/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * A small micro-assembler. It is intentionally kept simple, does only * support a subset of instructions, and does not try to hide pipeline * effects like branch delay slots. * * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer * Copyright (C) 2005, 2007 Maciej W. Rozycki * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org) * Copyright (C) 2012, 2013 MIPS Technologies, Inc. All rights reserved. */ #include <linux/kernel.h> #include <linux/types.h> #include <asm/inst.h> #include <asm/elf.h> #include <asm/bugs.h> #define UASM_ISA _UASM_ISA_CLASSIC #include <asm/uasm.h> #define RS_MASK 0x1f #define RS_SH 21 #define RT_MASK 0x1f #define RT_SH 16 #define SCIMM_MASK 0xfffff #define SCIMM_SH 6 /* This macro sets the non-variable bits of an instruction. */ #define M(a, b, c, d, e, f) \ ((a) << OP_SH \ | (b) << RS_SH \ | (c) << RT_SH \ | (d) << RD_SH \ | (e) << RE_SH \ | (f) << FUNC_SH) /* This macro sets the non-variable bits of an R6 instruction. */ #define M6(a, b, c, d, e) \ ((a) << OP_SH \ | (b) << RS_SH \ | (c) << RT_SH \ | (d) << SIMM9_SH \ | (e) << FUNC_SH) #include "uasm.c" static struct insn insn_table[] = { { insn_addiu, M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, { insn_addu, M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD }, { insn_andi, M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM }, { insn_and, M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD }, { insn_bbit0, M(lwc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM }, { insn_bbit1, M(swc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM }, { insn_beql, M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM }, { insn_beq, M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM }, { insn_bgezl, M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM }, { insn_bgez, M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM }, { insn_bltzl, M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM }, { insn_bltz, M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM }, { insn_bne, M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM }, #ifndef CONFIG_CPU_MIPSR6 { insn_cache, M(cache_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, #else { insn_cache, M6(cache_op, 0, 0, 0, cache6_op), RS | RT | SIMM9 }, #endif { insn_daddiu, M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, { insn_daddu, M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD }, { insn_dinsm, M(spec3_op, 0, 0, 0, 0, dinsm_op), RS | RT | RD | RE }, { insn_dins, M(spec3_op, 0, 0, 0, 0, dins_op), RS | RT | RD | RE }, { insn_divu, M(spec_op, 0, 0, 0, 0, divu_op), RS | RT }, { insn_dmfc0, M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET}, { insn_dmtc0, M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET}, { insn_drotr32, M(spec_op, 1, 0, 0, 0, dsrl32_op), RT | RD | RE }, { insn_drotr, M(spec_op, 1, 0, 0, 0, dsrl_op), RT | RD | RE }, { insn_dsll32, M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE }, { insn_dsll, M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE }, { insn_dsra, M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE }, { insn_dsrl32, M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE }, { insn_dsrl, M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE }, { insn_dsubu, M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD }, { insn_eret, M(cop0_op, cop_op, 0, 0, 0, eret_op), 0 }, { insn_ext, M(spec3_op, 0, 0, 0, 0, ext_op), RS | RT | RD | RE }, { insn_ins, M(spec3_op, 0, 0, 0, 0, ins_op), RS | RT | RD | RE }, { insn_j, M(j_op, 0, 0, 0, 0, 0), JIMM }, { insn_jal, M(jal_op, 0, 0, 0, 0, 0), JIMM }, { insn_jalr, M(spec_op, 0, 0, 0, 0, jalr_op), RS | RD }, { insn_j, M(j_op, 0, 0, 0, 0, 0), JIMM }, #ifndef CONFIG_CPU_MIPSR6 { insn_jr, M(spec_op, 0, 0, 0, 0, jr_op), RS }, #else { insn_jr, M(spec_op, 0, 0, 0, 0, jalr_op), RS }, #endif { insn_lb, M(lb_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, { insn_ld, M(ld_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, { insn_ldx, M(spec3_op, 0, 0, 0, ldx_op, lx_op), RS | RT | RD }, { insn_lh, M(lh_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, #ifndef CONFIG_CPU_MIPSR6 { insn_lld, M(lld_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, { insn_ll, M(ll_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, #else { insn_lld, M6(spec3_op, 0, 0, 0, lld6_op), RS | RT | SIMM9 }, { insn_ll, M6(spec3_op, 0, 0, 0, ll6_op), RS | RT | SIMM9 }, #endif { insn_lui, M(lui_op, 0, 0, 0, 0, 0), RT | SIMM }, { insn_lw, M(lw_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, { insn_lwx, M(spec3_op, 0, 0, 0, lwx_op, lx_op), RS | RT | RD }, { insn_mfc0, M(cop0_op, mfc_op, 0, 0, 0, 0), RT | RD | SET}, { insn_mfhc0, M(cop0_op, mfhc0_op, 0, 0, 0, 0), RT | RD | SET}, { insn_mfhi, M(spec_op, 0, 0, 0, 0, mfhi_op), RD }, { insn_mflo, M(spec_op, 0, 0, 0, 0, mflo_op), RD }, { insn_mtc0, M(cop0_op, mtc_op, 0, 0, 0, 0), RT | RD | SET}, { insn_mthc0, M(cop0_op, mthc0_op, 0, 0, 0, 0), RT | RD | SET}, { insn_mul, M(spec2_op, 0, 0, 0, 0, mul_op), RS | RT | RD}, { insn_ori, M(ori_op, 0, 0, 0, 0, 0), RS | RT | UIMM }, { insn_or, M(spec_op, 0, 0, 0, 0, or_op), RS | RT | RD }, #ifndef CONFIG_CPU_MIPSR6 { insn_pref, M(pref_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, #else { insn_pref, M6(spec3_op, 0, 0, 0, pref6_op), RS | RT | SIMM9 }, #endif { insn_rfe, M(cop0_op, cop_op, 0, 0, 0, rfe_op), 0 }, { insn_rotr, M(spec_op, 1, 0, 0, 0, srl_op), RT | RD | RE }, #ifndef CONFIG_CPU_MIPSR6 { insn_scd, M(scd_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, { insn_sc, M(sc_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, #else { insn_scd, M6(spec3_op, 0, 0, 0, scd6_op), RS | RT | SIMM9 }, { insn_sc, M6(spec3_op, 0, 0, 0, sc6_op), RS | RT | SIMM9 }, #endif { insn_sd, M(sd_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, { insn_sll, M(spec_op, 0, 0, 0, 0, sll_op), RT | RD | RE }, { insn_sllv, M(spec_op, 0, 0, 0, 0, sllv_op), RS | RT | RD }, { insn_slt, M(spec_op, 0, 0, 0, 0, slt_op), RS | RT | RD }, { insn_sltiu, M(sltiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, { insn_sltu, M(spec_op, 0, 0, 0, 0, sltu_op), RS | RT | RD }, { insn_sra, M(spec_op, 0, 0, 0, 0, sra_op), RT | RD | RE }, { insn_srl, M(spec_op, 0, 0, 0, 0, srl_op), RT | RD | RE }, { insn_srlv, M(spec_op, 0, 0, 0, 0, srlv_op), RS | RT | RD }, { insn_subu, M(spec_op, 0, 0, 0, 0, subu_op), RS | RT | RD }, { insn_sw, M(sw_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, { insn_sync, M(spec_op, 0, 0, 0, 0, sync_op), RE }, { insn_syscall, M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM}, { insn_tlbp, M(cop0_op, cop_op, 0, 0, 0, tlbp_op), 0 }, { insn_tlbr, M(cop0_op, cop_op, 0, 0, 0, tlbr_op), 0 }, { insn_tlbwi, M(cop0_op, cop_op, 0, 0, 0, tlbwi_op), 0 }, { insn_tlbwr, M(cop0_op, cop_op, 0, 0, 0, tlbwr_op), 0 }, { insn_wait, M(cop0_op, cop_op, 0, 0, 0, wait_op), SCIMM }, { insn_wsbh, M(spec3_op, 0, 0, 0, wsbh_op, bshfl_op), RT | RD }, { insn_xori, M(xori_op, 0, 0, 0, 0, 0), RS | RT | UIMM }, { insn_xor, M(spec_op, 0, 0, 0, 0, xor_op), RS | RT | RD }, { insn_yield, M(spec3_op, 0, 0, 0, 0, yield_op), RS | RD }, { insn_invalid, 0, 0 } }; #undef M static inline u32 build_bimm(s32 arg) { WARN(arg > 0x1ffff || arg < -0x20000, KERN_WARNING "Micro-assembler field overflow\n"); WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n"); return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff); } static inline u32 build_jimm(u32 arg) { WARN(arg & ~(JIMM_MASK << 2), KERN_WARNING "Micro-assembler field overflow\n"); return (arg >> 2) & JIMM_MASK; } /* * The order of opcode arguments is implicitly left to right, * starting with RS and ending with FUNC or IMM. */ static void build_insn(u32 **buf, enum opcode opc, ...) { struct insn *ip = NULL; unsigned int i; va_list ap; u32 op; for (i = 0; insn_table[i].opcode != insn_invalid; i++) if (insn_table[i].opcode == opc) { ip = &insn_table[i]; break; } if (!ip || (opc == insn_daddiu && r4k_daddiu_bug())) panic("Unsupported Micro-assembler instruction %d", opc); op = ip->match; va_start(ap, opc); if (ip->fields & RS) op |= build_rs(va_arg(ap, u32)); if (ip->fields & RT) op |= build_rt(va_arg(ap, u32)); if (ip->fields & RD) op |= build_rd(va_arg(ap, u32)); if (ip->fields & RE) op |= build_re(va_arg(ap, u32)); if (ip->fields & SIMM) op |= build_simm(va_arg(ap, s32)); if (ip->fields & UIMM) op |= build_uimm(va_arg(ap, u32)); if (ip->fields & BIMM) op |= build_bimm(va_arg(ap, s32)); if (ip->fields & JIMM) op |= build_jimm(va_arg(ap, u32)); if (ip->fields & FUNC) op |= build_func(va_arg(ap, u32)); if (ip->fields & SET) op |= build_set(va_arg(ap, u32)); if (ip->fields & SCIMM) op |= build_scimm(va_arg(ap, u32)); if (ip->fields & SIMM9) op |= build_scimm9(va_arg(ap, u32)); va_end(ap); **buf = op; (*buf)++; } static inline void __resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab) { long laddr = (long)lab->addr; long raddr = (long)rel->addr; switch (rel->type) { case R_MIPS_PC16: *rel->addr |= build_bimm(laddr - (raddr + 4)); break; default: panic("Unsupported Micro-assembler relocation %d", rel->type); } }