/* * turbostat -- show CPU frequency and C-state residency * on modern Intel turbo-capable processors. * * Copyright (c) 2012 Intel Corporation. * Len Brown <len.brown@intel.com> * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. */ #define _GNU_SOURCE #include <stdio.h> #include <unistd.h> #include <sys/types.h> #include <sys/wait.h> #include <sys/stat.h> #include <sys/resource.h> #include <fcntl.h> #include <signal.h> #include <sys/time.h> #include <stdlib.h> #include <dirent.h> #include <string.h> #include <ctype.h> #include <sched.h> #define MSR_TSC 0x10 #define MSR_NEHALEM_PLATFORM_INFO 0xCE #define MSR_NEHALEM_TURBO_RATIO_LIMIT 0x1AD #define MSR_APERF 0xE8 #define MSR_MPERF 0xE7 #define MSR_PKG_C2_RESIDENCY 0x60D /* SNB only */ #define MSR_PKG_C3_RESIDENCY 0x3F8 #define MSR_PKG_C6_RESIDENCY 0x3F9 #define MSR_PKG_C7_RESIDENCY 0x3FA /* SNB only */ #define MSR_CORE_C3_RESIDENCY 0x3FC #define MSR_CORE_C6_RESIDENCY 0x3FD #define MSR_CORE_C7_RESIDENCY 0x3FE /* SNB only */ char *proc_stat = "/proc/stat"; unsigned int interval_sec = 5; /* set with -i interval_sec */ unsigned int verbose; /* set with -v */ unsigned int summary_only; /* set with -s */ unsigned int skip_c0; unsigned int skip_c1; unsigned int do_nhm_cstates; unsigned int do_snb_cstates; unsigned int has_aperf; unsigned int units = 1000000000; /* Ghz etc */ unsigned int genuine_intel; unsigned int has_invariant_tsc; unsigned int do_nehalem_platform_info; unsigned int do_nehalem_turbo_ratio_limit; unsigned int extra_msr_offset; double bclk; unsigned int show_pkg; unsigned int show_core; unsigned int show_cpu; int aperf_mperf_unstable; int backwards_count; char *progname; int num_cpus; cpu_set_t *cpu_mask; size_t cpu_mask_size; struct counters { unsigned long long tsc; /* per thread */ unsigned long long aperf; /* per thread */ unsigned long long mperf; /* per thread */ unsigned long long c1; /* per thread (calculated) */ unsigned long long c3; /* per core */ unsigned long long c6; /* per core */ unsigned long long c7; /* per core */ unsigned long long pc2; /* per package */ unsigned long long pc3; /* per package */ unsigned long long pc6; /* per package */ unsigned long long pc7; /* per package */ unsigned long long extra_msr; /* per thread */ int pkg; int core; int cpu; struct counters *next; }; struct counters *cnt_even; struct counters *cnt_odd; struct counters *cnt_delta; struct counters *cnt_average; struct timeval tv_even; struct timeval tv_odd; struct timeval tv_delta; /* * cpu_mask_init(ncpus) * * allocate and clear cpu_mask * set cpu_mask_size */ void cpu_mask_init(int ncpus) { cpu_mask = CPU_ALLOC(ncpus); if (cpu_mask == NULL) { perror("CPU_ALLOC"); exit(3); } cpu_mask_size = CPU_ALLOC_SIZE(ncpus); CPU_ZERO_S(cpu_mask_size, cpu_mask); } void cpu_mask_uninit() { CPU_FREE(cpu_mask); cpu_mask = NULL; cpu_mask_size = 0; } int cpu_migrate(int cpu) { CPU_ZERO_S(cpu_mask_size, cpu_mask); CPU_SET_S(cpu, cpu_mask_size, cpu_mask); if (sched_setaffinity(0, cpu_mask_size, cpu_mask) == -1) return -1; else return 0; } int get_msr(int cpu, off_t offset, unsigned