/* * DMA implementation for Hexagon * * Copyright (c) 2010-2012, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA. */ #include <linux/dma-mapping.h> #include <linux/bootmem.h> #include <linux/genalloc.h> #include <asm/dma-mapping.h> #include <linux/module.h> #include <asm/page.h> struct dma_map_ops *dma_ops; EXPORT_SYMBOL(dma_ops); int bad_dma_address; /* globals are automatically initialized to zero */ static inline void *dma_addr_to_virt(dma_addr_t dma_addr) { return phys_to_virt((unsigned long) dma_addr); } int dma_supported(struct device *dev, u64 mask) { if (mask == DMA_BIT_MASK(32)) return 1; else return 0; } EXPORT_SYMBOL(dma_supported); int dma_set_mask(struct device *dev, u64 mask) { if (!dev->dma_mask || !dma_supported(dev, mask)) return -EIO; *dev->dma_mask = mask; return 0; } EXPORT_SYMBOL(dma_set_mask); static struct gen_pool *coherent_pool; /* Allocates from a pool of uncached memory that was reserved at boot time */ static void *hexagon_dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_addr, gfp_t flag, struct dma_attrs *attrs) { void *ret; /* * Our max_low_pfn should have been backed off by 16MB in * mm/init.c to create DMA coherent space. Use that as the VA * for the pool. */ if (coherent_pool == NULL) { coherent_pool = gen_pool_create(PAGE_SHIFT, -1); if (coherent_pool == NULL) panic("Can't create %s() memory pool!", __func__); else gen_pool_add(coherent_pool, pfn_to_virt(max_low_pfn), hexagon_coherent_pool_size, -1); } ret = (void *) gen_pool_alloc(coherent_pool, size); if (ret) { memset(ret, 0, size); *dma_addr = (dma_addr_t) virt_to_phys(ret); } else *dma_addr = ~0; return ret; } static void hexagon_free_coherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_addr, struct dma_attrs *attrs) { gen_pool_free(coherent_pool, (unsigned long) vaddr, size); } static int check_addr(const char *name, struct device *hwdev, dma_addr_t bus, size_t size) { if (hwdev && hwdev->dma_mask && !dma_capable(hwdev, bus, size)) { if (*hwdev->dma_mask >= DMA_BIT_MASK(32)) printk(KERN_ERR "%s: overflow %Lx+%zu of device mask %Lx\n", name, (long long)bus, size, (long long)*hwdev->dma_mask); return 0; } return 1; } static int hexagon_map_sg(struct device *hwdev, struct scatterlist *sg, int nents, enum dma_data_direction dir, struct dma_attrs *attrs) { struct scatterlist *s; int i; WARN_ON(nents == 0 || sg[0].length == 0); for_each_sg(sg, s, nents, i) { s->dma_address = sg_phys(s); if (!check_addr("map_sg", hwdev, s->dma_address, s->length)) return 0; s->dma_length = s->length; flush_dcache_range(dma_addr_to_virt(s->dma_address), dma_addr_to_virt(s->dma_address + s->length)); } return nents; } /* * address is virtual */ static inline void dma_sync(void *addr, size_t size, enum dma_data_direction dir) { switch (dir) { case DMA_TO_DEVICE: hexagon_clean_dcache_range((unsigned long) addr, (unsigned long) addr + size); break; case DMA_FROM_DEVICE: hexagon_inv_dcache_range((unsigned long) addr, (unsigned long) addr + size); break; case DMA_BIDIRECTIONAL: flush_dcache_range((unsigned long) addr, (unsigned long) addr + size); break; default: BUG(); } } /** * hexagon_map_page() - maps an address for device DMA * @dev: pointer to DMA device * @page: pointer to page struct of DMA memory * @offset: offset within page * @size: size of memory to map * @dir: transfer direction * @attrs: pointer to DMA attrs (not used) * * Called to map a memory address to a DMA address prior * to accesses to/from device. * * We don't particularly have many hoops to jump through * so far. Straight translation between phys and virtual. * * DMA is not cache coherent so sync is necessary; this * seems to be a convenient place to do it. * */ static dma_addr_t hexagon_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, struct dma_attrs *attrs) { dma_addr_t bus = page_to_phys(page) + offset; WARN_ON(size == 0); if (!check_addr("map_single", dev, bus, size)) return bad_dma_address; dma_sync(dma_addr_to_virt(bus), size, dir); return bus; } static void hexagon_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) { dma_sync(dma_addr_to_virt(dma_handle), size, dir); } static void hexagon_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) { dma_sync(dma_addr_to_virt(dma_handle), size, dir); } struct dma_map_ops hexagon_dma_ops = { .alloc = hexagon_dma_alloc_coherent, .free = hexagon_free_coherent, .map_sg = hexagon_map_sg, .map_page = hexagon_map_page, .sync_single_for_cpu = hexagon_sync_single_for_cpu, .sync_single_for_device = hexagon_sync_single_for_device, .is_phys = 1, }; void __init hexagon_dma_init(void) { if (dma_ops) return; dma_ops = &hexagon_dma_ops; }