/* * x86_64/AVX2/AES-NI assembler implementation of Camellia * * Copyright © 2013 Jussi Kivilinna <jussi.kivilinna@iki.fi> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * */ #include <linux/linkage.h> #define CAMELLIA_TABLE_BYTE_LEN 272 /* struct camellia_ctx: */ #define key_table 0 #define key_length CAMELLIA_TABLE_BYTE_LEN /* register macros */ #define CTX %rdi #define RIO %r8 /********************************************************************** helper macros **********************************************************************/ #define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \ vpand x, mask4bit, tmp0; \ vpandn x, mask4bit, x; \ vpsrld $4, x, x; \ \ vpshufb tmp0, lo_t, tmp0; \ vpshufb x, hi_t, x; \ vpxor tmp0, x, x; #define ymm0_x xmm0 #define ymm1_x xmm1 #define ymm2_x xmm2 #define ymm3_x xmm3 #define ymm4_x xmm4 #define ymm5_x xmm5 #define ymm6_x xmm6 #define ymm7_x xmm7 #define ymm8_x xmm8 #define ymm9_x xmm9 #define ymm10_x xmm10 #define ymm11_x xmm11 #define ymm12_x xmm12 #define ymm13_x xmm13 #define ymm14_x xmm14 #define ymm15_x xmm15 /********************************************************************** 32-way camellia **********************************************************************/ /* * IN: * x0..x7: byte-sliced AB state * mem_cd: register pointer storing CD state * key: index for key material * OUT: * x0..x7: new byte-sliced CD state */ #define roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \ t7, mem_cd, key) \ /* \ * S-function with AES subbytes \ */ \ vbroadcasti128 .Linv_shift_row, t4; \ vpbroadcastd .L0f0f0f0f, t7; \ vbroadcasti128 .Lpre_tf_lo_s1, t5; \ vbroadcasti128 .Lpre_tf_hi_s1, t6; \ vbroadcasti128 .Lpre_tf_lo_s4, t2; \ vbroadcasti128 .Lpre_tf_hi_s4, t3; \ \ /* AES inverse shift rows */ \ vpshufb t4, x0, x0; \ vpshufb t4, x7, x7; \ vpshufb t4, x3, x3; \ vpshufb t4, x6, x6; \ vpshufb t4, x2, x2; \ vpshufb t4, x5, x5; \ vpshufb t4, x1, x1; \ vpshufb t4, x4, x4; \ \ /* prefilter sboxes 1, 2 and 3 */ \ /* prefilter sbox 4 */ \ filter_8bit(x0, t5, t6, t7, t4); \ filter_8bit(x7, t5, t6, t7, t4); \ vextracti128 $1, x0, t0##_x; \ vextracti128 $1, x7, t1##_x; \ filter_8bit(x3, t2, t3, t7, t4); \ filter_8bit(x6, t2, t3, t7, t4); \ vextracti128 $1, x3, t3##_x; \ vextracti128 $1, x6, t2##_x; \ filter_8bit(x2, t5, t6, t7, t4); \ filter_8bit(x5, t5, t6, t7, t4); \ filter_8bit(x1, t5, t6, t7, t4); \ filter_8bit(x4, t5, t6, t7, t4); \ \ vpxor t4##_x, t4##_x, t4##_x; \ \ /* AES subbytes + AES shift rows */ \ vextracti128 $1, x2, t6##_x; \ vextracti128 $1, x5, t5##_x; \ vaesenclast t4##_x, x0##_x, x0##_x; \ vaesenclast t4##_x, t0##_x, t0##_x; \ vinserti128 $1, t0##_x, x0, x0; \ vaesenclast t4##_x, x7##_x, x7##_x; \ vaesenclast t4##_x, t1##_x, t1##_x; \ vinserti128 $1, t1##_x, x7, x7; \ vaesenclast t4##_x, x3##_x, x3##_x; \ vaesenclast t4##_x, t3##_x, t3##_x; \ vinserti128 $1, t3##_x, x3, x3; \ vaesenclast t4##_x, x6##_x, x6##_x; \ vaesenclast t4##_x, t2##_x, t2##_x; \ vinserti128 $1, t2##_x, x6, x6; \ vextracti128 $1, x1, t3##_x; \ vextracti128 $1, x4, t2##_x; \ vbroadcasti128 .Lpost_tf_lo_s1, t0; \ vbroadcasti128 .Lpost_tf_hi_s1, t1; \ vaesenclast t4##_x, x2##_x, x2##_x; \ vaesenclast t4##_x, t6##_x, t6##_x; \ vinserti128 $1, t6##_x, x2, x2; \ vaesenclast t4##_x, x5##_x, x5##_x; \ vaesenclast t4##_x, t5##_x, t5##_x; \ vinserti128 $1, t5##_x, x5, x5; \ vaesenclast t4##_x, x1##_x, x1##_x; \ vaesenclast t4##_x, t3##_x, t3##_x; \ vinserti128 $1, t3##_x, x1, x1; \ vaesenclast t4##_x, x4##_x, x4##_x; \ vaesenclast t4##_x, t2##_x, t2##_x; \ vinserti128 $1, t2##_x, x4, x4; \ \ /* postfilter sboxes 1 and 4 */ \ vbroadcasti128 .Lpost_tf_lo_s3, t2; \ vbroadcasti128 .Lpost_tf_hi_s3, t3; \ filter_8bit(x0, t0, t1, t7, t6); \ filter_8bit(x7, t0, t1, t7, t6); \ filter_8bit(x3, t0, t1, t7, t6); \ filter_8bit(x6, t0, t1, t7, t6); \ \ /* postfilter sbox 3 */ \ vbroadcasti128 .Lpost_tf_lo_s2, t4; \ vbroadcasti128 .Lpost_tf_hi_s2, t5; \ filter_8bit(x2, t2, t3, t7, t6); \ filter_8bit(x5, t2, t3, t7, t6); \ \ vpbroadcastq key, t0; /* higher 64-bit duplicate ignored */ \ \ /* postfilter sbox 2 */ \ filter_8bit(x1, t4, t5, t7, t2); \ filter_8bit(x4, t4, t5, t7, t2); \ vpxor t7, t7, t7; \ \ vpsrldq $1, t0, t1; \ vpsrldq $2, t0, t2; \ vpshufb t7, t1, t1; \ vpsrldq $3, t0, t3; \ \ /* P-function */ \ vpxor x5, x0, x0; \ vpxor x6, x1, x1; \ vpxor x7, x2, x2; \ vpxor x4, x3, x3; \ \ vpshufb t7, t2, t2; \ vpsrldq $4, t0, t4; \ vpshufb t7, t3, t3; \ vpsrldq $5, t0, t5; \ vpshufb t7, t4, t4; \ \ vpxor x2, x4, x4; \ vpxor x3, x5, x5; \ vpxor x0, x6, x6; \ vpxor x1, x7, x7; \ \ vpsrldq $6, t0, t6; \ vpshufb t7, t5, t5; \ vpshufb t7, t6, t6; \ \ vpxor x7, x0, x0; \ vpxor x4, x1, x1; \ vpxor x5, x2, x2; \ vpxor x6, x3, x3; \ \ vpxor x3, x4, x4; \ vpxor x0, x5, x5; \ vpxor x1, x6, x6; \ vpxor x2, x7, x7; /* note: high and low parts swapped */ \ \ /* Add key material and result to CD (x becomes new CD) */ \ \ vpxor t6, x1, x1; \ vpxor 5 * 32(mem_cd), x1, x1; \ \ vpsrldq $7, t0, t6; \ vpshufb t7, t0, t0; \ vpshufb t7, t6, t7; \ \ vpxor t7, x0, x0; \ vpxor 4 * 32(mem_cd), x0, x0; \ \ vpxor t5, x2, x2; \ vpxor 6 * 32(mem_cd), x2, x2; \ \ vpxor t4, x3, x3; \ vpxor 7 * 32(mem_cd), x3, x3; \ \ vpxor t3, x4, x4; \ vpxor 0 * 32(mem_cd), x4, x4; \ \ vpxor t2, x5, x5; \ vpxor 1 * 32(mem_cd), x5, x5; \ \ vpxor t1, x6, x6; \ vpxor 2 * 32(mem_cd), x6, x6; \ \ vpxor t0, x7, x7; \ vpxor 3 * 32(mem_cd), x7, x7; /* * Size optimization... with inlined roundsm32 binary would be over 5 times * larger and would only marginally faster. */ .align 8 roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd: roundsm32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15, %rcx, (%r9)); ret; ENDPROC(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd) .align 8 roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab: roundsm32(%ymm4, %ymm5, %ymm6, %ymm7, %ymm0, %ymm1, %ymm2, %ymm3, %ymm12, %ymm13, %ymm14, %ymm15, %ymm8, %ymm9, %ymm10, %ymm11, %rax, (%r9)); ret; ENDPROC(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab) /* * IN/OUT: * x0..x7: byte-sliced AB state preloaded * mem_ab: byte-sliced AB state in memory * mem_cb: byte-sliced CD state in memory */ #define two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ y6, y7, mem_ab, mem_cd, i, dir, store_ab) \ leaq (key_table + (i) * 8)(CTX), %r9; \ call roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \ \ vmovdqu x0, 4 * 32(mem_cd); \ vmovdqu x1, 5 * 32(mem_cd); \ vmovdqu x2, 6 * 32(mem_cd); \ vmovdqu x3, 7 * 32(mem_cd); \ vmovdqu x4, 0 * 32(mem_cd); \ vmovdqu x5, 1 * 32(mem_cd); \ vmovdqu x6, 2 * 32(mem_cd); \ vmovdqu x7, 3 * 32(mem_cd); \ \ leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \ call roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \ \ store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab); #define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */ #define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \ /* Store new AB state */ \ vmovdqu x4, 4 * 32(mem_ab); \ vmovdqu x5, 5 * 32(mem_ab); \ vmovdqu x6, 6 * 32(mem_ab); \ vmovdqu x7, 7 * 32(mem_ab); \ vmovdqu x0, 0 * 32(mem_ab); \ vmovdqu x1, 1 * 32(mem_ab); \ vmovdqu x2, 2 * 32(mem_ab); \ vmovdqu x3, 3 * 32(mem_ab); #define enc_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ y6, y7, mem_ab, mem_cd, i) \ two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \ two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \ two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store); #define dec_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ y6, y7, mem_ab, mem_cd, i) \ two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \ two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \ two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store); /* * IN: * v0..3: byte-sliced 32-bit integers * OUT: * v0..3: (IN <<< 1) */ #define rol32_1_32(v0, v1, v2, v3, t0, t1, t2, zero) \ vpcmpgtb v0, zero, t0; \ vpaddb v0, v0, v0; \ vpabsb t0, t0; \ \ vpcmpgtb v1, zero, t1; \ vpaddb v1, v1, v1; \ vpabsb t1, t1; \ \ vpcmpgtb v2, zero, t2; \ vpaddb v2, v2, v2; \ vpabsb t2, t2; \ \ vpor t0, v1, v1; \ \ vpcmpgtb v3, zero, t0; \ vpaddb v3, v3, v3; \ vpabsb t0, t0; \ \ vpor t1, v2, v2; \ vpor t2, v3, v3; \ vpor t0, v0, v0; /* * IN: * r: byte-sliced AB state in memory * l: byte-sliced CD state in memory * OUT: * x0..x7: new byte-sliced CD state */ #define fls32(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \ tt1, tt2, tt3, kll, klr, krl, krr) \ /* \ * t0 = kll; \ * t0 &= ll; \ * lr ^= rol32(t0, 