/* * x86 instruction analysis * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright (C) IBM Corporation, 2002, 2004, 2009 */ #ifdef __KERNEL__ #include <linux/string.h> #else #include <string.h> #endif #include <asm/inat.h> #include <asm/insn.h> /* Verify next sizeof(t) bytes can be on the same instruction */ #define validate_next(t, insn, n) \ ((insn)->next_byte + sizeof(t) + n <= (insn)->end_kaddr) #define __get_next(t, insn) \ ({ t r = *(t*)insn->next_byte; insn->next_byte += sizeof(t); r; }) #define __peek_nbyte_next(t, insn, n) \ ({ t r = *(t*)((insn)->next_byte + n); r; }) #define get_next(t, insn) \ ({ if (unlikely(!validate_next(t, insn, 0))) goto err_out; __get_next(t, insn); }) #define peek_nbyte_next(t, insn, n) \ ({ if (unlikely(!validate_next(t, insn, n))) goto err_out; __peek_nbyte_next(t, insn, n); }) #define peek_next(t, insn) peek_nbyte_next(t, insn, 0) /** * insn_init() - initialize struct insn * @insn: &struct insn to be initialized * @kaddr: address (in kernel memory) of instruction (or copy thereof) * @x86_64: !0 for 64-bit kernel or 64-bit app */ void insn_init(struct insn *insn, const void *kaddr, int buf_len, int x86_64) { /* * Instructions longer than MAX_INSN_SIZE (15 bytes) are invalid * even if the input buffer is long enough to hold them. */ if (buf_len > MAX_INSN_SIZE) buf_len = MAX_INSN_SIZE; memset(insn, 0, sizeof(*insn)); insn->kaddr = kaddr; insn->end_kaddr = kaddr + buf_len; insn->next_byte = kaddr; insn->x86_64 = x86_64 ? 1 : 0; insn->opnd_bytes = 4; if (x86_64) insn->addr_bytes = 8; else insn->addr_bytes = 4; } /** * insn_get_prefixes - scan x86 instruction prefix bytes * @insn: &struct insn containing instruction * * Populates the @insn->prefixes bitmap, and updates @insn->next_byte * to point to the (first) opcode. No effect if @insn->prefixes.got * is already set. */ void insn_get_prefixes(struct insn *insn) { struct insn_field *prefixes = &insn->prefixes; insn_attr_t attr; insn_byte_t b, lb; int i, nb; if (prefixes->got) return; nb = 0; lb = 0; b = peek_next(insn_byte_t, insn); attr = inat_get_opcode_attribute(b); while (inat_is_legacy_prefix(attr)) { /* Skip if same prefix */ for (i = 0; i < nb; i++) if (prefixes->bytes[i] == b) goto found; if (nb == 4) /* Invalid instruction */ break; prefixes->bytes[nb++] = b; if (inat_is_address_size_prefix(attr)) { /* address size switches 2/4 or 4/8 */ if (insn->x86_64) insn->addr_bytes ^= 12; else insn->addr_bytes ^= 6; } else if (inat_is_operand_size_prefix(attr)) { /* oprand size switches 2/4 */ insn->opnd_bytes ^= 6; } found: prefixes->nbytes++; insn->next_byte++; lb = b; b = peek_next(insn_byte_t, insn); attr = inat_get_opcode_attribute(b); } /* Set the last prefix */ if (lb && lb != insn->prefixes.bytes[3]) { if (unlikely(insn->prefixes.bytes[3])) { /* Swap the last prefix */ b = insn->prefixes.bytes[3]; for (i = 0; i < nb; i++) if (prefixes->bytes[i] == lb) prefixes->bytes[i] = b; } insn->prefixes.bytes[3] = lb; } /* Decode REX prefix */ if (insn->x86_64) { b = peek_next(insn_byte_t, insn); attr = inat_get_opcode_attribute(b); if (inat_is_rex_prefix(attr)) { insn->rex_prefix.value = b; insn->rex_prefix.nbytes = 1; insn->next_byte++; if (X86_REX_W(b)) /* REX.W overrides opnd_size */ insn->opnd_bytes = 8; } } insn->rex_prefix.got = 1; /* Decode VEX prefix */ b = peek_next(insn_byte_t, insn); attr = inat_get_opcode_attribute(b); if (inat_is_vex_prefix(attr)) { insn_byte_t b2 = peek_nbyte_next(insn_byte_t, insn, 1); if (!insn->x86_64) { /* * In 32-bits mode, if the [7:6] bits (mod bits of * ModRM) on the second byte are not 11b, it is * LDS or LES. */ if (X86_MODRM_MOD(b2) != 3) goto vex_end; } insn->vex_prefix.bytes[0] = b; insn->vex_prefix.bytes[1] = b2; if (inat_is_vex3_prefix(attr)) { b2 = peek_nbyte_next(insn_byte_t, insn, 2); insn->vex_prefix.bytes[2] = b2; insn->vex_prefix.nbytes = 3; insn->next_byte += 3; if (insn->x86_64 && X86_VEX_W(b2)) /* VEX.W overrides opnd_size */ insn->opnd_bytes = 8; } else { /* * For VEX2, fake VEX3-like byte#2. * Makes it easier to decode vex.W, vex.vvvv, * vex.L and vex.pp. Masking with 0x7f sets vex.W == 0. */ insn->vex_prefix.bytes[2] = b2 & 0x7f; insn->vex_prefix.nbytes = 2; insn->next_byte += 2; } } vex_end: insn->vex_prefix.got = 1; prefixes->got = 1; err_out: return; } /** * insn_get_opcode - collect opcode(s) * @insn: &struct insn containing instruction * * Populates @insn->opcode, updates @insn->next_byte to point past the * opcode byte(s), and set @insn->attr (except for groups). * If necessary, first collects any preceding (prefix) bytes. * Sets @insn->opcode.value = opcode1. No effect if @insn->opcode.got * is already 1. */ void insn_get_opcode(struct insn *insn) { struct insn_field *opcode = &insn->opcode; insn_byte_t op; int pfx_id; if (opcode->got) return; if (!insn->prefixes.got) insn_get_prefixes(insn); /* Get first opcode */ op = get_next(insn_byte_t, insn); opcode->bytes[0] = op; opcode->nbytes = 1; /* Check if there is VEX prefix or not */ if (insn_is_avx(insn)) { insn_byte_t m, p; m = insn_vex_m_bits(insn); p = insn_vex_p_bits(insn); insn->attr = inat_get_avx_attribute(op, m, p); if (!inat_accept_vex(insn->attr) && !inat_is_group(insn->attr)) insn->attr = 0; /* This instruction is bad */ goto end; /* VEX has only 1 byte for opcode */ } insn->attr = inat_get_opcode_attribute(op); while (inat_is_escape(insn->attr)) { /* Get escaped opcode */ op = get_next(insn_byte_t, insn); opcode->bytes[opcode->nbytes++] = op; pfx_id = insn_last_prefix_id(insn); insn->attr = inat_get_escape_attribute(op, pfx_id, insn->attr); } if (inat_must_vex(insn->attr)) insn->attr = 0; /* This instruction is bad */ end: opcode->got = 1; err_out: return; } /** * insn_get_modrm - collect ModRM byte, if any * @insn: &struct insn containing instruction * * Populates @insn->modrm and updates @insn->next_byte to point past the * ModRM byte, if any. If necessary, first collects the preceding bytes * (prefixes and opcode(s)). No effect if @insn->modrm.got is already 1. */ void insn_get_modrm(struct insn *insn) { struct insn_field *modrm = &insn->modrm; insn_byte_t pfx_id, mod; if (modrm->got) return; if (!insn->opcode.got) insn_get_opcode(insn); if (inat_has_modrm(insn->attr)) { mod = get_next(insn_byte_t, insn); modrm->value = mod; modrm->nbytes = 1; if (inat_is_group(insn->attr)) { pfx_id = insn_last_prefix_id(insn); insn->attr = inat_get_group_attribute(mod, pfx_id, insn->attr); if (insn_is_avx(insn) && !inat_accept_vex(insn->attr)) insn->attr = 0; /* This is bad */ } } if (insn->x86_64 && inat_is_force64(insn->attr)) insn->opnd_bytes = 8; modrm->got = 1; err_out: return; } /** * insn_rip_relative() - Does instruction use RIP-relative addressing mode? * @insn: &struct insn containing instruction * * If necessary, first collects the