/* * Copyright (c) 2013-2014 Linaro Ltd. * Copyright (c) 2013-2014 Hisilicon Limited. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. */ #include <linux/delay.h> #include <linux/io.h> #include <linux/memblock.h> #include <linux/of_address.h> #include <asm/cputype.h> #include <asm/cp15.h> #include <asm/mcpm.h> #include "core.h" /* bits definition in SC_CPU_RESET_REQ[x]/SC_CPU_RESET_DREQ[x] * 1 -- unreset; 0 -- reset */ #define CORE_RESET_BIT(x) (1 << x) #define NEON_RESET_BIT(x) (1 << (x + 4)) #define CORE_DEBUG_RESET_BIT(x) (1 << (x + 9)) #define CLUSTER_L2_RESET_BIT (1 << 8) #define CLUSTER_DEBUG_RESET_BIT (1 << 13) /* * bits definition in SC_CPU_RESET_STATUS[x] * 1 -- reset status; 0 -- unreset status */ #define CORE_RESET_STATUS(x) (1 << x) #define NEON_RESET_STATUS(x) (1 << (x + 4)) #define CORE_DEBUG_RESET_STATUS(x) (1 << (x + 9)) #define CLUSTER_L2_RESET_STATUS (1 << 8) #define CLUSTER_DEBUG_RESET_STATUS (1 << 13) #define CORE_WFI_STATUS(x) (1 << (x + 16)) #define CORE_WFE_STATUS(x) (1 << (x + 20)) #define CORE_DEBUG_ACK(x) (1 << (x + 24)) #define SC_CPU_RESET_REQ(x) (0x520 + (x << 3)) /* reset */ #define SC_CPU_RESET_DREQ(x) (0x524 + (x << 3)) /* unreset */ #define SC_CPU_RESET_STATUS(x) (0x1520 + (x << 3)) #define FAB_SF_MODE 0x0c #define FAB_SF_INVLD 0x10 /* bits definition in FB_SF_INVLD */ #define FB_SF_INVLD_START (1 << 8) #define HIP04_MAX_CLUSTERS 4 #define HIP04_MAX_CPUS_PER_CLUSTER 4 #define POLL_MSEC 10 #define TIMEOUT_MSEC 1000 static void __iomem *sysctrl, *fabric; static int hip04_cpu_table[HIP04_MAX_CLUSTERS][HIP04_MAX_CPUS_PER_CLUSTER]; static DEFINE_SPINLOCK(boot_lock); static u32 fabric_phys_addr; /* * [0]: bootwrapper physical address * [1]: bootwrapper size * [2]: relocation address * [3]: relocation size */ static u32 hip04_boot_method[4]; static bool hip04_cluster_is_down(unsigned int cluster) { int i; for (i = 0; i < HIP04_MAX_CPUS_PER_CLUSTER; i++) if (hip04_cpu_table[cluster][i]) return false; return true; } static void hip04_set_snoop_filter(unsigned int cluster, unsigned int on) { unsigned long data; if (!fabric) BUG(); data = readl_relaxed(fabric + FAB_SF_MODE); if (on) data |= 1 << cluster; else data &= ~(1 << cluster); writel_relaxed(data, fabric + FAB_SF_MODE); do { cpu_relax(); } while (data != readl_relaxed(fabric + FAB_SF_MODE)); } static int hip04_mcpm_power_up(unsigned int cpu, unsigned int cluster) { unsigned long data; void __iomem *sys_dreq, *sys_status; if (!sysctrl) return -ENODEV; if (cluster >= HIP04_MAX_CLUSTERS || cpu >= HIP04_MAX_CPUS_PER_CLUSTER) return -EINVAL; spin_lock_irq(&boot_lock); if (hip04_cpu_table[cluster][cpu]) goto out; sys_dreq = sysctrl + SC_CPU_RESET_DREQ(cluster); sys_status = sysctrl + SC_CPU_RESET_STATUS(cluster); if (hip04_cluster_is_down(cluster)) { data = CLUSTER_DEBUG_RESET_BIT; writel_relaxed(data, sys_dreq); do { cpu_relax(); data = readl_relaxed(sys_status); } while (data & CLUSTER_DEBUG_RESET_STATUS); } data = CORE_RESET_BIT(cpu) | NEON_RESET_BIT(cpu) | \ CORE_DEBUG_RESET_BIT(cpu); writel_relaxed(data, sys_dreq); do { cpu_relax(); } while (data == readl_relaxed(sys_status)); /* * We may fail to power up core again without this delay. * It's not mentioned in document. It's found by test. */ udelay(20); out: hip04_cpu_table[cluster][cpu]++; spin_unlock_irq(&boot_lock); return 0; } static void hip04_mcpm_power_down(void) { unsigned int mpidr, cpu, cluster; bool skip_wfi = false, last_man = false; mpidr = read_cpuid_mpidr(); cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); __mcpm_cpu_going_down(cpu, cluster); spin_lock(&boot_lock); BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP); hip04_cpu_table[cluster][cpu]--; if (hip04_cpu_table[cluster][cpu] == 1) { /* A power_up request went ahead of us. */ skip_wfi = true; } else if (hip04_cpu_table[cluster][cpu] > 1) { pr_err("Cluster %d CPU%d boots multiple times\n", cluster, cpu); BUG(); } last_man = hip04_cluster_is_down(cluster); if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) { spin_unlock(&boot_lock); /* Since it's Cortex A15, disable L2 prefetching. */ asm volatile( "mcr p15, 1, %0, c15, c0, 3 \n\t" "isb \n\t" "dsb " : : "r" (0x400) ); v7_exit_coherency_flush(all); hip04_set_snoop_filter(cluster, 0); __mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN); } else { spin_unlock(&boot_lock); v7_exit_coherency_flush(louis); } __mcpm_cpu_down(cpu, cluster); if (!skip_wfi) wfi(); } static int hip04_mcpm_wait_for_powerdown(unsigned int cpu, unsigned int cluster) { unsigned int data, tries, count; int ret = -ETIMEDOUT; BUG_ON(cluster >= HIP04_MAX_CLUSTERS || cpu >= HIP04_MAX_CPUS_PER_CLUSTER); count = TIMEOUT_MSEC / POLL_MSEC; spin_lock_irq(&boot_lock); for (tries = 0; tries < count; tries++) { if (hip04_cpu_table[cluster][cpu]) { ret = -EBUSY; goto err; } cpu_relax(); data = readl_relaxed(sysctrl + SC_CPU_RESET_STATUS(cluster)); if (data & CORE_WFI_STATUS(cpu)) break; spin_unlock_irq(&boot_lock); /* Wait for clean L2 when the whole cluster is down. */ msleep(POLL_MSEC); spin_lock_irq(&boot_lock); } if (tries >= count) goto err; data = CORE_RESET_BIT(cpu) | NEON_RESET_BIT(cpu) | \ CORE_DEBUG_RESET_BIT(cpu); writel_relaxed(data, sysctrl + SC_CPU_RESET_REQ(cluster)); for (tries = 0; tries < count; tries++) { cpu_relax(); data = readl_relaxed(sysctrl + SC_CPU_RESET_STATUS(cluster)); if (data & CORE_RESET_STATUS(cpu)) break; } if (tries >= count) goto err; spin_unlock_irq(&boot_lock); return 0; err: spin_unlock_irq(&boot_lock); return ret; } static void hip04_mcpm_powered_up(void) { unsigned int mpidr, cpu, cluster; mpidr = read_cpuid_mpidr(); cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); spin_lock(&boot_lock); if (!hip04_cpu_table[cluster][cpu]) hip04_cpu_table[cluster][cpu] = 1; spin_unlock(&boot_lock); } static void __naked hip04_mcpm_power_up_setup(unsigned int affinity_level) { asm volatile (" \n" " cmp r0, #0 \n" " bxeq lr \n" /* calculate fabric phys address */ " adr r2, 2f \n" " ldmia r2, {r1, r3} \n" " sub r0, r2, r1 \n" " ldr r2, [r0, r3] \n" /* get cluster id from MPIDR */ " mrc p15, 