscription) *rlib_size += sizeof(struct pm4_runlist); pr_debug("kfd: runlist ib size %d\n", *rlib_size); } static int pm_allocate_runlist_ib(struct packet_manager *pm, unsigned int **rl_buffer, uint64_t *rl_gpu_buffer, unsigned int *rl_buffer_size, bool *is_over_subscription) { int retval; BUG_ON(!pm); BUG_ON(pm->allocated == true); BUG_ON(is_over_subscription == NULL); pm_calc_rlib_size(pm, rl_buffer_size, is_over_subscription); retval = kfd_gtt_sa_allocate(pm->dqm->dev, *rl_buffer_size, &pm->ib_buffer_obj); if (retval != 0) { pr_err("kfd: failed to allocate runlist IB\n"); return retval; } *(void **)rl_buffer = pm->ib_buffer_obj->cpu_ptr; *rl_gpu_buffer = pm->ib_buffer_obj->gpu_addr; memset(*rl_buffer, 0, *rl_buffer_size); pm->allocated = true; return retval; } static int pm_create_runlist(struct packet_manager *pm, uint32_t *buffer, uint64_t ib, size_t ib_size_in_dwords, bool chain) { struct pm4_runlist *packet; BUG_ON(!pm || !buffer || !ib); packet = (struct pm4_runlist *)buffer; memset(buffer, 0, sizeof(struct pm4_runlist)); packet->header.u32all = build_pm4_header(IT_RUN_LIST, sizeof(struct pm4_runlist)); packet->bitfields4.ib_size = ib_size_in_dwords; packet->bitfields4.chain = chain ? 1 : 0; packet->bitfields4.offload_polling = 0; packet->bitfields4.valid = 1; packet->ordinal2 = lower_32_bits(ib); packet->bitfields3.ib_base_hi = upper_32_bits(ib); return 0; } static int pm_create_map_process(struct packet_manager *pm, uint32_t *buffer, struct qcm_process_device *qpd) { struct pm4_map_process *packet; struct queue *cur; uint32_t num_queues; BUG_ON(!pm || !buffer || !qpd); packet = (struct pm4_map_process *)buffer; pr_debug("kfd: In func %s\n", __func__); memset(buffer, 0, sizeof(struct pm4_map_process)); packet->header.u32all = build_pm4_header(IT_MAP_PROCESS, sizeof(struct pm4_map_process)); packet->bitfields2.diq_enable = (qpd->is_debug) ? 1 : 0; packet->bitfields2.process_quantum = 1; packet->bitfields2.pasid = qpd->pqm->process->pasid; packet->bitfields3.page_table_base = qpd->page_table_base; packet->bitfields10.gds_size = qpd->gds_size; packet->bitfields10.num_gws = qpd->num_gws; packet->bitfields10.num_oac = qpd->num_oac; num_queues = 0; list_for_each_entry(cur, &qpd->queues_list, list) num_queues++; packet->bitfields10.num_queues = num_queues; packet->sh_mem_config = qpd->sh_mem_config; packet->sh_mem_bases = qpd->sh_mem_bases; packet->sh_mem_ape1_base = qpd->sh_mem_ape1_base; packet->sh_mem_ape1_limit = qpd->sh_mem_ape1_limit; packet->gds_addr_lo = lower_32_bits(qpd->gds_context_area); packet->gds_addr_hi = upper_32_bits(qpd->gds_context_area); return 0; } static int pm_create_map_queue(struct packet_manager *pm, uint32_t *buffer, struct queue *q) { struct pm4_map_queues *packet; BUG_ON(!pm || !buffer || !q); pr_debug("kfd: In func %s\n", __func__); packet = (struct pm4_map_queues *)buffer; memset(buffer, 0, sizeof(struct pm4_map_queues)); packet->header.u32all = build_pm4_header(IT_MAP_QUEUES, sizeof(struct pm4_map_queues)); packet->bitfields2.alloc_format = alloc_format__mes_map_queues__one_per_pipe; packet->bitfields2.num_queues = 1; packet->bitfields2.queue_sel = queue_sel__mes_map_queues__map_to_hws_determined_queue_slots; packet->bitfields2.vidmem = (q->properties.is_interop) ? vidmem__mes_map_queues__uses_video_memory : vidmem__mes_map_queues__uses_no_video_memory; switch (q->properties.type) { case KFD_QUEUE_TYPE_COMPUTE: case KFD_QUEUE_TYPE_DIQ: packet->bitfields2.engine_sel = engine_sel__mes_map_queues__compute; break; case KFD_QUEUE_TYPE_SDMA: packet->bitfields2.engine_sel = engine_sel__mes_map_queues__sdma0; break; default: BUG(); break; } packet->mes_map_queues_ordinals[0].bitfields3.doorbell_offset = q->properties.doorbell_off; packet->mes_map_queues_ordinals[0].mqd_addr_lo = lower_32_bits(q->gart_mqd_addr); packet->mes_map_queues_ordinals[0].mqd_addr_hi = upper_32_bits(q->gart_mqd_addr); packet->mes_map_queues_ordinals[0].wptr_addr_lo = lower_32_bits((uint64_t)q->properties.write_ptr); packet->mes_map_queues_ordinals[0].wptr_addr_hi = upper_32_bits((uint64_t)q->properties.write_ptr); return 0; } static int pm_create_runlist_ib(struct packet_manager *pm, struct list_head *queues, uint64_t *rl_gpu_addr, size_t *rl_size_bytes) { unsigned int alloc_size_bytes; unsigned int *rl_buffer, rl_wptr, i; int retval, proccesses_mapped; struct device_process_node *cur; struct qcm_process_device *qpd; struct queue *q; struct kernel_queue *kq; bool is_over_subscription; BUG_ON(!pm || !queues || !rl_size_bytes || !rl_gpu_addr); rl_wptr = retval = proccesses_mapped = 0; retval = pm_allocate_runlist_ib(pm, &rl_buffer, rl_gpu_addr, &alloc_size_bytes, &is_over_subscription); if (retval != 0) return retval; *rl_size_bytes = alloc_size_bytes; pr_debug("kfd: In func %s\n", __func__); pr_debug("kfd: building runlist ib process count: %d queues count %d\n", pm->dqm->processes_count, pm->dqm->queue_count); /* build the run list ib packet */ list_for_each_entry(cur, queues, list) { qpd = cur->qpd; /* build map process packet */ if (proccesses_mapped >= pm->dqm->processes_count) { pr_debug("kfd: not enough space left in runlist IB\n"); pm_release_ib(pm); return -ENOMEM; } retval = pm_create_map_process(pm, &rl_buffer[rl_wptr], qpd); if (retval != 0) return retval; proccesses_mapped++; inc_wptr(&rl_wptr, sizeof(struct pm4_map_process), alloc_size_bytes); list_for_each_entry(kq, &qpd->priv_queue_list, list) { if (kq->queue->properties.is_active != true) continue; retval = pm_create_map_queue(pm, &rl_buffer[rl_wptr], kq->queue); if (retval != 0) return retval; inc_wptr(&rl_wptr, sizeof(struct pm4_map_queues), alloc_size_bytes); } list_for_each_entry(q, &qpd->queues_list, list) { if (q->properties.is_active != true) continue; retval = pm_create_map_queue(pm, &rl_buffer[rl_wptr], q); if (retval != 0) return retval; inc_wptr(&rl_wptr, sizeof(struct pm4_map_queues), alloc_size_bytes); } } pr_debug("kfd: finished map process and queues to runlist\n"); if (is_over_subscription) pm_create_runlist(pm, &rl_buffer[rl_wptr], *rl_gpu_addr, alloc_size_bytes / sizeof(uint32_t), true); for (i = 0; i < alloc_size_bytes / sizeof(uint32_t); i++) pr_debug("0x%2X ", rl_buffer[i]); pr_debug("\n"); return 0; } int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm) { BUG_ON(!dqm); pm->dqm = dqm; mutex_init(&pm->lock); pm->priv_queue = kernel_queue_init(dqm->dev, KFD_QUEUE_TYPE_HIQ); if (pm->priv_queue == NULL) { mutex_destroy(&pm->lock); return -ENOMEM; } pm->allocated = false; return 0; } void pm_uninit(struct packet_manager *pm) { BUG_ON(!pm); mutex_destroy(&pm->lock); kernel_queue_uninit(pm->priv_queue); } int pm_send_set_resources(struct packet_manager *pm, struct scheduling_resources *res) { struct pm4_set_resources *packet; BUG_ON(!pm || !res); pr_debug("kfd: In func %s\n", __func__); mutex_lock(&pm->lock); pm->priv_queue->ops.acquire_packet_buffer(pm->priv_queue, sizeof(*packet) / sizeof(uint32_t), (unsigned int **)&packet); if (packet == NULL) { mutex_unlock(&pm->lock); pr_err("kfd: failed to allocate buffer on kernel queue\n"); return -ENOMEM; } memset(packet, 0, sizeof(struct pm4_set_resources)); packet->header.u32all = build_pm4_header(IT_SET_RESOURCES, sizeof(struct pm4_set_resources)); packet->bitfields2.queue_type = queue_type__mes_set_resources__hsa_interface_queue_hiq; packet->bitfields2.vmid_mask = res->vmid_mask; packet->bitfields2.unmap_latency = KFD_UNMAP_LATENCY; packet->bitfields7.oac_mask = res->oac_mask; packet->bitfields8.gds_heap_base = res->gds_heap_base; packet->bitfields8.gds_heap_size = res->gds_heap_size; packet->gws_mask_lo = lower_32_bits(res->gws_mask); packet->gws_mask_hi = upper_32_bits(res->gws_mask); packet->queue_mask_lo = lower_32_bits(res->queue_mask); packet->queue_mask_hi = upper_32_bits(res->queue_mask); pm->priv_queue->ops.submit_packet(pm->priv_queue); mutex_unlock(&pm->lock); return 0; } int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues) { uint64_t rl_gpu_ib_addr; uint32_t *rl_buffer; size_t rl_ib_size, packet_size_dwords; int retval; BUG_ON(!pm || !dqm_queues); retval = pm_create_runlist_ib(pm, dqm_queues, &rl_gpu_ib_addr, &rl_ib_size); if (retval != 0) goto fail_create_runlist_ib; pr_debug("kfd: runlist IB address: 0x%llX\n", rl_gpu_ib_addr); packet_size_dwords = sizeof(struct pm4_runlist) / sizeof(uint32_t); mutex_lock(&pm->lock); retval = pm->priv_queue->ops.acquire_packet_buffer(pm->priv_queue, packet_size_dwords, &rl_buffer); if (retval != 0) goto fail_acquire_packet_buffer; retval = pm_create_runlist(pm, rl_buffer, rl_gpu_ib_addr, rl_ib_size / sizeof(uint32_t), false); if (retval != 0) goto fail_create_runlist; pm->priv_queue->ops.submit_packet(pm->priv_queue); mutex_unlock(&pm->lock); return retval; fail_create_runlist: pm->priv_queue->ops.rollback_packet(pm->priv_queue); fail_acquire_packet_buffer: mutex_unlock(&pm->lock); fail_create_runlist_ib: if (pm->allocated == true) pm_release_ib(pm); return retval; } int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address, uint32_t fence_value) { int retval; struct pm4_query_status *packet; BUG_ON(!pm || !fence_address); mutex_lock(&pm->lock); retval = pm->priv_queue->ops.acquire_packet_buffer( pm->priv_queue, sizeof(struct pm4_query_status) / sizeof(uint32_t), (unsigned int **)&packet); if (retval != 0) goto fail_acquire_packet_buffer; packet->header.u32all = build_pm4_header(IT_QUERY_STATUS, sizeof(struct pm4_query_status)); packet->bitfields2.context_id = 0; packet->bitfields2.interrupt_sel = interrupt_sel__mes_query_status__completion_status; packet->bitfields2.command = command__mes_query_status__fence_only_after_write_ack; packet->addr_hi = upper_32_bits((uint64_t)fence_address); packet->addr_lo = lower_32_bits((uint64_t)fence_address); packet->data_hi = upper_32_bits((uint64_t)fence_value); packet->data_lo = lower_32_bits((uint64_t)fence_value); pm->priv_queue->ops.submit_packet(pm->priv_queue); mutex_unlock(&pm->lock); return 0; fail_acquire_packet_buffer: mutex_unlock(&pm->lock); return retval; } int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type, enum kfd_preempt_type_filter mode, uint32_t filter_param, bool reset, unsigned int sdma_engine) { int retval; uint32_t *buffer; struct pm4_unmap_queues *packet; BUG_ON(!pm); mutex_lock(&pm->lock); retval = pm->priv_queue->ops.acquire_packet_buffer( pm->priv_queue, sizeof(struct pm4_unmap_queues) / sizeof(uint32_t), &buffer); if (retval != 0) goto err_acquire_packet_buffer; packet = (struct pm4_unmap_queues *)buffer; memset(buffer, 0, sizeof(struct pm4_unmap_queues)); packet->header.u32all = build_pm4_header(IT_UNMAP_QUEUES, sizeof(struct pm4_unmap_queues)); switch (type) { case KFD_QUEUE_TYPE_COMPUTE: case KFD_QUEUE_TYPE_DIQ: packet->bitfields2.engine_sel = engine_sel__mes_unmap_queues__compute; break; case KFD_QUEUE_TYPE_SDMA: packet->bitfields2.engine_sel = engine_sel__mes_unmap_queues__sdma0 + sdma_engine; break; default: BUG(); break; } if (reset) packet->bitfields2.action = action__mes_unmap_queues__reset_queues; else packet->bitfields2.action = action__mes_unmap_queues__preempt_queues; switch (mode) { case KFD_PREEMPT_TYPE_FILTER_SINGLE_QUEUE: packet->bitfields2.queue_sel = queue_sel__mes_unmap_queues__perform_request_on_specified_queues; packet->bitfields2.num_queues = 1; packet->bitfields3b.doorbell_offset0 = filter_param; break; case KFD_PREEMPT_TYPE_FILTER_BY_PASID: packet->bitfields2.queue_sel = queue_sel__mes_unmap_queues__perform_request_on_pasid_queues; packet->bitfields3a.pasid = filter_param; break; case KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES: packet->bitfields2.queue_sel = queue_sel__mes_unmap_queues__perform_request_on_all_active_queues; break; default: BUG(); break; }; pm->priv_queue->ops.submit_packet(pm->priv_queue); mutex_unlock(&pm->lock); return 0; err_acquire_packet_buffer: mutex_unlock(&pm->lock); return retval; } void pm_release_ib(struct packet_manager *pm) { BUG_ON(!pm); mutex_lock(&pm->lock); if (pm->allocated) { kfd_gtt_sa_free(pm->dqm->dev, pm->ib_buffer_obj); pm->allocated = false; } mutex_unlock(&pm->lock); }