instruction up to and including the * ModRM byte. No effect if @insn->x86_64 is 0. */ int insn_rip_relative(struct insn *insn) { struct insn_field *modrm = &insn->modrm; if (!insn->x86_64) return 0; if (!modrm->got) insn_get_modrm(insn); /* * For rip-relative instructions, the mod field (top 2 bits) * is zero and the r/m field (bottom 3 bits) is 0x5. */ return (modrm->nbytes && (modrm->value & 0xc7) == 0x5); } /** * insn_get_sib() - Get the SIB byte of instruction * @insn: &struct insn containing instruction * * If necessary, first collects the instruction up to and including the * ModRM byte. */ void insn_get_sib(struct insn *insn) { insn_byte_t modrm; if (insn->sib.got) return; if (!insn->modrm.got) insn_get_modrm(insn); if (insn->modrm.nbytes) { modrm = (insn_byte_t)insn->modrm.value; if (insn->addr_bytes != 2 && X86_MODRM_MOD(modrm) != 3 && X86_MODRM_RM(modrm) == 4) { insn->sib.value = get_next(insn_byte_t, insn); insn->sib.nbytes = 1; } } insn->sib.got = 1; err_out: return; } /** * insn_get_displacement() - Get the displacement of instruction * @insn: &struct insn containing instruction * * If necessary, first collects the instruction up to and including the * SIB byte. * Displacement value is sign-expanded. */ void insn_get_displacement(struct insn *insn) { insn_byte_t mod, rm, base; if (insn->displacement.got) return; if (!insn->sib.got) insn_get_sib(insn); if (insn->modrm.nbytes) { /* * Interpreting the modrm byte: * mod = 00 - no displacement fields (exceptions below) * mod = 01 - 1-byte displacement field * mod = 10 - displacement field is 4 bytes, or 2 bytes if * address size = 2 (0x67 prefix in 32-bit mode) * mod = 11 - no memory operand * * If address size = 2... * mod = 00, r/m = 110 - displacement field is 2 bytes * * If address size != 2... * mod != 11, r/m = 100 - SIB byte exists * mod = 00, SIB base = 101 - displacement field is 4 bytes * mod = 00, r/m = 101 - rip-relative addressing, displacement * field is 4 bytes */ mod = X86_MODRM_MOD(insn->modrm.value); rm = X86_MODRM_RM(insn->modrm.value); base = X86_SIB_BASE(insn->sib.value); if (mod == 3) goto out; if (mod == 1) { insn->displacement.value = get_next(char, insn); insn->displacement.nbytes = 1; } else if (insn->addr_bytes == 2) { if ((mod == 0 && rm == 6) || mod == 2) { insn->displacement.value = get_next(short, insn); insn->displacement.nbytes = 2; } } else { if ((mod == 0 && rm == 5) || mod == 2 || (mod == 0 && base == 5)) { insn->displacement.value = get_next(int, insn); insn->displacement.nbytes = 4; } } } out: insn->displacement.got = 1; err_out: return; } /* Decode moffset16/32/64. Return 0 if failed */ static int __get_moffset(struct insn *insn) { switch (insn->addr_bytes) { case 2: insn->moffset1.value = get_next(short, insn); insn->moffset1.nbytes = 2; break; case 4: insn->moffset1.value = get_next(int, insn); insn->moffset1.nbytes = 4; break; case 8: insn->moffset1.value = get_next(int, insn); insn->moffset1.nbytes = 4; insn->moffset2.value = get_next(int, insn); insn->moffset2.nbytes = 4; break; default: /* opnd_bytes must be modified manually */ goto err_out; } insn->moffset1.got = insn->moffset2.got = 1; return 1; err_out: return 0; } /* Decode imm v32(Iz). Return 0 if failed */ static int __get_immv32(struct insn *insn) { switch (insn->opnd_bytes) { case 2: insn->immediate.value = get_next(short, insn); insn->immediate.nbytes = 2; break; case 4: