#ifndef __KVM_X86_MMU_H #define __KVM_X86_MMU_H #include <linux/kvm_host.h> #include "kvm_cache_regs.h" #define PT64_PT_BITS 9 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS) #define PT32_PT_BITS 10 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS) #define PT_WRITABLE_SHIFT 1 #define PT_PRESENT_MASK (1ULL << 0) #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT) #define PT_USER_MASK (1ULL << 2) #define PT_PWT_MASK (1ULL << 3) #define PT_PCD_MASK (1ULL << 4) #define PT_ACCESSED_SHIFT 5 #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT) #define PT_DIRTY_SHIFT 6 #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT) #define PT_PAGE_SIZE_SHIFT 7 #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT) #define PT_PAT_MASK (1ULL << 7) #define PT_GLOBAL_MASK (1ULL << 8) #define PT64_NX_SHIFT 63 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT) #define PT_PAT_SHIFT 7 #define PT_DIR_PAT_SHIFT 12 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT) #define PT32_DIR_PSE36_SIZE 4 #define PT32_DIR_PSE36_SHIFT 13 #define PT32_DIR_PSE36_MASK \ (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT) #define PT64_ROOT_LEVEL 4 #define PT32_ROOT_LEVEL 2 #define PT32E_ROOT_LEVEL 3 #define PT_PDPE_LEVEL 3 #define PT_DIRECTORY_LEVEL 2 #define PT_PAGE_TABLE_LEVEL 1 static inline u64 rsvd_bits(int s, int e) { return ((1ULL << (e - s + 1)) - 1) << s; } int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4]); void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask); /* * Return values of handle_mmio_page_fault_common: * RET_MMIO_PF_EMULATE: it is a real mmio page fault, emulate the instruction * directly. * RET_MMIO_PF_INVALID: invalid spte is detected then let the real page * fault path update the mmio spte. * RET_MMIO_PF_RETRY: let CPU fault again on the address. * RET_MMIO_PF_BUG: bug is detected. */ enum { RET_MMIO_PF_EMULATE = 1, RET_MMIO_PF_INVALID = 2, RET_MMIO_PF_RETRY = 0, RET_MMIO_PF_BUG = -1 }; int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct); void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu); void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly); static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm) { if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) return kvm->arch.n_max_mmu_pages - kvm->arch.n_used_mmu_pages; return 0; } static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu) { if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE)) return 0; return kvm_mmu_load(vcpu); } static inline int is_present_gpte(unsigned long pte) { return pte & PT_PRESENT_MASK; } /* * Currently, we have two sorts of write-protection, a) the first one * write-protects guest page to sync the guest modification, b) another one is * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences * between these two sorts are: * 1) the first case clears SPTE_MMU_WRITEABLE bit. * 2) the first case requires flushing tlb immediately avoiding corrupting * shadow page table between all vcpus so it should be in the protection of * mmu-lock. And the another case does not need to flush tlb until returning * the dirty bitmap to userspace since it only write-protects the page * logged in the bitmap, that means the page in the dirty bitmap is not * missed, so it can flush tlb out of mmu-lock. * * So, there is the problem: the first case can meet the corrupted tlb caused * by another case which write-protects pages but without flush tlb * immediately. In order to making the first case be aware this problem we let * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit. * * Anyway, whenever a spte is updated (only permission and status bits are * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes * readonly, if that happens, we need to flush tlb. Fortunately, * mmu_spte_update() has already handled it perfectly. * * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK: * - if we want to see if it has writable tlb entry or if the spte can be * writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most * case, otherwise * - if we fix page fault on the spte or do write-protection by dirty logging, * check PT_WRITABLE_MASK. * * TODO: introduce APIs to split these two cases. */ static inline int is_writable_pte(unsigned long pte) { return pte & PT_WRITABLE_MASK; } static inline bool is_write_protection(struct kvm_vcpu *vcpu) { return kvm_read_cr0_bits(vcpu, X86_CR0_WP); } /* * Will a fault with a given page-fault error code (pfec) cause a permission * fault with the given access (in ACC_* format)? */ static inline bool permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned pte_access, unsigned pfec) { int cpl = kvm_x86_ops->get_cpl(vcpu); unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); /* * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1. * * If CPL = 3, SMAP applies to all supervisor-mode data accesses * (these are implicit supervisor accesses) regardless of the value * of EFLAGS.AC. * * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving * the result in X86_EFLAGS_AC. We then insert it in place of * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec, * but it will be one in index if SMAP checks are being overridden. * It is important to keep this branchless. */ unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC); int index = (pfec >> 1) + (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1)); WARN_ON(pfec & PFERR_RSVD_MASK); return (mmu->permissions[index] >> pte_access) & 1; } void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm); #endif