/* * Copyright (C) 2013 ARM Ltd. * Copyright (C) 2013 Linaro. * * This code is based on glibc cortex strings work originally authored by Linaro * and re-licensed under GPLv2 for the Linux kernel. The original code can * be found @ * * http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/ * files/head:/src/aarch64/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <linux/linkage.h> #include <asm/assembler.h> /* * compare two strings * * Parameters: * x0 - const string 1 pointer * x1 - const string 2 pointer * x2 - the maximal length to be compared * Returns: * x0 - an integer less than, equal to, or greater than zero if s1 is found, * respectively, to be less than, to match, or be greater than s2. */ #define REP8_01 0x0101010101010101 #define REP8_7f 0x7f7f7f7f7f7f7f7f #define REP8_80 0x8080808080808080 /* Parameters and result. */ src1 .req x0 src2 .req x1 limit .req x2 result .req x0 /* Internal variables. */ data1 .req x3 data1w .req w3 data2 .req x4 data2w .req w4 has_nul .req x5 diff .req x6 syndrome .req x7 tmp1 .req x8 tmp2 .req x9 tmp3 .req x10 zeroones .req x11 pos .req x12 limit_wd .req x13 mask .req x14 endloop .req x15 ENTRY(strncmp) cbz limit, .Lret0 eor tmp1, src1, src2 mov zeroones, #REP8_01 tst tmp1, #7 b.ne .Lmisaligned8 ands tmp1, src1, #7 b.ne .Lmutual_align /* Calculate the number of full and partial words -1. */ /* * when limit is mulitply of 8, if not sub 1, * the judgement of last dword will wrong. */ sub limit_wd, limit, #1 /* limit != 0, so no underflow. */ lsr limit_wd, limit_wd, #3 /* Convert to Dwords. */ /* * NUL detection works on the principle that (X - 1) & (~X) & 0x80 * (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and * can be done in parallel across the entire word. */ .Lloop_aligned: ldr data1, [src1], #8 ldr data2, [src2], #8 .Lstart_realigned: subs limit_wd, limit_wd, #1 sub tmp1, data1, zeroones orr tmp2, data1, #REP8_7f eor diff, data1, data2 /* Non-zero if differences found. */ csinv endloop, diff, xzr, pl /* Last Dword or differences.*/ bics has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */ ccmp endloop, #0, #0, eq b.eq .Lloop_aligned /*Not reached the limit, must have found the end or a diff. */ tbz limit_wd, #63, .Lnot_limit /* Limit % 8 == 0 => all bytes significant. */ ands limit, limit, #7 b.eq .Lnot_limit lsl limit, limit, #3 /* Bits -> bytes. */ mov mask, #~0 CPU_BE( lsr mask, mask, limit ) CPU_LE( lsl mask, mask, limit ) bic data1, data1, mask bic data2, data2, mask /* Make sure that the NUL byte is marked in the syndrome. */ orr has_nul, has_nul, mask .Lnot_limit: orr syndrome, diff, has_nul b .Lcal_cmpresult .Lmutual_align: /* * Sources are mutually aligned, but are not currently at an * alignment boundary. Round down the addresses and then mask off * the bytes that precede the start point. * We also need to adjust the limit calculations, but without * overflowing if the limit is near ULONG_MAX. */ bic src1, src1, #7 bic src2, src2, #7 ldr data1, [src1], #8 neg tmp3, tmp1, lsl #3 /* 64 - bits(bytes beyond align). */ ldr data2, [src2], #8 mov tmp2, #~0 sub limit_wd, limit, #1 /* limit != 0, so no underflow. */ /* Big-endian. Early bytes are at MSB. */ CPU_BE( lsl tmp2, tmp2, tmp3 ) /* Shift (tmp1 & 63). */ /* Little-endian. Early bytes are at LSB. */ CPU_LE( lsr tmp2, tmp2, tmp3 ) /* Shift (tmp1 & 63). */ and tmp3, limit_wd, #7 lsr limit_wd, limit_wd, #3 /* Adjust the limit. Only low 3 bits used, so overflow irrelevant.*/ add limit, limit, tmp1 add tmp3, tmp3, tmp1 orr data1, data1, tmp2 orr data2, data2, tmp2 add limit_wd, limit_wd, tmp3, lsr #3 b .Lstart_realigned /*when src1 offset is not equal to src2 offset...*/ .Lmisaligned8: cmp limit, #8 b.lo .Ltiny8proc /*limit < 8... */ /* * Get the align offset length to compare per byte first. * After this process, one string's address will be aligned.*/ and tmp1, src1, #7 neg tmp1, tmp1 add tmp1, tmp1, #8 and tmp2, src2, #7 neg tmp2, tmp2 add tmp2, tmp2, #8 subs tmp3, tmp1, tmp2 csel pos, tmp1, tmp2, hi /*Choose the maximum. */ /* * Here, limit is not less than 8, so directly run .Ltinycmp * without checking the limit.