/** * AES XCBC routines supporting the Power 7+ Nest Accelerators driver * * Copyright (C) 2011-2012 International Business Machines Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 only. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Author: Kent Yoder <yoder1@us.ibm.com> */ #include <crypto/internal/hash.h> #include <crypto/aes.h> #include <crypto/algapi.h> #include <linux/module.h> #include <linux/types.h> #include <linux/crypto.h> #include <asm/vio.h> #include "nx_csbcpb.h" #include "nx.h" struct xcbc_state { u8 state[AES_BLOCK_SIZE]; unsigned int count; u8 buffer[AES_BLOCK_SIZE]; }; static int nx_xcbc_set_key(struct crypto_shash *desc, const u8 *in_key, unsigned int key_len) { struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc); switch (key_len) { case AES_KEYSIZE_128: nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_128]; break; default: return -EINVAL; } memcpy(nx_ctx->priv.xcbc.key, in_key, key_len); return 0; } /* * Based on RFC 3566, for a zero-length message: * * n = 1 * K1 = E(K, 0x01010101010101010101010101010101) * K3 = E(K, 0x03030303030303030303030303030303) * E[0] = 0x00000000000000000000000000000000 * M[1] = 0x80000000000000000000000000000000 (0 length message with padding) * E[1] = (K1, M[1] ^ E[0] ^ K3) * Tag = M[1] */ static int nx_xcbc_empty(struct shash_desc *desc, u8 *out) { struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); struct nx_csbcpb *csbcpb = nx_ctx->csbcpb; struct nx_sg *in_sg, *out_sg; u8 keys[2][AES_BLOCK_SIZE]; u8 key[32]; int rc = 0; int len; /* Change to ECB mode */ csbcpb->cpb.hdr.mode = NX_MODE_AES_ECB; memcpy(key, csbcpb->cpb.aes_xcbc.key, AES_BLOCK_SIZE); memcpy(csbcpb->cpb.aes_ecb.key, key, AES_BLOCK_SIZE); NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT; /* K1 and K3 base patterns */ memset(keys[0], 0x01, sizeof(keys[0])); memset(keys[1], 0x03, sizeof(keys[1])); len = sizeof(keys); /* Generate K1 and K3 encrypting the patterns */ in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys, &len, nx_ctx->ap->sglen); if (len != sizeof(keys)) return -EINVAL; out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *) keys, &len, nx_ctx->ap->sglen); if (len != sizeof(keys)) return -EINVAL; nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP); if (rc) goto out; atomic_inc(&(nx_ctx->stats->aes_ops)); /* XOr K3 with the padding for a 0 length message */ keys[1][0] ^= 0x80; len = sizeof(keys[1]); /* Encrypt the final result */ memcpy(csbcpb->cpb.aes_ecb.key, keys[0], AES_BLOCK_SIZE); in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys[1], &len, nx_ctx->ap->sglen); if (len != sizeof(keys[1])) return -EINVAL; len = AES_BLOCK_SIZE; out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len, nx_ctx->ap->sglen); if (len != AES_BLOCK_SIZE) return -EINVAL; nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP); if (rc) goto out; atomic_inc(&(nx_ctx->stats->aes_ops)); out: /* Restore XCBC mode */ csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC; memcpy(csbcpb->cpb.aes_xcbc.key, key, AES_BLOCK_SIZE); NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT; return rc; } static int nx_xcbc_init(struct shash_desc *desc) { struct xcbc_state *sctx = shash_desc_ctx(desc); struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); struct nx_csbcpb *csbcpb = nx_ctx->csbcpb; struct nx_sg *out_sg; int len; nx_ctx_init(nx_ctx, HCOP_FC_AES); memset(sctx, 0, sizeof *sctx); NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_128); csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC; memcpy(csbcpb->cpb.aes_xcbc.key, nx_ctx->priv.xcbc.key, AES_BLOCK_SIZE); memset(nx_ctx->priv.xcbc.key, 0, sizeof *nx_ctx->priv.xcbc.key); len = AES_BLOCK_SIZE; out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state, &len, nx_ctx->ap->sglen); if (len != AES_BLOCK_SIZE) return -EINVAL; nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); return 0; } static int nx_xcbc_update(struct shash_desc *desc, const u8 *data, unsigned int len) { struct xcbc_state *sctx = shash_desc_ctx(desc); struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); struct nx_csbcpb *csbcpb = nx_ctx->csbcpb; struct nx_sg *in_sg; u32 to_process = 0, leftover, total; unsigned int max_sg_len; unsigned long irq_flags; int rc = 0; int data_len; spin_lock_irqsave(&nx_ctx->lock, irq_flags); total = sctx->count + len; /* 2 cases for total