/* Glue code for AES encryption optimized for sparc64 crypto opcodes. * * This is based largely upon arch/x86/crypto/aesni-intel_glue.c * * Copyright (C) 2008, Intel Corp. * Author: Huang Ying <ying.huang@intel.com> * * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD * interface for 64-bit kernels. * Authors: Adrian Hoban <adrian.hoban@intel.com> * Gabriele Paoloni <gabriele.paoloni@intel.com> * Tadeusz Struk (tadeusz.struk@intel.com) * Aidan O'Mahony (aidan.o.mahony@intel.com) * Copyright (c) 2010, Intel Corporation. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/crypto.h> #include <linux/init.h> #include <linux/module.h> #include <linux/mm.h> #include <linux/types.h> #include <crypto/algapi.h> #include <crypto/aes.h> #include <asm/fpumacro.h> #include <asm/pstate.h> #include <asm/elf.h> #include "opcodes.h" struct aes_ops { void (*encrypt)(const u64 *key, const u32 *input, u32 *output); void (*decrypt)(const u64 *key, const u32 *input, u32 *output); void (*load_encrypt_keys)(const u64 *key); void (*load_decrypt_keys)(const u64 *key); void (*ecb_encrypt)(const u64 *key, const u64 *input, u64 *output, unsigned int len); void (*ecb_decrypt)(const u64 *key, const u64 *input, u64 *output, unsigned int len); void (*cbc_encrypt)(const u64 *key, const u64 *input, u64 *output, unsigned int len, u64 *iv); void (*cbc_decrypt)(const u64 *key, const u64 *input, u64 *output, unsigned int len, u64 *iv); void (*ctr_crypt)(const u64 *key, const u64 *input, u64 *output, unsigned int len, u64 *iv); }; struct crypto_sparc64_aes_ctx { struct aes_ops *ops; u64 key[AES_MAX_KEYLENGTH / sizeof(u64)]; u32 key_length; u32 expanded_key_length; }; extern void aes_sparc64_encrypt_128(const u64 *key, const u32 *input, u32 *output); extern void aes_sparc64_encrypt_192(const u64 *key, const u32 *input, u32 *output); extern void aes_sparc64_encrypt_256(const u64 *key, const u32 *input, u32 *output); extern void aes_sparc64_decrypt_128(const u64 *key, const u32 *input, u32 *output); extern void aes_sparc64_decrypt_192(const u64 *key, const u32 *input, u32 *output); extern void aes_sparc64_decrypt_256(const u64 *key, const u32 *input, u32 *output); extern void aes_sparc64_load_encrypt_keys_128(const u64 *key); extern void aes_sparc64_load_encrypt_keys_192(const u64 *key); extern void aes_sparc64_load_encrypt_keys_256(const u64 *key); extern void aes_sparc64_load_decrypt_keys_128(const u64 *key); extern void aes_sparc64_load_decrypt_keys_192(const u64 *key); extern void aes_sparc64_load_decrypt_keys_256(const u64 *key); extern void aes_sparc64_ecb_encrypt_128(const u64 *key, const u64 *input, u64 *output, unsigned int len); extern void aes_sparc64_ecb_encrypt_192(const u64 *key, const u64 *input, u64 *output, unsigned int len); extern void aes_sparc64_ecb_encrypt_256(const u64 *key, const u64 *input, u64 *output, unsigned int len); extern void aes_sparc64_ecb_decrypt_128(const u64 *key, const u64 *input, u64 *output, unsigned int len); extern void aes_sparc64_ecb_decrypt_192(const u64 *key, const u64 *input, u64 *output, unsigned int len); extern void aes_sparc64_ecb_decrypt_256(const u64 *key, const u64 *input, u64 *output, unsigned int len); extern void aes_sparc64_cbc_encrypt_128(const u64 *key, const u64 *input, u64 *output, unsigned int len, u64 *iv); extern void aes_sparc64_cbc_encrypt_192(const u64 *key, const u64 *input, u64 *output, unsigned int len, u64 *iv); extern void aes_sparc64_cbc_encrypt_256(const u64 *key, const u64 *input, u64 *output, unsigned int len, u64 *iv); extern void aes_sparc64_cbc_decrypt_128(const u64 *key, const u64 *input, u64 *output, unsigned int len, u64 *iv); extern void aes_sparc64_cbc_decrypt_192(const u64 *key, const u64 *input, u64 *output, unsigned int len, u64 *iv); extern void aes_sparc64_cbc_decrypt_256(const u64 *key, const u64 *input, u64 *output, unsigned int len, u64 *iv); extern void aes_sparc64_ctr_crypt_128(const u64 *key, const u64 *input, u64 *output, unsigned int len, u64 *iv); extern void aes_sparc64_ctr_crypt_192(const u64 *key, const u64 *input, u64 *output, unsigned int len, u64 *iv); extern void aes_sparc64_ctr_crypt_256(const u64 *key, const u64 *input, u64 *output, unsigned int len, u64 *iv); static struct aes_ops aes128_ops = { .encrypt = aes_sparc64_encrypt_128, .decrypt = aes_sparc64_decrypt_128, .load_encrypt_keys = aes_sparc64_load_encrypt_keys_128, .load_decrypt_keys = aes_sparc64_load_decrypt_keys_128, .ecb_encrypt = aes_sparc64_ecb_encrypt_128, .ecb_decrypt = aes_sparc64_ecb_decrypt_128, .cbc_encrypt = aes_sparc64_cbc_encrypt_128, .cbc_decrypt = aes_sparc64_cbc_decrypt_128, .ctr_crypt = aes_sparc64_ctr_crypt_128, }; static struct aes_ops aes192_ops = { .encrypt = aes_sparc64_encrypt_192, .decrypt = aes_sparc64_decrypt_192, .load_encrypt_keys = aes_sparc64_load_encrypt_keys_192, .load_decrypt_keys = aes_sparc64_load_decrypt_keys_192, .ecb_encrypt = aes_sparc64_ecb_encrypt_192, .ecb_decrypt = aes_sparc64_ecb_decrypt_192, .cbc_encrypt = aes_sparc64_cbc_encrypt_192, .cbc_decrypt = aes_sparc64_cbc_decrypt_192, .ctr_crypt = aes_sparc64_ctr_crypt_192, }; static struct aes_ops aes256_ops = { .encrypt = aes_sparc64_encrypt_256, .decrypt = aes_sparc64_decrypt_256, .load_encrypt_keys = aes_sparc64_load_encrypt_keys_256, .load_decrypt_keys = aes_sparc64_load_decrypt_keys_256, .ecb_encrypt = aes_sparc64_ecb_encrypt_256, .ecb_decrypt = aes_sparc64_ecb_decrypt_256, .cbc_encrypt = aes_sparc64_cbc_encrypt_256, .cbc_decrypt = aes_sparc64_cbc_decrypt_256, .ctr_crypt = aes_sparc64_ctr_crypt_256, }; extern void aes_sparc64_key_expand(const u32 *in_key, u64 *output_key, unsigned int key_len); static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, unsigned int key_len) { struct crypto_sparc64_aes_ctx *ctx = crypto_tfm_ctx(tfm); u32 *flags = &tfm->crt_flags; switch (key_len) { case AES_KEYSIZE_128: ctx->expanded_key_length = 0xb0; ctx->ops = &aes128_ops; break; case AES_KEYSIZE_192: ctx->expanded_key_length = 0xd0; ctx->ops = &aes192_ops; break; case AES_KEYSIZE_256: ctx->expanded_key_length = 0xf0; ctx->ops = &aes256_ops; break; default: *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; return -EINVAL; } aes_sparc64_key_expand((const u32 *)in_key, &ctx->key[0], key_len); ctx->key_length = key_len; return 0; } static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) { struct crypto_sparc64_aes_ctx *ctx = crypto_tfm_ctx(tfm); ctx->ops->encrypt(&ctx->key[0], (const u32 *) src, (u32 *) dst); } static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) { struct crypto_sparc64_aes_ctx *ctx = crypto_tfm_ctx(tfm); ctx->ops->decrypt(&ctx->key[0], (const u32 *) src, (u32 *) dst); } #define AES_BLOCK_MASK (~(AES_BLOCK_SIZE-1)) static int ecb_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct crypto_sparc64_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); struct blkcipher_walk walk; int err; blkcipher_walk_init(&walk, dst, src, nbytes); err = blkcipher_walk_virt(desc, &walk); desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; ctx->ops->load_encrypt_keys(&ctx->key[0]); while ((nbytes = walk.nbytes)) { unsigned int block_len = nbytes & AES_BLOCK_MASK; if (likely(block_len)) { ctx->ops->ecb_encrypt(&ctx->key[0], (const u64 *)walk.src.virt.addr, (u64 *) walk.dst.virt.addr, block_len); } nbytes &= AES_BLOCK_SIZE - 1; err = blkcipher_walk_done(desc, &walk, nbytes); } fprs_write(0); return err; } static int ecb_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct crypto_sparc64_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); struct blkcipher_walk walk; u64 *key_end; int err; blkcipher_walk_init(&walk, dst, src, nbytes); err = blkcipher_walk_virt(desc, &walk); desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; ctx->ops->load_decrypt_keys(&ctx->key[0]); key_end = &ctx->key[ctx->expanded_key_length / sizeof(u64)]; while ((nbytes = walk.nbytes)) { unsigned int block_len = nbytes & AES_BLOCK_MASK; if (likely(block_len)) { ctx->ops->ecb_decrypt(key_end, (const u64 *) walk.src.virt.addr, (u64 *) walk.dst.virt.addr, block_len); } nbytes &= AES_BLOCK_SIZE - 1; err = blkcipher_walk_done(desc, &walk, nbytes); } fprs_write(0); return err; } static int cbc_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct crypto_sparc64_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); struct blkcipher_walk walk; int err; blkcipher_walk_init(&walk, dst, src, nbytes); err = blkcipher_walk_virt(desc, &walk); desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; ctx->ops->load_encrypt_keys(&ctx->key[0]); while ((nbytes = walk.nbytes)) { unsigned int block_len = nbytes & AES_BLOCK_MASK; if (likely(block_len)) { ctx->ops->cbc_encrypt(&ctx->key[0], (const u64 *)walk.src.virt.addr, (u64 *) walk.dst.virt.addr, block_len, (u64 *) walk.iv); } nbytes &= AES_BLOCK_SIZE - 1; err = blkcipher_walk_done(desc, &walk, nbytes); } fprs_write(0); return err; } static int cbc_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct crypto_sparc64_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); struct blkcipher_walk walk; u64 *key_end; int err; blkcipher_walk_init(&walk, dst, src, nbytes); err = blkcipher_walk_virt(desc, &walk); desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; ctx->ops->load_decrypt_keys(&ctx->key[0]); key_end = &ctx->key[ctx->expanded_key_length / sizeof(u64)]; while ((nbytes = walk.nbytes)) { unsigned int block_len = nbytes & AES_BLOCK_MASK; if (likely(block_len)) { ctx->ops->cbc_decrypt(key_end, (const u64 *) walk.src.virt.addr, (u64 *) walk.dst.virt.addr, block_len, (u64 *) walk.iv); } nbytes &= AES_BLOCK_SIZE - 1; err = blkcipher_walk_done(desc, &walk, nbytes); } fprs_write(0); return err; } static void ctr_crypt_final(struct crypto_sparc64_aes_ctx *ctx, struct blkcipher_walk *walk) { u8 *ctrblk = walk->iv; u64 keystream[AES_BLOCK_SIZE / sizeof(u64)]; u8 *src = walk->src.virt.addr; u8 *dst = walk->dst.virt.addr; unsigned int nbytes = walk->nbytes; ctx->ops->ecb_encrypt(&ctx->key[0], (const u64 *)ctrblk, keystream, AES_BLOCK_SIZE); crypto_xor((u8 *) keystream, src, nbytes); memcpy(dst, keystream, nbytes); crypto_inc(ctrblk, AES_BLOCK_SIZE); } static int