/* * Virtual cpu timer based timer functions. * * Copyright IBM Corp. 2004, 2012 * Author(s): Jan Glauber <jan.glauber@de.ibm.com> */ #include <linux/kernel_stat.h> #include <linux/export.h> #include <linux/kernel.h> #include <linux/timex.h> #include <linux/types.h> #include <linux/time.h> #include <asm/cputime.h> #include <asm/vtimer.h> #include <asm/vtime.h> #include <asm/cpu_mf.h> #include <asm/smp.h> static void virt_timer_expire(void); static LIST_HEAD(virt_timer_list); static DEFINE_SPINLOCK(virt_timer_lock); static atomic64_t virt_timer_current; static atomic64_t virt_timer_elapsed; static DEFINE_PER_CPU(u64, mt_cycles[32]); static DEFINE_PER_CPU(u64, mt_scaling_mult) = { 1 }; static DEFINE_PER_CPU(u64, mt_scaling_div) = { 1 }; static inline u64 get_vtimer(void) { u64 timer; asm volatile("stpt %0" : "=m" (timer)); return timer; } static inline void set_vtimer(u64 expires) { u64 timer; asm volatile( " stpt %0\n" /* Store current cpu timer value */ " spt %1" /* Set new value imm. afterwards */ : "=m" (timer) : "m" (expires)); S390_lowcore.system_timer += S390_lowcore.last_update_timer - timer; S390_lowcore.last_update_timer = expires; } static inline int virt_timer_forward(u64 elapsed) { BUG_ON(!irqs_disabled()); if (list_empty(&virt_timer_list)) return 0; elapsed = atomic64_add_return(elapsed, &virt_timer_elapsed); return elapsed >= atomic64_read(&virt_timer_current); } /* * Update process times based on virtual cpu times stored by entry.S * to the lowcore fields user_timer, system_timer & steal_clock. */ static int do_account_vtime(struct task_struct *tsk, int hardirq_offset) { struct thread_info *ti = task_thread_info(tsk); u64 timer, clock, user, system, steal; u64 user_scaled, system_scaled; int i; timer = S390_lowcore.last_update_timer; clock = S390_lowcore.last_update_clock; asm volatile( " stpt %0\n" /* Store current cpu timer value */ #ifdef CONFIG_HAVE_MARCH_Z9_109_FEATURES " stckf %1" /* Store current tod clock value */ #else " stck %1" /* Store current tod clock value */ #endif : "=m" (S390_lowcore.last_update_timer), "=m" (S390_lowcore.last_update_clock)); S390_lowcore.system_timer += timer - S390_lowcore.last_update_timer; S390_lowcore.steal_timer += S390_lowcore.last_update_clock - clock; /* Do MT utilization calculation */ if (smp_cpu_mtid) { u64 cycles_new[32], *cycles_old; u64 delta, mult, div; cycles_old = this_cpu_ptr(mt_cycles); if (stcctm5(smp_cpu_mtid + 1, cycles_new) < 2) { mult = div = 0; for (i = 0; i <= smp_cpu_mtid; i++) { delta = cycles_new[i] - cycles_old[i]; mult += delta; div += (i + 1) * delta; } if (mult > 0) { /* Update scaling factor */ __this_cpu_write(mt_scaling_mult, mult); __this_cpu_write(mt_scaling_div, div); memcpy(cycles_old, cycles_new, sizeof(u64) * (smp_cpu_mtid + 1)); } } } user = S390_lowcore.user_timer - ti->user_timer; S390_lowcore.steal_timer -= user; ti->user_timer = S390_lowcore.user_timer; system = S390_lowcore.system_timer - ti->system_timer; S390_lowcore.steal_timer -= system; ti->system_timer = S390_lowcore.system_timer; user_scaled = user; system_scaled = system; /* Do MT utilization scaling */ if (smp_cpu_mtid) { u64 mult = __this_cpu_read(mt_scaling_mult); u64 div = __this_cpu_read(mt_scaling_div); user_scaled = (user_scaled * mult) / div; system_scaled = (system_scaled * mult) / div; } account_user_time(tsk, user, user_scaled); account_system_time(tsk, hardirq_offset, system, system_scaled); steal = S390_lowcore.steal_timer; if ((s64) steal > 0) { S390_lowcore.steal_timer = 0; account_steal_time(steal); } return virt_timer_forward(user + system); } void vtime_task_switch(struct task_struct *prev) { struct thread_info *ti; do_account_vtime(prev, 0); ti = task_thread_info(prev); ti->user_timer = S390_lowcore.user_timer; ti->system_timer = S390_lowcore.system_timer; ti = task_thread_info(current); S390_lowcore.user_timer = ti->user_timer; S390_lowcore.system_timer = ti->system_timer; } /* * In s390, accounting pending user time also implies * accounting system time in order to correctly compute * the stolen time accounting. */ void vtime_account_user(struct task_struct *tsk) { if (do_account_vtime(tsk, HARDIRQ_OFFSET)) virt_timer_expire(); } /* * Update process times based on virtual cpu times stored by entry.S * to the lowcore fields user_timer, system_timer & steal_clock. */ void vtime_account_irq_enter(struct task_struct *tsk) { struct thread_info *ti = task_thread_info(tsk); u64 timer, system, system_scaled; timer = S390_lowcore.last_update_timer; S390_lowcore.last_update_timer = get_vtimer(); S390_lowcore.system_timer += timer - S390_lowcore.last_update_timer; system = S390_lowcore.system_timer - ti->system_timer; S390_lowcore.steal_timer -= system; ti->system_timer = S390_lowcore.system_timer; system_scaled = system; /* Do MT utilization scaling */ if (smp_cpu_mtid) { u64 mult = __this_cpu_read(mt_scaling_mult); u64 div = __this_cpu_read(mt_scaling_div); system_scaled = (system_scaled * mult) / div; } account_system_time(tsk, 0, system, system_scaled); virt_timer_forward(system); } EXPORT_SYMBOL_GPL(vtime_account_irq_enter); void vtime_account_system(struct task_struct *tsk) __attribute__((alias("vtime_account_irq_enter"))); EXPORT_SYMBOL_GPL(vtime_account_system); /* * Sorted add to a list. List is linear searched until first bigger * element is found. */ static void list_add_sorted(struct vtimer_list *timer, struct list_head *head) { struct vtimer_list *tmp; list_for_each_entry(tmp, head, entry) { if (tmp->expires > timer->expires) { list_add_tail(&timer->entry, &tmp->entry); return; } } list_add_tail(&timer->entry, head); } /* * Handler for expired virtual CPU timer. */ static void virt_timer_expire(void) { struct vtimer_list *timer, *tmp; unsigned long elapsed; LIST_HEAD(cb_list); /* walk timer list, fire all expired timers */ spin_lock(&virt_timer_lock); elapsed = atomic64_read(&virt_timer_elapsed); list_for_each_entry_safe(timer, tmp, &virt_timer_list, entry) { if (timer->expires < elapsed) /* move expired timer to the callback queue */ list_move_tail(&timer->entry, &cb_list); else timer->expires -= elapsed; } if (!list_empty(&virt_timer_list)) { timer = list_first_entry(&virt_timer_list, struct vtimer_list, entry); atomic64_set(&virt_timer_current, timer->expires); } atomic64_sub(elapsed, &virt_timer_elapsed); spin_unlock(&virt_timer_lock); /* Do callbacks and recharge periodic timers */ list_for_each_entry_safe(timer, tmp, &cb_list, entry) { list_del_init(&timer->entry); timer->function(timer->data); if (timer->interval) { /* Recharge interval timer */ timer->expires = timer->interval + atomic64_read(&virt_timer_elapsed); spin_lock(&virt_timer_lock); list_add_sorted(timer, &virt_timer_list); spin_unlock(&virt_timer_lock); } } } void init_virt_timer(struct vtimer_list *timer) { timer->function = NULL; INIT_LIST_HEAD(&timer->entry); } EXPORT_SYMBOL(init_virt_timer); static inline int vtimer_pending(struct vtimer_list *timer) { return !list_empty(&timer->entry); } static void internal_add_vtimer(struct vtimer_list *timer) { if (list_empty(&virt_timer_list)) { /* First timer, just program it. */ atomic64_set(&virt_timer_current, timer->expires); atomic64_set(&virt_timer_elapsed, 0); list_add(&timer->entry, &virt_timer_list); } else { /* Update timer against current base. */ timer->expires += atomic64_read(&virt_timer_elapsed); if (likely((s64) timer->expires < (s64) atomic64_read(&virt_timer_current))) /* The new timer expires before the current timer. */ atomic64_set(&virt_timer_current, timer->expires); /* Insert new timer into the list. */ list_add_sorted(timer, &virt_timer_list); } } static void __add_vtimer(struct vtimer_list *timer, int periodic) { unsigned long flags; timer->interval = periodic ? timer->expires : 0; spin_lock_irqsave(&virt_timer_lock, flags); internal_add_vtimer(timer); spin_unlock_irqrestore(&virt_timer_lock, flags); } /* * add_virt_timer - add an oneshot virtual CPU timer */ void add_virt_timer(struct vtimer_list *timer) { __add_vtimer(timer, 0); } EXPORT_SYMBOL(add_virt_timer); /* * add_virt_timer_int - add an interval virtual CPU timer */ void add_virt_timer_periodic(struct vtimer_list *timer) { __add_vtimer(timer, 1); } EXPORT_SYMBOL(add_virt_timer_periodic); static int __mod_vtimer(struct vtimer_list *timer, u64 expires, int periodic) { unsigned long flags; int rc; BUG_ON(!timer->function); if (timer->expires == expires && vtimer_pending(timer)) return 1; spin_lock_irqsave(&virt_timer_lock, flags); rc = vtimer_pending(timer); if (rc) list_del_init(&timer->entry); timer->interval = periodic ? expires : 0; timer->expires = expires; internal_add_vtimer(timer); spin_unlock_irqrestore(&virt_timer_lock, flags); return rc; } /* * returns whether it has modified a pending timer (1) or not (0) */ int mod_virt_timer(struct vtimer_list *timer, u64 expires) { return __mod_vtimer(timer, expires, 0); } EXPORT_SYMBOL(mod_virt_timer); /* * returns whether it has modified a pending timer (1) or not (0) */ int mod_virt_timer_periodic(struct vtimer_list *timer, u64 expires) { return __mod_vtimer(timer, expires, 1); } EXPORT_SYMBOL(mod_virt_timer_periodic); /* * Delete a virtual timer. * * returns whether the deleted timer was pending (1) or not (0) */ int del_virt_timer(struct vtimer_list *timer) { unsigned long flags; if (!vtimer_pending(timer)) return 0; spin_lock_irqsave(&virt_timer_lock, flags); list_del_init(&timer->entry); spin_unlock_irqrestore(&virt_timer_lock, flags); return 1; } EXPORT_SYMBOL(del_virt_timer); /* * Start the virtual CPU timer on the current CPU. */ void vtime_init(void) { /* set initial cpu timer */ set_vtimer(VTIMER_MAX_SLICE); }