1); \ */ \ vpbroadcastd kll, t0; /* only lowest 32-bit used */ \ vpxor tt0, tt0, tt0; \ vpshufb tt0, t0, t3; \ vpsrldq $1, t0, t0; \ vpshufb tt0, t0, t2; \ vpsrldq $1, t0, t0; \ vpshufb tt0, t0, t1; \ vpsrldq $1, t0, t0; \ vpshufb tt0, t0, t0; \ \ vpand l0, t0, t0; \ vpand l1, t1, t1; \ vpand l2, t2, t2; \ vpand l3, t3, t3; \ \ rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \ \ vpxor l4, t0, l4; \ vpbroadcastd krr, t0; /* only lowest 32-bit used */ \ vmovdqu l4, 4 * 32(l); \ vpxor l5, t1, l5; \ vmovdqu l5, 5 * 32(l); \ vpxor l6, t2, l6; \ vmovdqu l6, 6 * 32(l); \ vpxor l7, t3, l7; \ vmovdqu l7, 7 * 32(l); \ \ /* \ * t2 = krr; \ * t2 |= rr; \ * rl ^= t2; \ */ \ \ vpshufb tt0, t0, t3; \ vpsrldq $1, t0, t0; \ vpshufb tt0, t0, t2; \ vpsrldq $1, t0, t0; \ vpshufb tt0, t0, t1; \ vpsrldq $1, t0, t0; \ vpshufb tt0, t0, t0; \ \ vpor 4 * 32(r), t0, t0; \ vpor 5 * 32(r), t1, t1; \ vpor 6 * 32(r), t2, t2; \ vpor 7 * 32(r), t3, t3; \ \ vpxor 0 * 32(r), t0, t0; \ vpxor 1 * 32(r), t1, t1; \ vpxor 2 * 32(r), t2, t2; \ vpxor 3 * 32(r), t3, t3; \ vmovdqu t0, 0 * 32(r); \ vpbroadcastd krl, t0; /* only lowest 32-bit used */ \ vmovdqu t1, 1 * 32(r); \ vmovdqu t2, 2 * 32(r); \ vmovdqu t3, 3 * 32(r); \ \ /* \ * t2 = krl; \ * t2 &= rl; \ * rr ^= rol32(t2, 1); \ */ \ vpshufb tt0, t0, t3; \ vpsrldq $1, t0, t0; \ vpshufb tt0, t0, t2; \ vpsrldq $1, t0, t0; \ vpshufb tt0, t0, t1; \ vpsrldq $1, t0, t0; \ vpshufb tt0, t0, t0; \ \ vpand 0 * 32(r), t0, t0; \ vpand 1 * 32(r), t1, t1; \ vpand 2 * 32(r), t2, t2; \ vpand 3 * 32(r), t3, t3; \ \ rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \ \ vpxor 4 * 32(r), t0, t0; \ vpxor 5 * 32(r), t1, t1; \ vpxor 6 * 32(r), t2, t2; \ vpxor 7 * 32(r), t3, t3; \ vmovdqu t0, 4 * 32(r); \ vpbroadcastd klr, t0; /* only lowest 32-bit used */ \ vmovdqu t1, 5 * 32(r); \ vmovdqu t2, 6 * 32(r); \ vmovdqu t3, 7 * 32(r); \ \ /* \ * t0 = klr; \ * t0 |= lr; \ * ll ^= t0; \ */ \ \ vpshufb tt0, t0, t3; \ vpsrldq $1, t0, t0; \ vpshufb tt0, t0, t2; \ vpsrldq $1, t0, t0; \ vpshufb tt0, t0, t1; \ vpsrldq $1, t0, t0; \ vpshufb tt0, t0, t0; \ \ vpor l4, t0, t0; \ vpor l5, t1, t1; \ vpor l6, t2, t2; \ vpor l7, t3, t3; \ \ vpxor l0, t0, l0; \ vmovdqu l0, 0 * 32(l); \ vpxor l1, t1, l1; \ vmovdqu l1, 1 * 32(l); \ vpxor l2, t2, l2; \ vmovdqu l2, 2 * 32(l); \ vpxor l3, t3, l3; \ vmovdqu l3, 3 * 32(l); #define transpose_4x4(x0, x1, x2, x3, t1, t2) \ vpunpckhdq x1, x0, t2; \ vpunpckldq x1, x0, x0; \ \ vpunpckldq x3, x2, t1; \ vpunpckhdq x3, x2, x2; \ \ vpunpckhqdq t1, x0, x1; \ vpunpcklqdq t1, x0, x0; \ \ vpunpckhqdq x2, t2, x3; \ vpunpcklqdq x2, t2, x2; #define byteslice_16x16b_fast(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, \ a3, b3, c3, d3, st0, st1) \ vmovdqu d2, st0; \ vmovdqu d3, st1; \ transpose_4x4(a0, a1, a2, a3, d2, d3); \ transpose_4x4(b0, b1, b2, b3, d2, d3); \ vmovdqu st0, d2; \ vmovdqu st1, d3; \ \ vmovdqu a0, st0; \ vmovdqu a1, st1; \ transpose_4x4(c0, c1, c2, c3, a0, a1); \ transpose_4x4(d0, d1, d2, d3, a0, a1); \ \ vbroadcasti128 .Lshufb_16x16b, a0; \ vmovdqu st1, a1; \ vpshufb a0, a2, a2; \ vpshufb a0, a3, a3; \ vpshufb a0, b0, b0; \ vpshufb a0, b1, b1; \ vpshufb a0, b2, b2; \ vpshufb a0, b3, b3; \ vpshufb a0, a1, a1; \ vpshufb a0, c0, c0; \ vpshufb a0, c1, c1; \ vpshufb a0, c2, c2; \ vpshufb a0, c3, c3; \ vpshufb a0, d0, d0; \ vpshufb a0, d1, d1; \ vpshufb a0, d2, d2; \ vpshufb a0, d3, d3; \ vmovdqu d3, st1; \ vmovdqu st0, d3; \ vpshufb a0, d3, a0; \ vmovdqu d2, st0; \ \ transpose_4x4(a0, b0, c0, d0, d2, d3); \ transpose_4x4(a1, b1, c1, d1, d2, d3); \ vmovdqu st0, d2; \ vmovdqu st1, d3; \ \ vmovdqu b0, st0; \ vmovdqu b1, st1; \ transpose_4x4(a2, b2, c2, d2, b0, b1); \ transpose_4x4(a3, b3, c3, d3, b0, b1); \ vmovdqu st0, b0; \ vmovdqu st1, b1; \ /* does not adjust output bytes inside vectors */ /* load blocks to registers and apply pre-whitening */ #define inpack32_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ y6, y7, rio, key) \ vpbroadcastq key, x0; \ vpshufb .Lpack_bswap, x0, x0; \ \ vpxor 0 * 32(rio), x0, y7; \ vpxor 1 * 32(rio), x0, y6; \ vpxor 2 * 32(rio), x0, y5; \ vpxor 3 * 32(rio), x0, y4; \ vpxor 4 * 32(rio), x0, y3; \ vpxor 5 * 32(rio), x0, y2; \ vpxor 6 * 32(rio), x0, y1; \ vpxor 7 * 32(rio), x0, y0; \ vpxor 8 * 32(rio), x0, x7; \ vpxor 9 * 32(rio), x0, x6; \ vpxor 10 * 32(rio), x0, x5; \ vpxor 11 * 32(rio), x0, x4; \ vpxor 12 * 32(rio), x0, x3; \ vpxor 13 * 32(rio), x0, x2; \ vpxor 14 * 32(rio), x0, x1; \ vpxor 15 * 32(rio), x0, x0; /* byteslice pre-whitened blocks and store to temporary memory */ #define inpack32_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ y6, y7, mem_ab, mem_cd) \ byteslice_16x16b_fast(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, \ y4, y5, y6, y7, (mem_ab), (mem_cd)); \ \ vmovdqu x0, 0 * 32(mem_ab); \ vmovdqu x1, 1 * 32(mem_ab); \ vmovdqu x2, 2 * 32(mem_ab); \ vmovdqu x3, 3 * 32(mem_ab); \ vmovdqu x4, 4 * 32(mem_ab); \ vmovdqu x5, 5 * 32(mem_ab); \ vmovdqu x6, 6 * 32(mem_ab); \ vmovdqu x7, 7 * 32(mem_ab); \ vmovdqu y0, 0 * 32(mem_cd); \ vmovdqu y1, 1 * 32(mem_cd); \ vmovdqu y2, 2 * 32(mem_cd); \ vmovdqu y3, 3 * 32(mem_cd); \ vmovdqu y4, 4 * 32(mem_cd); \ vmovdqu y5, 5 * 32(mem_cd); \ vmovdqu y6, 6 * 32(mem_cd); \ vmovdqu y7, 7 * 32(mem_cd); /* de-byteslice, apply post-whitening and store blocks */ #define outunpack32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \ y5, y6, y7, key, stack_tmp0, stack_tmp1) \ byteslice_16x16b_fast(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, \ y3, y7, x3, x7, stack_tmp0, stack_tmp1); \ \ vmovdqu x0, stack_tmp0; \ \ vpbroadcastq key, x0; \ vpshufb .Lpack_bswap, x0, x0; \ \ vpxor x0, y7, y7; \ vpxor x0, y6, y6; \ vpxor x0, y5, y5; \ vpxor x0, y4, y4; \ vpxor x0, y3, y3; \ vpxor x0, y2, y2; \ vpxor x0, y1, y1; \ vpxor x0, y0, y0; \ vpxor x0, x7, x7; \ vpxor x0, x6, x6; \ vpxor x0, x5, x5; \ vpxor x0, x4, x4; \ vpxor x0, x3, x3; \ vpxor x0, x2, x2; \ vpxor x0, x1, x1; \ vpxor stack_tmp0, x0, x0; #define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ y6, y7, rio) \ vmovdqu x0, 0 * 32(rio); \ vmovdqu x1, 1 * 32(rio); \ vmovdqu x2, 2 * 32(rio); \ vmovdqu x3, 3 * 32(rio); \ vmovdqu x4, 4 * 32(rio); \ vmovdqu x5, 5 * 32(rio); \ vmovdqu x6, 6 * 32(rio); \ vmovdqu x7, 7 * 32(rio); \ vmovdqu y0, 8 * 32(rio); \ vmovdqu y1, 9 * 32(rio); \ vmovdqu y2, 10 * 32(rio); \ vmovdqu y3, 11 * 32(rio); \ vmovdqu y4, 12 * 32(rio); \ vmovdqu y5, 13 * 32(rio); \ vmovdqu y6, 14 * 32(rio); \ vmovdqu y7, 15 * 32(rio); .data .align 32 #define SHUFB_BYTES(idx) \ 0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx) .Lshufb_16x16b: .byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3) .byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3) .Lpack_bswap: .long 0x00010203, 0x04050607, 0x80808080, 0x80808080 .long 0x00010203, 0x04050607, 0x80808080, 0x80808080 /* For CTR-mode IV byteswap */ .Lbswap128_mask: .byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 /* For XTS mode */ .Lxts_gf128mul_and_shl1_mask_0: .byte 0x87, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 .Lxts_gf128mul_and_shl1_mask_1: .byte 0x0e, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0 /* * pre-SubByte transform * * pre-lookup for sbox1, sbox2, sbox3: * swap_bitendianness( * isom_map_camellia_to_aes( * camellia_f( * swap_bitendianess(in) * ) * ) * ) * * (note: '⊕ 0xc5' inside camellia_f()) */ .Lpre_tf_lo_s1: .byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86 .byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88 .Lpre_tf_hi_s1: .byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a .byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23 /* * pre-SubByte transform * * pre-lookup for sbox4: * swap_bitendianness( * isom_map_camellia_to_aes( * camellia_f( * swap_bitendianess(in <<< 1) * ) * ) * ) * * (note: '⊕ 0xc5' inside camellia_f()) */ .Lpre_tf_lo_s4: .byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25 .byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74 .Lpre_tf_hi_s4: .byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72 .byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf /* * post-SubByte transform * * post-lookup for sbox1, sbox4: * swap_bitendianness( * camellia_h( * isom_map_aes_to_camellia( * swap_bitendianness( * aes_inverse_affine_transform(in) * ) * ) * ) * ) * * (note: '⊕ 0x6e' inside camellia_h()) */ .Lpost_tf_lo_s1: .byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31 .byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1 .Lpost_tf_hi_s1: .byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8 .byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c /* * post-SubByte transform * * post-lookup for sbox2: * swap_bitendianness( * camellia_h( * isom_map_aes_to_camellia( * swap_bitendianness( * aes_inverse_affine_transform(in) * ) * ) * ) * ) <<< 1 * * (note: '⊕ 0x6e' inside camellia_h()) */ .Lpost_tf_lo_s2: .byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62 .byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3 .Lpost_tf_hi_s2: .byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51 .byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18 /* * post-SubByte transform * * post-lookup for sbox3: * swap_bitendianness( * camellia_h( * isom_map_aes_to_camellia( * swap_bitendianness( * aes_inverse_affine_transform(in) * ) * ) * ) * ) >>> 1 * * (note: '⊕ 0x6e' inside camellia_h()) */ .Lpost_tf_lo_s3: .byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98 .byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8 .Lpost_tf_hi_s3: .byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54 .byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06 /* For isolating SubBytes from AESENCLAST, inverse shift row */ .Linv_shift_row: .byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b .byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03 .align 4 /* 4-bit mask */ .L0f0f0f0f: .long 0x0f0f0f0f .text .align 8 __camellia_enc_blk32: /* input: * %rdi: ctx, CTX * %rax: temporary storage, 512 bytes * %ymm0..%ymm15: 32 plaintext blocks * output: * %ymm0..%ymm15: 32 encrypted blocks, order swapped: * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8 */ leaq 8 * 32(%rax), %rcx; inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15, %rax, %rcx); enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15, %rax, %rcx, 0); fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15, ((key_table + (8) * 8) + 0)(CTX), ((key_table + (8) * 8) + 4)(CTX), ((key_table + (8) * 8) + 8)(CTX), ((key_table + (8) * 8) + 12)(CTX)); enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15, %rax, %rcx, 8); fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15, ((key_table + (16) * 8) + 0)(CTX), ((key_table + (16) * 8) + 4)(CTX), ((key_table + (16) * 8) + 8)(CTX), ((key_table + (16) * 8) + 12)(CTX)); enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15, %rax, %rcx, 16); movl $24, %r8d; cmpl $16, key_length(CTX); jne .Lenc_max32; .Lenc_done: /* load CD for output */ vmovdqu 0 * 32(%rcx), %ymm8; vmovdqu 1 * 32(%rcx), %ymm9; vmovdqu 2 * 32(%rcx), %ymm10; vmovdqu 3 * 32(%rcx), %ymm11; vmovdqu 4 * 32(%rcx), %ymm12; vmovdqu 5 * 32(%rcx), %ymm13; vmovdqu 6 * 32(%rcx), %ymm14; vmovdqu 7 * 32(%rcx), %ymm15; outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 32(%rax)); ret; .align 8 .Lenc_max32: movl $32, %r8d; fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15, ((key_table + (24) * 8) + 0)(CTX), ((key_table + (24) * 8) + 4)(CTX), ((key_table + (24) * 8) + 8)(CTX), ((key_table + (24) * 8) + 12)(CTX)); enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15, %rax, %rcx, 24); jmp .Lenc_done; ENDPROC(__camellia_enc_blk32) .align 8 __camellia_dec_blk32: /* input: * %rdi: ctx, CTX * %rax: temporary storage, 512 bytes * %r8d: 24 for 16 byte key, 32 for larger * %ymm0..%ymm15: 16 encrypted blocks * output: * %ymm0..%ymm15: 16 plaintext blocks, order swapped: * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8 */ leaq 8 * 32(%rax), %rcx; inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15, %rax, %rcx); cmpl $32, %r8d; je .Ldec_max32; .Ldec_max24: dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15, %rax, %rcx, 16); fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15, ((key_table + (16) * 8) + 8)(CTX), ((key_table + (16) * 8) + 12)(CTX), ((key_table + (16) * 8) + 0)(CTX), ((key_table + (16) * 8) + 4)(CTX)); dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15, %rax, %rcx, 8); fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15, ((key_table + (8) * 8) + 8)(CTX), ((key_table + (8) * 8) + 12)(CTX), ((key_table + (8) * 8) + 0)(CTX), ((key_table + (8) * 8) + 4)(CTX)); dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15, %rax, %rcx, 0); /* load CD for output */ vmovdqu 0 * 32(%rcx), %ymm8; vmovdqu 1 * 32(%rcx), %ymm9; vmovdqu 