ctr_crypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct crypto_sparc64_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); struct blkcipher_walk walk; int err; blkcipher_walk_init(&walk, dst, src, nbytes); err = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE); desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; ctx->ops->load_encrypt_keys(&ctx->key[0]); while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) { unsigned int block_len = nbytes & AES_BLOCK_MASK; if (likely(block_len)) { ctx->ops->ctr_crypt(&ctx->key[0], (const u64 *)walk.src.virt.addr, (u64 *) walk.dst.virt.addr, block_len, (u64 *) walk.iv); } nbytes &= AES_BLOCK_SIZE - 1; err = blkcipher_walk_done(desc, &walk, nbytes); } if (walk.nbytes) { ctr_crypt_final(ctx, &walk); err = blkcipher_walk_done(desc, &walk, 0); } fprs_write(0); return err; } static struct crypto_alg algs[] = { { .cra_name = "aes", .cra_driver_name = "aes-sparc64", .cra_priority = SPARC_CR_OPCODE_PRIORITY, .cra_flags = CRYPTO_ALG_TYPE_CIPHER, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct crypto_sparc64_aes_ctx), .cra_alignmask = 3, .cra_module = THIS_MODULE, .cra_u = { .cipher = { .cia_min_keysize = AES_MIN_KEY_SIZE, .cia_max_keysize = AES_MAX_KEY_SIZE, .cia_setkey = aes_set_key, .cia_encrypt = aes_encrypt, .cia_decrypt = aes_decrypt } } }, { .cra_name = "ecb(aes)", .cra_driver_name = "ecb-aes-sparc64", .cra_priority = SPARC_CR_OPCODE_PRIORITY, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct crypto_sparc64_aes_ctx), .cra_alignmask = 7, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_u = { .blkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = aes_set_key, .encrypt = ecb_encrypt, .decrypt = ecb_decrypt, }, }, }, { .cra_name = "cbc(aes)", .cra_driver_name = "cbc-aes-sparc64", .cra_priority = SPARC_CR_OPCODE_PRIORITY, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct crypto_sparc64_aes_ctx), .cra_alignmask = 7, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_u = { .blkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = aes_set_key, .encrypt = cbc_encrypt, .decrypt = cbc_decrypt, }, }, }, { .cra_name = "ctr(aes)", .cra_driver_name = "ctr-aes-sparc64", .cra_priority = SPARC_CR_OPCODE_PRIORITY, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct crypto_sparc64_aes_ctx), .cra_alignmask = 7, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_u = { .blkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = aes_set_key, .encrypt = ctr_crypt, .decrypt = ctr_crypt, }, }, } }; static bool __init sparc64_has_aes_opcode(void) { unsigned long cfr; if (!(sparc64_elf_hwcap & HWCAP_SPARC_CRYPTO)) return false; __asm__ __volatile__("rd %%asr26, %0" : "=r" (cfr)); if (!(cfr & CFR_AES)) return false; return true; } static int __init aes_sparc64_mod_init(void) { int i; for (i = 0; i < ARRAY_SIZE(algs); i++) INIT_LIST_HEAD(&algs[i].cra_list); if (sparc64_has_aes_opcode()) { pr_info("Using sparc64 aes opcodes optimized AES implementation\n"); return crypto_register_algs(algs, ARRAY_SIZE(algs)); } pr_info("sparc64 aes opcodes not available.\n"); return -ENODEV; } static void __exit aes_sparc64_mod_fini(void) { crypto_unregister_algs(algs, ARRAY_SIZE(algs)); } module_init(aes_sparc64_mod_init); module_exit(aes_sparc64_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, sparc64 aes opcode accelerated"); MODULE_ALIAS_CRYPTO("aes"); #include "crop_devid.c"