/* * Interrupt request handling routines. On the * Sparc the IRQs are basically 'cast in stone' * and you are supposed to probe the prom's device * node trees to find out who's got which IRQ. * * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx) * Copyright (C) 1995,2002 Pete A. Zaitcev (zaitcev@yahoo.com) * Copyright (C) 1996 Dave Redman (djhr@tadpole.co.uk) * Copyright (C) 1998-2000 Anton Blanchard (anton@samba.org) */ #include <linux/kernel_stat.h> #include <linux/seq_file.h> #include <linux/export.h> #include <asm/cacheflush.h> #include <asm/cpudata.h> #include <asm/setup.h> #include <asm/pcic.h> #include <asm/leon.h> #include "kernel.h" #include "irq.h" /* platform specific irq setup */ struct sparc_config sparc_config; unsigned long arch_local_irq_save(void) { unsigned long retval; unsigned long tmp; __asm__ __volatile__( "rd %%psr, %0\n\t" "or %0, %2, %1\n\t" "wr %1, 0, %%psr\n\t" "nop; nop; nop\n" : "=&r" (retval), "=r" (tmp) : "i" (PSR_PIL) : "memory"); return retval; } EXPORT_SYMBOL(arch_local_irq_save); void arch_local_irq_enable(void) { unsigned long tmp; __asm__ __volatile__( "rd %%psr, %0\n\t" "andn %0, %1, %0\n\t" "wr %0, 0, %%psr\n\t" "nop; nop; nop\n" : "=&r" (tmp) : "i" (PSR_PIL) : "memory"); } EXPORT_SYMBOL(arch_local_irq_enable); void arch_local_irq_restore(unsigned long old_psr) { unsigned long tmp; __asm__ __volatile__( "rd %%psr, %0\n\t" "and %2, %1, %2\n\t" "andn %0, %1, %0\n\t" "wr %0, %2, %%psr\n\t" "nop; nop; nop\n" : "=&r" (tmp) : "i" (PSR_PIL), "r" (old_psr) : "memory"); } EXPORT_SYMBOL(arch_local_irq_restore); /* * Dave Redman (djhr@tadpole.co.uk) * * IRQ numbers.. These are no longer restricted to 15.. * * this is done to enable SBUS cards and onboard IO to be masked * correctly. using the interrupt level isn't good enough. * * For example: * A device interrupting at sbus level6 and the Floppy both come in * at IRQ11, but enabling and disabling them requires writing to * different bits in the SLAVIO/SEC. * * As a result of these changes sun4m machines could now support * directed CPU interrupts using the existing enable/disable irq code * with tweaks. * * Sun4d complicates things even further. IRQ numbers are arbitrary * 32-bit values in that case. Since this is similar to sparc64, * we adopt a virtual IRQ numbering scheme as is done there. * Virutal interrupt numbers are allocated by build_irq(). So NR_IRQS * just becomes a limit of how many interrupt sources we can handle in * a single system. Even fully loaded SS2000 machines top off at * about 32 interrupt sources or so, therefore a NR_IRQS value of 64 * is more than enough. * * We keep a map of per-PIL enable interrupts. These get wired * up via the irq_chip->startup() method which gets invoked by * the generic IRQ layer during request_irq(). */ /* Table of allocated irqs. Unused entries has irq == 0 */ static struct irq_bucket irq_table[NR_IRQS]; /* Protect access to irq_table */ static DEFINE_SPINLOCK(irq_table_lock); /* Map between the irq identifier used in hw to the irq_bucket. */ struct irq_bucket *irq_map[SUN4D_MAX_IRQ]; /* Protect access to irq_map */ static DEFINE_SPINLOCK(irq_map_lock); /* Allocate a new irq from the irq_table */ unsigned int irq_alloc(unsigned int real_irq, unsigned int pil) { unsigned long flags; unsigned int i; spin_lock_irqsave(&irq_table_lock, flags); for (i = 1; i < NR_IRQS; i++) { if (irq_table[i].real_irq == real_irq && irq_table[i].pil == pil) goto found; } for (i = 1; i < NR_IRQS; i++) { if (!irq_table[i].irq) break; } if (i < NR_IRQS) { irq_table[i].real_irq = real_irq; irq_table[i].irq = i; irq_table[i].pil = pil; } else { printk(KERN_ERR "IRQ: Out of virtual IRQs.