2 * 32(%rcx), %ymm10; vmovdqu 3 * 32(%rcx), %ymm11; vmovdqu 4 * 32(%rcx), %ymm12; vmovdqu 5 * 32(%rcx), %ymm13; vmovdqu 6 * 32(%rcx), %ymm14; vmovdqu 7 * 32(%rcx), %ymm15; outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15, (key_table)(CTX), (%rax), 1 * 32(%rax)); ret; .align 8 .Ldec_max32: dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15, %rax, %rcx, 24); fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15, ((key_table + (24) * 8) + 8)(CTX), ((key_table + (24) * 8) + 12)(CTX), ((key_table + (24) * 8) + 0)(CTX), ((key_table + (24) * 8) + 4)(CTX)); jmp .Ldec_max24; ENDPROC(__camellia_dec_blk32) ENTRY(camellia_ecb_enc_32way) /* input: * %rdi: ctx, CTX * %rsi: dst (32 blocks) * %rdx: src (32 blocks) */ vzeroupper; inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15, %rdx, (key_table)(CTX)); /* now dst can be used as temporary buffer (even in src == dst case) */ movq %rsi, %rax; call __camellia_enc_blk32; write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0, %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9, %ymm8, %rsi); vzeroupper; ret; ENDPROC(camellia_ecb_enc_32way) ENTRY(camellia_ecb_dec_32way) /* input: * %rdi: ctx, CTX * %rsi: dst (32 blocks) * %rdx: src (32 blocks) */ vzeroupper; cmpl $16, key_length(CTX); movl $32, %r8d; movl $24, %eax; cmovel %eax, %r8d; /* max */ inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15, %rdx, (key_table)(CTX, %r8, 8)); /* now dst can be used as temporary buffer (even in src == dst case) */ movq %rsi, %rax; call __camellia_dec_blk32; write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0, %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9, %ymm8, %rsi); vzeroupper; ret; ENDPROC(camellia_ecb_dec_32way) ENTRY(camellia_cbc_dec_32way) /* input: * %rdi: ctx, CTX * %rsi: dst (32 blocks) * %rdx: src (32 blocks) */ vzeroupper; cmpl $16, key_length(CTX); movl $32, %r8d; movl $24, %eax; cmovel %eax, %r8d; /* max */ inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15, %rdx, (key_table)(CTX, %r8, 8)); movq %rsp, %r10; cmpq %rsi, %rdx; je .Lcbc_dec_use_stack; /* dst can be used as temporary storage, src is not overwritten. */ movq %rsi, %rax; jmp .Lcbc_dec_continue; .Lcbc_dec_use_stack: /* * dst still in-use (because dst == src), so use stack for temporary * storage. */ subq $(16 * 32), %rsp; movq %rsp, %rax; .Lcbc_dec_continue: call __camellia_dec_blk32; vmovdqu %ymm7, (%rax); vpxor %ymm7, %ymm7, %ymm7; vinserti128 $1, (%rdx), %ymm7, %ymm7; vpxor (%rax), %ymm7, %ymm7; movq %r10, %rsp; vpxor (0 * 32 + 16)(%rdx), %ymm6, %ymm6; vpxor (1 * 32 + 16)(%rdx), %ymm5, %ymm5; vpxor (2 * 32 + 16)(%rdx), %ymm4, %ymm4; vpxor (3 * 32 + 16)(%rdx), %ymm3, %ymm3; vpxor (4 * 32 + 16)(%rdx), %ymm2, %ymm2; vpxor (5 * 32 + 16)(%rdx), %ymm1, %ymm1; vpxor (6 * 32 + 16)(%rdx), %ymm0, %ymm0; vpxor (7 * 32 + 16)(%rdx), %ymm15, %ymm15; vpxor (8 * 32 + 16)(%rdx), %ymm14, %ymm14; vpxor (9 * 32 + 16)(%rdx), %ymm13, %ymm13; vpxor (10 * 32 + 16)(%rdx), %ymm12, %ymm12; vpxor (11 * 32 + 16)(%rdx), %ymm11, %ymm11; vpxor (12 * 32 + 16)(%rdx), %ymm10, %ymm10; vpxor (13 * 32 + 16)(%rdx), %ymm9, %ymm9; vpxor (14 * 32 + 16)(%rdx), %ymm8, %ymm8; write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0, %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9, %ymm8, %rsi); vzeroupper; ret; ENDPROC(camellia_cbc_dec_32way) #define inc_le128(x, minus_one, tmp) \ vpcmpeqq minus_one, x, tmp; \ vpsubq minus_one, x, x; \ vpslldq $8, tmp, tmp; \ vpsubq tmp, x, x; #define add2_le128(x, minus_one, minus_two, tmp1, tmp2) \ vpcmpeqq minus_one, x, tmp1; \ vpcmpeqq minus_two, x, tmp2; \ vpsubq minus_two, x, x; \ vpor tmp2, tmp1, tmp1; \ vpslldq $8, tmp1, tmp1; \ vpsubq tmp1, x, x; ENTRY(camellia_ctr_32way) /* input: * %rdi: ctx, CTX * %rsi: dst (32 blocks) * %rdx: src (32 blocks) * %rcx: iv (little endian, 128bit) */ vzeroupper; movq %rsp, %r10; cmpq %rsi, %rdx; je .Lctr_use_stack; /* dst can be used as temporary storage, src is not overwritten. */ movq %rsi, %rax; jmp .Lctr_continue; .Lctr_use_stack: subq $(16 * 32), %rsp; movq %rsp, %rax; .Lctr_continue: vpcmpeqd %ymm15, %ymm15, %ymm15; vpsrldq $8, %ymm15, %ymm15; /* ab: -1:0 ; cd: -1:0 */ vpaddq %ymm15, %ymm15, %ymm12; /* ab: -2:0 ; cd: -2:0 */ /* load IV and byteswap */ vmovdqu (%rcx), %xmm0; vmovdqa %xmm0, %xmm1; inc_le128(%xmm0, %xmm15, %xmm14); vbroadcasti128 .Lbswap128_mask, %ymm14; vinserti128 $1, %xmm0, %ymm1, %ymm0; vpshufb %ymm14, %ymm0, %ymm13; vmovdqu %ymm13, 15 * 32(%rax); /* construct IVs */ add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); /* ab:le2 ; cd:le3 */ vpshufb %ymm14, %ymm0, %ymm13; vmovdqu %ymm13, 14 * 32(%rax); add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); vpshufb %ymm14, %ymm0, %ymm13; vmovdqu %ymm13, 13 * 32(%rax); add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); vpshufb %ymm14, %ymm0, %ymm13; vmovdqu %ymm13, 12 * 32(%rax); add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); vpshufb %ymm14, %ymm0, %ymm13; vmovdqu %ymm13, 11 * 32(%rax); add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); vpshufb %ymm14, %ymm0, %ymm10; add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); vpshufb %ymm14, %ymm0, %ymm9; add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); vpshufb %ymm14, %ymm0, %ymm8; add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); vpshufb %ymm14, %ymm0, %ymm7; add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); vpshufb %ymm14, %ymm0, %ymm6; add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); vpshufb %ymm14, %ymm0, %ymm5; add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); vpshufb %ymm14, %ymm0, %ymm4; add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); vpshufb %ymm14, %ymm0, %ymm3; add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); vpshufb %ymm14, %ymm0, %ymm2; add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); vpshufb %ymm14, %ymm0, %ymm1; add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); vextracti128 $1, %ymm0, %xmm13; vpshufb %ymm14, %ymm0, %ymm0; inc_le128(%xmm13, %xmm15, %xmm14); vmovdqu %xmm13, (%rcx); /* inpack32_pre: */ vpbroadcastq (key_table)(CTX), %ymm15; vpshufb .Lpack_bswap, %ymm15, %ymm15; vpxor %ymm0, %ymm15, %ymm0; vpxor %ymm1, %ymm15, %ymm1; vpxor %ymm2, %ymm15, %ymm2; vpxor %ymm3, %ymm15, %ymm3; vpxor %ymm4, %ymm15, %ymm4; vpxor %ymm5, %ymm15, %ymm5; vpxor %ymm6, %ymm15, %ymm6; vpxor %ymm7, %ymm15, %ymm7; vpxor %ymm8, %ymm15, %ymm8; vpxor %ymm9, %ymm15, %ymm9; vpxor %ymm10, %ymm15, %ymm10; vpxor 11 * 32(%rax), %ymm15, %ymm11; vpxor 12 * 32(%rax), %ymm15, %ymm12; vpxor 13 * 32(%rax), %ymm15, %ymm13; vpxor 14 * 32(%rax), %ymm15, %ymm14; vpxor 15 * 32(%rax), %ymm15, %ymm15; call __camellia_enc_blk32; movq %r10, %rsp; vpxor 0 * 32(%rdx), %ymm7, %ymm7; vpxor 1 * 32(%rdx), %ymm6, %ymm6; vpxor 2 * 32(%rdx), %ymm5, %ymm5; vpxor 3 * 32(%rdx), %ymm4, %ymm4; vpxor 4 * 32(%rdx), %ymm3, %ymm3; vpxor 5 * 32(%rdx), %ymm2, %ymm2; vpxor 6 * 32(%rdx), %ymm1, %ymm1; vpxor 7 * 32(%rdx), %ymm0, %ymm0; vpxor 8 * 32(%rdx), %ymm15, %ymm15; vpxor 9 * 32(%rdx), %ymm14, %ymm14; vpxor 10 * 32(%rdx), %ymm13, %ymm13; vpxor 11 * 32(%rdx), %ymm12, %ymm12; vpxor 12 * 32(%rdx), %ymm11, %ymm11; vpxor 13 * 32(%rdx), %ymm10, %ymm10; vpxor 14 * 32(%rdx), %ymm9, %ymm9; vpxor 15 * 32(%rdx), %ymm8, %ymm8; write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0, %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9, %ymm8, %rsi); vzeroupper; ret; ENDPROC(camellia_ctr_32way) #define gf128mul_x_ble(iv, mask, tmp) \ vpsrad $31, iv, tmp; \ vpaddq iv, iv, iv; \ vpshufd $0x13, tmp, tmp; \ vpand mask, tmp, tmp; \ vpxor tmp, iv, iv; #define gf128mul_x2_ble(iv, mask1, mask2, tmp0, tmp1) \ vpsrad $31, iv, tmp0; \ vpaddq iv, iv, tmp1; \ vpsllq $2, iv, iv; \ vpshufd $0x13, tmp0, tmp0; \ vpsrad $31, tmp1, tmp1; \ vpand mask2, tmp0, tmp0; \ vpshufd $0x13, tmp1, tmp1; \ vpxor tmp0, iv, iv; \ vpand mask1, tmp1, tmp1; \ vpxor tmp1, iv, iv; .align 8 camellia_xts_crypt_32way: /* input: * %rdi: ctx, CTX * %rsi: dst (32 blocks) * %rdx: src (32 blocks) * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸)) * %r8: index for input whitening key * %r9: pointer to __camellia_enc_blk32 or __camellia_dec_blk32 */ vzeroupper; subq $(16 * 32), %rsp; movq %rsp, %rax; vbroadcasti128 .Lxts_gf128mul_and_shl1_mask_0, %ymm12; /* load IV and construct second IV */ vmovdqu (%rcx), %xmm0; vmovdqa %xmm0, %xmm15; gf128mul_x_ble(%xmm0, %xmm12, %xmm13); vbroadcasti128 .Lxts_gf128mul_and_shl1_mask_1, %ymm13; vinserti128 $1, %xmm0, %ymm15, %ymm0; vpxor 