0, r0, c0, c0, 5 \n" " ubfx r1, r0, #8, #8 \n" /* 1 << cluster id */ " mov r0, #1 \n" " mov r3, r0, lsl r1 \n" " ldr r0, [r2, #"__stringify(FAB_SF_MODE)"] \n" " tst r0, r3 \n" " bxne lr \n" " orr r1, r0, r3 \n" " str r1, [r2, #"__stringify(FAB_SF_MODE)"] \n" "1: ldr r0, [r2, #"__stringify(FAB_SF_MODE)"] \n" " tst r0, r3 \n" " beq 1b \n" " bx lr \n" " .align 2 \n" "2: .word . \n" " .word fabric_phys_addr \n" ); } static const struct mcpm_platform_ops hip04_mcpm_ops = { .power_up = hip04_mcpm_power_up, .power_down = hip04_mcpm_power_down, .wait_for_powerdown = hip04_mcpm_wait_for_powerdown, .powered_up = hip04_mcpm_powered_up, }; static bool __init hip04_cpu_table_init(void) { unsigned int mpidr, cpu, cluster; mpidr = read_cpuid_mpidr(); cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); if (cluster >= HIP04_MAX_CLUSTERS || cpu >= HIP04_MAX_CPUS_PER_CLUSTER) { pr_err("%s: boot CPU is out of bound!\n", __func__); return false; } hip04_set_snoop_filter(cluster, 1); hip04_cpu_table[cluster][cpu] = 1; return true; } static int __init hip04_mcpm_init(void) { struct device_node *np, *np_sctl, *np_fab; struct resource fab_res; void __iomem *relocation; int ret = -ENODEV; np = of_find_compatible_node(NULL, NULL, "hisilicon,hip04-bootwrapper"); if (!np) goto err; ret = of_property_read_u32_array(np, "boot-method", &hip04_boot_method[0], 4); if (ret) goto err; np_sctl = of_find_compatible_node(NULL, NULL, "hisilicon,sysctrl"); if (!np_sctl) goto err; np_fab = of_find_compatible_node(NULL, NULL, "hisilicon,hip04-fabric"); if (!np_fab) goto err; ret = memblock_reserve(hip04_boot_method[0], hip04_boot_method[1]); if (ret) goto err; relocation = ioremap(hip04_boot_method[2], hip04_boot_method[3]); if (!relocation) { pr_err("failed to map relocation space\n"); ret = -ENOMEM; goto err_reloc; } sysctrl = of_iomap(np_sctl, 0); if (!sysctrl) { pr_err("failed to get sysctrl base\n"); ret = -ENOMEM; goto err_sysctrl; } ret = of_address_to_resource(np_fab, 0, &fab_res); if (ret) { pr_err("failed to get fabric base phys\n"); goto err_fabric; } fabric_phys_addr = fab_res.start; sync_cache_w(&fabric_phys_addr); fabric = of_iomap(np_fab, 0); if (!fabric) { pr_err("failed to get fabric base\n"); ret = -ENOMEM; goto err_fabric; } if (!hip04_cpu_table_init()) { ret = -EINVAL; goto err_table; } ret = mcpm_platform_register(&hip04_mcpm_ops); if (ret) { goto err_table; } /* * Fill the instruction address that is used after secondary core * out of reset. */ writel_relaxed(hip04_boot_method[0], relocation); writel_relaxed(0xa5a5a5a5, relocation + 4); /* magic number */ writel_relaxed(virt_to_phys(mcpm_entry_point), relocation + 8); writel_relaxed(0, relocation + 12); iounmap(relocation); mcpm_sync_init(hip04_mcpm_power_up_setup); mcpm_smp_set_ops(); pr_info("HiP04 MCPM initialized\n"); return ret; err_table: iounmap(fabric); err_fabric: iounmap(sysctrl); err_sysctrl: iounmap(relocation); err_reloc: memblock_free(hip04_boot_method[0], hip04_boot_method[1]); err: return ret; } early_initcall(hip04_mcpm_init);