\n"); i = 0; } found: spin_unlock_irqrestore(&irq_table_lock, flags); return i; } /* Based on a single pil handler_irq may need to call several * interrupt handlers. Use irq_map as entry to irq_table, * and let each entry in irq_table point to the next entry. */ void irq_link(unsigned int irq) { struct irq_bucket *p; unsigned long flags; unsigned int pil; BUG_ON(irq >= NR_IRQS); spin_lock_irqsave(&irq_map_lock, flags); p = &irq_table[irq]; pil = p->pil; BUG_ON(pil > SUN4D_MAX_IRQ); p->next = irq_map[pil]; irq_map[pil] = p; spin_unlock_irqrestore(&irq_map_lock, flags); } void irq_unlink(unsigned int irq) { struct irq_bucket *p, **pnext; unsigned long flags; BUG_ON(irq >= NR_IRQS); spin_lock_irqsave(&irq_map_lock, flags); p = &irq_table[irq]; BUG_ON(p->pil > SUN4D_MAX_IRQ); pnext = &irq_map[p->pil]; while (*pnext != p) pnext = &(*pnext)->next; *pnext = p->next; spin_unlock_irqrestore(&irq_map_lock, flags); } /* /proc/interrupts printing */ int arch_show_interrupts(struct seq_file *p, int prec) { int j; #ifdef CONFIG_SMP seq_printf(p, "RES: "); for_each_online_cpu(j) seq_printf(p, "%10u ", cpu_data(j).irq_resched_count); seq_printf(p, " IPI rescheduling interrupts\n"); seq_printf(p, "CAL: "); for_each_online_cpu(j) seq_printf(p, "%10u ", cpu_data(j).irq_call_count); seq_printf(p, " IPI function call interrupts\n"); #endif seq_printf(p, "NMI: "); for_each_online_cpu(j) seq_printf(p, "%10u ", cpu_data(j).counter); seq_printf(p, " Non-maskable interrupts\n"); return 0; } void handler_irq(unsigned int pil, struct pt_regs *regs) { struct pt_regs *old_regs; struct irq_bucket *p; BUG_ON(pil > 15); old_regs = set_irq_regs(regs); irq_enter(); p = irq_map[pil]; while (p) { struct irq_bucket *next = p->next; generic_handle_irq(p->irq); p = next; } irq_exit(); set_irq_regs(old_regs); } #if defined(CONFIG_BLK_DEV_FD) || defined(CONFIG_BLK_DEV_FD_MODULE) static unsigned int floppy_irq; int sparc_floppy_request_irq(unsigned int irq, irq_handler_t irq_handler) { unsigned int cpu_irq; int err; err = request_irq(irq, irq_handler, 0, "floppy", NULL); if (err) return -1; /* Save for later use in floppy interrupt handler */ floppy_irq = irq; cpu_irq = (irq & (NR_IRQS - 1)); /* Dork with trap table if we get this far. */ #define INSTANTIATE(table) \ table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_one = SPARC_RD_PSR_L0; \ table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two = \ SPARC_BRANCH((unsigned long) floppy_hardint, \ (unsigned long) &table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two);\ table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_three = SPARC_RD_WIM_L3; \ table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_four = SPARC_NOP; INSTANTIATE(sparc_ttable) #if defined CONFIG_SMP if (sparc_cpu_model != sparc_leon) { struct tt_entry *trap_table; trap_table = &trapbase_cpu1; INSTANTIATE(trap_table) trap_table = &trapbase_cpu2; INSTANTIATE(trap_table) trap_table = &trapbase_cpu3; INSTANTIATE(trap_table) } #endif #undef INSTANTIATE /* * XXX Correct thing whould be to flush only I- and D-cache lines * which contain the handler in question. But as of time of the * writing we have no CPU-neutral interface to fine-grained flushes. */ flush_cache_all(); return 0; } EXPORT_SYMBOL(sparc_floppy_request_irq); /* * These variables are used to access state from the assembler * interrupt handler, floppy_hardint, so we cannot put these in * the floppy driver image because that would not work in the * modular case. */ volatile unsigned char *fdc_status; EXPORT_SYMBOL(fdc_status); char *pdma_vaddr; EXPORT_SYMBOL(pdma_vaddr); unsigned long pdma_size; EXPORT_SYMBOL(pdma_size); volatile int doing_pdma; EXPORT_SYMBOL(doing_pdma); char *pdma_base; EXPORT_SYMBOL(pdma_base); unsigned long pdma_areasize; EXPORT_SYMBOL(pdma_areasize); /* Use the generic irq support to call floppy_interrupt * which was setup using request_irq() in sparc_floppy_request_irq(). * We only have one floppy interrupt so we do not need to check * for additional handlers being wired up by irq_link() */ void sparc_floppy_irq(int irq, void *dev_id, struct pt_regs *regs) { struct pt_regs *old_regs; old_regs = set_irq_regs(regs); irq_enter(); generic_handle_irq(floppy_irq); irq_exit(); set_irq_regs(old_regs); } #endif /* djhr * This could probably be made indirect too and assigned in the CPU * bits of the code. That would be much nicer I think and would also * fit in with the idea of being able to tune your kernel for your machine * by removing unrequired machine and device support. * */ void __init init_IRQ(void) { switch (sparc_cpu_model) { case sun4m: pcic_probe(); if (pcic_present()) sun4m_pci_init_IRQ(); else sun4m_init_IRQ(); break; case sun4d: sun4d_init_IRQ(); break; case sparc_leon: leon_init_IRQ(); break; default: prom_printf("Cannot initialize IRQs on this Sun machine..."); break; } }