case 8: insn->immediate.value = get_next(int, insn); insn->immediate.nbytes = 4; break; default: /* opnd_bytes must be modified manually */ goto err_out; } return 1; err_out: return 0; } /* Decode imm v64(Iv/Ov), Return 0 if failed */ static int __get_immv(struct insn *insn) { switch (insn->opnd_bytes) { case 2: insn->immediate1.value = get_next(short, insn); insn->immediate1.nbytes = 2; break; case 4: insn->immediate1.value = get_next(int, insn); insn->immediate1.nbytes = 4; break; case 8: insn->immediate1.value = get_next(int, insn); insn->immediate1.nbytes = 4; insn->immediate2.value = get_next(int, insn); insn->immediate2.nbytes = 4; break; default: /* opnd_bytes must be modified manually */ goto err_out; } insn->immediate1.got = insn->immediate2.got = 1; return 1; err_out: return 0; } /* Decode ptr16:16/32(Ap) */ static int __get_immptr(struct insn *insn) { switch (insn->opnd_bytes) { case 2: insn->immediate1.value = get_next(short, insn); insn->immediate1.nbytes = 2; break; case 4: insn->immediate1.value = get_next(int, insn); insn->immediate1.nbytes = 4; break; case 8: /* ptr16:64 is not exist (no segment) */ return 0; default: /* opnd_bytes must be modified manually */ goto err_out; } insn->immediate2.value = get_next(unsigned short, insn); insn->immediate2.nbytes = 2; insn->immediate1.got = insn->immediate2.got = 1; return 1; err_out: return 0; } /** * insn_get_immediate() - Get the immediates of instruction * @insn: &struct insn containing instruction * * If necessary, first collects the instruction up to and including the * displacement bytes. * Basically, most of immediates are sign-expanded. Unsigned-value can be * get by bit masking with ((1 << (nbytes * 8)) - 1) */ void insn_get_immediate(struct insn *insn) { if (insn->immediate.got) return; if (!insn->displacement.got) insn_get_displacement(insn); if (inat_has_moffset(insn->attr)) { if (!__get_moffset(insn)) goto err_out; goto done; } if (!inat_has_immediate(insn->attr)) /* no immediates */ goto done; switch (inat_immediate_size(insn->attr)) { case INAT_IMM_BYTE: insn->immediate.value = get_next(char, insn); insn->immediate.nbytes = 1; break; case INAT_IMM_WORD: insn->immediate.value = get_next(short, insn); insn->immediate.nbytes = 2; break; case INAT_IMM_DWORD: insn->immediate.value = get_next(int, insn); insn->immediate.nbytes = 4; break; case INAT_IMM_QWORD: insn->immediate1.value = get_next(int, insn); insn->immediate1.nbytes = 4; insn->immediate2.value = get_next(int, insn); insn->immediate2.nbytes = 4; break; case INAT_IMM_PTR: if (!__get_immptr(insn)) goto err_out; break; case INAT_IMM_VWORD32: if (!__get_immv32(insn)) goto err_out; break; case INAT_IMM_VWORD: if (!__get_immv(insn)) goto err_out; break; default: /* Here, insn must have an immediate, but failed */ goto err_out; } if (inat_has_second_immediate(insn->attr)) { insn->immediate2.value = get_next(char, insn); insn->immediate2.nbytes = 1; } done: insn->immediate.got = 1; err_out: return; } /** * insn_get_length() - Get the length of instruction * @insn: &struct insn containing instruction * * If necessary, first collects the instruction up to and including the * immediates bytes. */ void insn_get_length(struct insn *insn) { if (insn->length) return; if (!insn->immediate.got) insn_get_immediate(insn); insn->length = (unsigned char)((unsigned long)insn->next_byte - (unsigned long)insn->kaddr); }