*/ sub limit, limit, pos .Ltinycmp: ldrb data1w, [src1], #1 ldrb data2w, [src2], #1 subs pos, pos, #1 ccmp data1w, #1, #0, ne /* NZCV = 0b0000. */ ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */ b.eq .Ltinycmp cbnz pos, 1f /*find the null or unequal...*/ cmp data1w, #1 ccmp data1w, data2w, #0, cs b.eq .Lstart_align /*the last bytes are equal....*/ 1: sub result, data1, data2 ret .Lstart_align: lsr limit_wd, limit, #3 cbz limit_wd, .Lremain8 /*process more leading bytes to make str1 aligned...*/ ands xzr, src1, #7 b.eq .Lrecal_offset add src1, src1, tmp3 /*tmp3 is positive in this branch.*/ add src2, src2, tmp3 ldr data1, [src1], #8 ldr data2, [src2], #8 sub limit, limit, tmp3 lsr limit_wd, limit, #3 subs limit_wd, limit_wd, #1 sub tmp1, data1, zeroones orr tmp2, data1, #REP8_7f eor diff, data1, data2 /* Non-zero if differences found. */ csinv endloop, diff, xzr, ne/*if limit_wd is 0,will finish the cmp*/ bics has_nul, tmp1, tmp2 ccmp endloop, #0, #0, eq /*has_null is ZERO: no null byte*/ b.ne .Lunequal_proc /*How far is the current str2 from the alignment boundary...*/ and tmp3, tmp3, #7 .Lrecal_offset: neg pos, tmp3 .Lloopcmp_proc: /* * Divide the eight bytes into two parts. First,backwards the src2 * to an alignment boundary,load eight bytes from the SRC2 alignment * boundary,then compare with the relative bytes from SRC1. * If all 8 bytes are equal,then start the second part's comparison. * Otherwise finish the comparison. * This special handle can garantee all the accesses are in the * thread/task space in avoid to overrange access. */ ldr data1, [src1,pos] ldr data2, [src2,pos] sub tmp1, data1, zeroones orr tmp2, data1, #REP8_7f bics has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */ eor diff, data1, data2 /* Non-zero if differences found. */ csinv endloop, diff, xzr, eq cbnz endloop, .Lunequal_proc /*The second part process*/ ldr data1, [src1], #8 ldr data2, [src2], #8 subs limit_wd, limit_wd, #1 sub tmp1, data1, zeroones orr tmp2, data1, #REP8_7f eor diff, data1, data2 /* Non-zero if differences found. */ csinv endloop, diff, xzr, ne/*if limit_wd is 0,will finish the cmp*/ bics has_nul, tmp1, tmp2 ccmp endloop, #0, #0, eq /*has_null is ZERO: no null byte*/ b.eq .Lloopcmp_proc .Lunequal_proc: orr syndrome, diff, has_nul cbz syndrome, .Lremain8 .Lcal_cmpresult: /* * reversed the byte-order as big-endian,then CLZ can find the most * significant zero bits. */ CPU_LE( rev syndrome, syndrome ) CPU_LE( rev data1, data1 ) CPU_LE( rev data2, data2 ) /* * For big-endian we cannot use the trick with the syndrome value * as carry-propagation can corrupt the upper bits if the trailing * bytes in the string contain 0x01. * However, if there is no NUL byte in the dword, we can generate * the result directly. We can't just subtract the bytes as the * MSB might be significant. */ CPU_BE( cbnz has_nul, 1f ) CPU_BE( cmp data1, data2 ) CPU_BE( cset result, ne ) CPU_BE( cneg result, result, lo ) CPU_BE( ret ) CPU_BE( 1: ) /* Re-compute the NUL-byte detection, using a byte-reversed value.*/ CPU_BE( rev tmp3, data1 ) CPU_BE( sub tmp1, tmp3, zeroones ) CPU_BE( orr tmp2, tmp3, #REP8_7f ) CPU_BE( bic has_nul, tmp1, tmp2 ) CPU_BE( rev has_nul, has_nul ) CPU_BE( orr syndrome, diff, has_nul ) /* * The MS-non-zero bit of the syndrome marks either the first bit * that is different, or the top bit of the first zero byte. * Shifting left now will bring the critical information into the * top bits. */ clz pos, syndrome lsl data1, data1, pos lsl data2, data2, pos /* * But we need to zero-extend (char is unsigned) the value and then * perform a signed 32-bit subtraction. */ lsr data1, data1, #56 sub result, data1, data2, lsr #56 ret .Lremain8: /* Limit % 8 == 0 => all bytes significant. */ ands limit, limit, #7 b.eq .Lret0 .Ltiny8proc: ldrb data1w, [src1], #1 ldrb data2w, [src2], #1 subs limit, limit, #1 ccmp data1w, #1, #0, ne /* NZCV = 0b0000. */ ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */ b.eq .Ltiny8proc sub result, data1, data2 ret .Lret0: mov result, #0 ret ENDPROC(strncmp)