data len: * 1: <= AES_BLOCK_SIZE: copy into state, return 0 * 2: > AES_BLOCK_SIZE: process X blocks, copy in leftover */ if (total <= AES_BLOCK_SIZE) { memcpy(sctx->buffer + sctx->count, data, len); sctx->count += len; goto out; } in_sg = nx_ctx->in_sg; max_sg_len = min_t(u64, nx_driver.of.max_sg_len/sizeof(struct nx_sg), nx_ctx->ap->sglen); max_sg_len = min_t(u64, max_sg_len, nx_ctx->ap->databytelen/NX_PAGE_SIZE); do { to_process = total - to_process; to_process = to_process & ~(AES_BLOCK_SIZE - 1); leftover = total - to_process; /* the hardware will not accept a 0 byte operation for this * algorithm and the operation MUST be finalized to be correct. * So if we happen to get an update that falls on a block sized * boundary, we must save off the last block to finalize with * later. */ if (!leftover) { to_process -= AES_BLOCK_SIZE; leftover = AES_BLOCK_SIZE; } if (sctx->count) { data_len = sctx->count; in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) sctx->buffer, &data_len, max_sg_len); if (data_len != sctx->count) return -EINVAL; } data_len = to_process - sctx->count; in_sg = nx_build_sg_list(in_sg, (u8 *) data, &data_len, max_sg_len); if (data_len != to_process - sctx->count) return -EINVAL; nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); /* we've hit the nx chip previously and we're updating again, * so copy over the partial digest */ if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) { memcpy(csbcpb->cpb.aes_xcbc.cv, csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE); } NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) { rc = -EINVAL; goto out; } rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP); if (rc) goto out; atomic_inc(&(nx_ctx->stats->aes_ops)); /* everything after the first update is continuation */ NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; total -= to_process; data += to_process - sctx->count; sctx->count = 0; in_sg = nx_ctx->in_sg; } while (leftover > AES_BLOCK_SIZE); /* copy the leftover back into the state struct */ memcpy(sctx->buffer, data, leftover); sctx->count = leftover; out: spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); return rc; } static int nx_xcbc_final(struct shash_desc *desc, u8 *out) { struct xcbc_state *sctx = shash_desc_ctx(desc); struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); struct nx_csbcpb *csbcpb = nx_ctx->csbcpb; struct nx_sg *in_sg, *out_sg; unsigned long irq_flags; int rc = 0; int len; spin_lock_irqsave(&nx_ctx->lock, irq_flags); if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) { /* we've hit the nx chip previously, now we're finalizing, * so copy over the partial digest */ memcpy(csbcpb->cpb.aes_xcbc.cv, csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE); } else if (sctx->count == 0) { /* * we've never seen an update, so this is a 0 byte op. The * hardware cannot handle a 0 byte op, so just ECB to * generate the hash. */ rc = nx_xcbc_empty(desc, out); goto out; } /* final is represented by continuing the operation and indicating that * this is not an intermediate operation */ NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE; len = sctx->count; in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buffer, &len, nx_ctx->ap->sglen); if (len != sctx->count) return -EINVAL; len = AES_BLOCK_SIZE; out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len, nx_ctx->ap->sglen); if (len != AES_BLOCK_SIZE) return -EINVAL; nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); if (!nx_ctx->op.outlen) { rc = -EINVAL; goto out; } rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP); if (rc) goto out; atomic_inc(&(nx_ctx->stats->aes_ops)); memcpy(out, csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE); out: spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); return rc; } struct shash_alg nx_shash_aes_xcbc_alg = { .digestsize = AES_BLOCK_SIZE, .init = nx_xcbc_init, .update = nx_xcbc_update, .final = nx_xcbc_final, .setkey = nx_xcbc_set_key, .descsize = sizeof(struct xcbc_state), .statesize = sizeof(struct xcbc_state), .base = { .cra_name = "xcbc(aes)", .cra_driver_name = "xcbc-aes-nx", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_SHASH, .cra_blocksize = AES_BLOCK_SIZE, .cra_module = THIS_MODULE, .cra_ctxsize = sizeof(struct nx_crypto_ctx), .cra_init = nx_crypto_ctx_aes_xcbc_init, .cra_exit = nx_crypto_ctx_exit, } };