0 * 32(%rdx), %ymm0, %ymm15; vmovdqu %ymm15, 15 * 32(%rax); vmovdqu %ymm0, 0 * 32(%rsi); /* construct IVs */ gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15); vpxor 1 * 32(%rdx), %ymm0, %ymm15; vmovdqu %ymm15, 14 * 32(%rax); vmovdqu %ymm0, 1 * 32(%rsi); gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15); vpxor 2 * 32(%rdx), %ymm0, %ymm15; vmovdqu %ymm15, 13 * 32(%rax); vmovdqu %ymm0, 2 * 32(%rsi); gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15); vpxor 3 * 32(%rdx), %ymm0, %ymm15; vmovdqu %ymm15, 12 * 32(%rax); vmovdqu %ymm0, 3 * 32(%rsi); gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15); vpxor 4 * 32(%rdx), %ymm0, %ymm11; vmovdqu %ymm0, 4 * 32(%rsi); gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15); vpxor 5 * 32(%rdx), %ymm0, %ymm10; vmovdqu %ymm0, 5 * 32(%rsi); gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15); vpxor 6 * 32(%rdx), %ymm0, %ymm9; vmovdqu %ymm0, 6 * 32(%rsi); gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15); vpxor 7 * 32(%rdx), %ymm0, %ymm8; vmovdqu %ymm0, 7 * 32(%rsi); gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15); vpxor 8 * 32(%rdx), %ymm0, %ymm7; vmovdqu %ymm0, 8 * 32(%rsi); gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15); vpxor 9 * 32(%rdx), %ymm0, %ymm6; vmovdqu %ymm0, 9 * 32(%rsi); gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15); vpxor 10 * 32(%rdx), %ymm0, %ymm5; vmovdqu %ymm0, 10 * 32(%rsi); gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15); vpxor 11 * 32(%rdx), %ymm0, %ymm4; vmovdqu %ymm0, 11 * 32(%rsi); gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15); vpxor 12 * 32(%rdx), %ymm0, %ymm3; vmovdqu %ymm0, 12 * 32(%rsi); gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15); vpxor 13 * 32(%rdx), %ymm0, %ymm2; vmovdqu %ymm0, 13 * 32(%rsi); gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15); vpxor 14 * 32(%rdx), %ymm0, %ymm1; vmovdqu %ymm0, 14 * 32(%rsi); gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15); vpxor 15 * 32(%rdx), %ymm0, %ymm15; vmovdqu %ymm15, 0 * 32(%rax); vmovdqu %ymm0, 15 * 32(%rsi); vextracti128 $1, %ymm0, %xmm0; gf128mul_x_ble(%xmm0, %xmm12, %xmm15); vmovdqu %xmm0, (%rcx); /* inpack32_pre: */ vpbroadcastq (key_table)(CTX, %r8, 8), %ymm15; vpshufb .Lpack_bswap, %ymm15, %ymm15; vpxor 0 * 32(%rax), %ymm15, %ymm0; vpxor %ymm1, %ymm15, %ymm1; vpxor %ymm2, %ymm15, %ymm2; vpxor %ymm3, %ymm15, %ymm3; vpxor %ymm4, %ymm15, %ymm4; vpxor %ymm5, %ymm15, %ymm5; vpxor %ymm6, %ymm15, %ymm6; vpxor %ymm7, %ymm15, %ymm7; vpxor %ymm8, %ymm15, %ymm8; vpxor %ymm9, %ymm15, %ymm9; vpxor %ymm10, %ymm15, %ymm10; vpxor %ymm11, %ymm15, %ymm11; vpxor 12 * 32(%rax), %ymm15, %ymm12; vpxor 13 * 32(%rax), %ymm15, %ymm13; vpxor 14 * 32(%rax), %ymm15, %ymm14; vpxor 15 * 32(%rax), %ymm15, %ymm15; call *%r9; addq $(16 * 32), %rsp; vpxor 0 * 32(%rsi), %ymm7, %ymm7; vpxor 1 * 32(%rsi), %ymm6, %ymm6; vpxor 2 * 32(%rsi), %ymm5, %ymm5; vpxor 3 * 32(%rsi), %ymm4, %ymm4; vpxor 4 * 32(%rsi), %ymm3, %ymm3; vpxor 5 * 32(%rsi), %ymm2, %ymm2; vpxor 6 * 32(%rsi), %ymm1, %ymm1; vpxor 7 * 32(%rsi), %ymm0, %ymm0; vpxor 8 * 32(%rsi), %ymm15, %ymm15; vpxor 9 * 32(%rsi), %ymm14, %ymm14; vpxor 10 * 32(%rsi), %ymm13, %ymm13; vpxor 11 * 32(%rsi), %ymm12, %ymm12; vpxor 12 * 32(%rsi), %ymm11, %ymm11; vpxor 13 * 32(%rsi), %ymm10, %ymm10; vpxor 14 * 32(%rsi), %ymm9, %ymm9; vpxor 15 * 32(%rsi), %ymm8, %ymm8; write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0, %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9, %ymm8, %rsi); vzeroupper; ret; ENDPROC(camellia_xts_crypt_32way) ENTRY(camellia_xts_enc_32way) /* input: * %rdi: ctx, CTX * %rsi: dst (32 blocks) * %rdx: src (32 blocks) * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸)) */ xorl %r8d, %r8d; /* input whitening key, 0 for enc */ leaq __camellia_enc_blk32, %r9; jmp camellia_xts_crypt_32way; ENDPROC(camellia_xts_enc_32way) ENTRY(camellia_xts_dec_32way) /* input: * %rdi: ctx, CTX * %rsi: dst (32 blocks) * %rdx: src (32 blocks) * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸)) */ cmpl $16, key_length(CTX); movl $32, %r8d; movl $24, %eax; cmovel %eax, %r8d; /* input whitening key, last for dec */ leaq __camellia_dec_blk32, %r9; jmp camellia_xts_crypt_32way; ENDPROC(camellia_xts_dec_32way)