/*
 * ip27-irq.c: Highlevel interrupt handling for IP27 architecture.
 *
 * Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org)
 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
 * Copyright (C) 1999 - 2001 Kanoj Sarcar
 */

#undef DEBUG

#include <linux/init.h>
#include <linux/irq.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/timex.h>
#include <linux/smp.h>
#include <linux/random.h>
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/delay.h>
#include <linux/bitops.h>

#include <asm/bootinfo.h>
#include <asm/io.h>
#include <asm/mipsregs.h>

#include <asm/processor.h>
#include <asm/sn/addrs.h>
#include <asm/sn/agent.h>
#include <asm/sn/arch.h>
#include <asm/sn/hub.h>
#include <asm/sn/intr.h>

/*
 * Linux has a controller-independent x86 interrupt architecture.
 * every controller has a 'controller-template', that is used
 * by the main code to do the right thing. Each driver-visible
 * interrupt source is transparently wired to the appropriate
 * controller. Thus drivers need not be aware of the
 * interrupt-controller.
 *
 * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
 * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
 * (IO-APICs assumed to be messaging to Pentium local-APICs)
 *
 * the code is designed to be easily extended with new/different
 * interrupt controllers, without having to do assembly magic.
 */

extern asmlinkage void ip27_irq(void);

/*
 * Find first bit set
 */
static int ms1bit(unsigned long x)
{
	int b = 0, s;

	s = 16; if (x >> 16 == 0) s = 0; b += s; x >>= s;
	s =  8; if (x >>  8 == 0) s = 0; b += s; x >>= s;
	s =  4; if (x >>  4 == 0) s = 0; b += s; x >>= s;
	s =  2; if (x >>  2 == 0) s = 0; b += s; x >>= s;
	s =  1; if (x >>  1 == 0) s = 0; b += s;

	return b;
}

/*
 * This code is unnecessarily complex, because we do
 * intr enabling. Basically, once we grab the set of intrs we need
 * to service, we must mask _all_ these interrupts; firstly, to make
 * sure the same intr does not intr again, causing recursion that
 * can lead to stack overflow. Secondly, we can not just mask the
 * one intr we are do_IRQing, because the non-masked intrs in the
 * first set might intr again, causing multiple servicings of the
 * same intr. This effect is mostly seen for intercpu intrs.
 * Kanoj 05.13.00
 */

static void ip27_do_irq_mask0(void)
{
	int irq, swlevel;
	hubreg_t pend0, mask0;
	cpuid_t cpu = smp_processor_id();
	int pi_int_mask0 =
		(cputoslice(cpu) == 0) ?  PI_INT_MASK0_A : PI_INT_MASK0_B;

	/* copied from Irix intpend0() */
	pend0 = LOCAL_HUB_L(PI_INT_PEND0);
	mask0 = LOCAL_HUB_L(pi_int_mask0);

	pend0 &= mask0;		/* Pick intrs we should look at */
	if (!pend0)
		return;

	swlevel = ms1bit(pend0);
#ifdef CONFIG_SMP
	if (pend0 & (1UL << CPU_RESCHED_A_IRQ)) {
		LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ);
		scheduler_ipi();
	} else if (pend0 & (1UL << CPU_RESCHED_B_IRQ)) {
		LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ);
		scheduler_ipi();
	} else if (pend0 & (1UL << CPU_CALL_A_IRQ)) {
		LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ);
		smp_call_function_interrupt();
	} else if (pend0 & (1UL << CPU_CALL_B_IRQ)) {
		LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ);
		smp_call_function_interrupt();
	} else
#endif
	{
		/* "map" swlevel to irq */
		struct slice_data *si = cpu_data[cpu].data;

		irq = si->level_to_irq[swlevel];
		do_IRQ(irq);
	}

	LOCAL_HUB_L(PI_INT_PEND0);
}

static void ip27_do_irq_mask1(void)
{
	int irq, swlevel;
	hubreg_t pend1, mask1;
	cpuid_t cpu = smp_processor_id();
	int pi_int_mask1 = (cputoslice(cpu) == 0) ?  PI_INT_MASK1_A : PI_INT_MASK1_B;
	struct slice_data *si = cpu_data[cpu].data;

	/* copied from Irix intpend0() */
	pend1 = LOCAL_HUB_L(PI_INT_PEND1);
	mask1 = LOCAL_HUB_L(pi_int_mask1);

	pend1 &= mask1;		/* Pick intrs we should look at */
	if (!pend1)
		return;

	swlevel = ms1bit(pend1);
	/* "map" swlevel to irq */
	irq = si->level_to_irq[swlevel];
	LOCAL_HUB_CLR_INTR(swlevel);
	do_IRQ(irq);

	LOCAL_HUB_L(PI_INT_PEND1);
}

static void ip27_prof_timer(void)
{
	panic("CPU %d got a profiling interrupt", smp_processor_id());
}

static void ip27_hub_error(void)
{
	panic("CPU %d got a hub error interrupt", smp_processor_id());
}

asmlinkage void plat_irq_dispatch(void)
{
	unsigned long pending = read_c0_cause() & read_c0_status();
	extern unsigned int rt_timer_irq;

	if (pending & CAUSEF_IP4)
		do_IRQ(rt_timer_irq);
	else if (pending & CAUSEF_IP2)	/* PI_INT_PEND_0 or CC_PEND_{A|B} */
		ip27_do_irq_mask0();
	else if (pending & CAUSEF_IP3)	/* PI_INT_PEND_1 */
		ip27_do_irq_mask1();
	else if (pending & CAUSEF_IP5)
		ip27_prof_timer();
	else if (pending & CAUSEF_IP6)
		ip27_hub_error();
}

void __init arch_init_irq(void)
{
}

void install_ipi(void)
{
	int slice = LOCAL_HUB_L(PI_CPU_NUM);
	int cpu = smp_processor_id();
	struct slice_data *si = cpu_data[cpu].data;
	struct hub_data *hub = hub_data(cpu_to_node(cpu));
	int resched, call;

	resched = CPU_RESCHED_A_IRQ + slice;
	__set_bit(resched, hub->irq_alloc_mask);
	__set_bit(resched, si->irq_enable_mask);
	LOCAL_HUB_CLR_INTR(resched);

	call = CPU_CALL_A_IRQ + slice;
	__set_bit(call, hub->irq_alloc_mask);
	__set_bit(call, si->irq_enable_mask);
	LOCAL_HUB_CLR_INTR(call);

	if (slice == 0) {
		LOCAL_HUB_S(PI_INT_MASK0_A, si->irq_enable_mask[0]);
		LOCAL_HUB_S(PI_INT_MASK1_A, si->irq_enable_mask[1]);
	} else {
		LOCAL_HUB_S(PI_INT_MASK0_B, si->irq_enable_mask[0]);
		LOCAL_HUB_S(PI_INT_MASK1_B, si->irq_enable_mask[1]);
	}
}