long long *msr) { ssize_t retval; char pathname[32]; int fd; sprintf(pathname, "/dev/cpu/%d/msr", cpu); fd = open(pathname, O_RDONLY); if (fd < 0) return -1; retval = pread(fd, msr, sizeof *msr, offset); close(fd); if (retval != sizeof *msr) return -1; return 0; } void print_header(void) { if (show_pkg) fprintf(stderr, "pk"); if (show_pkg) fprintf(stderr, " "); if (show_core) fprintf(stderr, "cor"); if (show_cpu) fprintf(stderr, " CPU"); if (show_pkg || show_core || show_cpu) fprintf(stderr, " "); if (do_nhm_cstates) fprintf(stderr, " %%c0"); if (has_aperf) fprintf(stderr, " GHz"); fprintf(stderr, " TSC"); if (do_nhm_cstates) fprintf(stderr, " %%c1"); if (do_nhm_cstates) fprintf(stderr, " %%c3"); if (do_nhm_cstates) fprintf(stderr, " %%c6"); if (do_snb_cstates) fprintf(stderr, " %%c7"); if (do_snb_cstates) fprintf(stderr, " %%pc2"); if (do_nhm_cstates) fprintf(stderr, " %%pc3"); if (do_nhm_cstates) fprintf(stderr, " %%pc6"); if (do_snb_cstates) fprintf(stderr, " %%pc7"); if (extra_msr_offset) fprintf(stderr, " MSR 0x%x ", extra_msr_offset); putc('\n', stderr); } void dump_cnt(struct counters *cnt) { if (!cnt) return; if (cnt->pkg) fprintf(stderr, "package: %d ", cnt->pkg); if (cnt->core) fprintf(stderr, "core:: %d ", cnt->core); if (cnt->cpu) fprintf(stderr, "CPU: %d ", cnt->cpu); if (cnt->tsc) fprintf(stderr, "TSC: %016llX\n", cnt->tsc); if (cnt->c3) fprintf(stderr, "c3: %016llX\n", cnt->c3); if (cnt->c6) fprintf(stderr, "c6: %016llX\n", cnt->c6); if (cnt->c7) fprintf(stderr, "c7: %016llX\n", cnt->c7); if (cnt->aperf) fprintf(stderr, "aperf: %016llX\n", cnt->aperf); if (cnt->pc2) fprintf(stderr, "pc2: %016llX\n", cnt->pc2); if (cnt->pc3) fprintf(stderr, "pc3: %016llX\n", cnt->pc3); if (cnt->pc6) fprintf(stderr, "pc6: %016llX\n", cnt->pc6); if (cnt->pc7) fprintf(stderr, "pc7: %016llX\n", cnt->pc7); if (cnt->extra_msr) fprintf(stderr, "msr0x%x: %016llX\n", extra_msr_offset, cnt->extra_msr); } void dump_list(struct counters *cnt) { printf("dump_list 0x%p\n", cnt); for (; cnt; cnt = cnt->next) dump_cnt(cnt); } /* * column formatting convention & formats * package: "pk" 2 columns %2d * core: "cor" 3 columns %3d * CPU: "CPU" 3 columns %3d * GHz: "GHz" 3 columns %3.2 * TSC: "TSC" 3 columns %3.2 * percentage " %pc3" %6.2 */ void print_cnt(struct counters *p) { double interval_float; interval_float = tv_delta.tv_sec + tv_delta.tv_usec/1000000.0; /* topology columns, print blanks on 1st (average) line */ if (p == cnt_average) { if (show_pkg) fprintf(stderr, " "); if (show_pkg && show_core) fprintf(stderr, " "); if (show_core) fprintf(stderr, " "); if (show_cpu) fprintf(stderr, " " " "); } else { if (show_pkg) fprintf(stderr, "%2d", p->pkg); if (show_pkg && show_core) fprintf(stderr, " "); if (show_core) fprintf(stderr, "%3d", p->core); if (show_cpu) fprintf(stderr, " %3d", p->cpu); } /* %c0 */ if (do_nhm_cstates) { if (show_pkg || show_core || show_cpu) fprintf(stderr, " "); if (!skip_c0) fprintf(stderr, "%6.2f", 100.0 * p->mperf/p->tsc); else fprintf(stderr, " ****"); } /* GHz */ if (has_aperf) { if (!aperf_mperf_unstable) { fprintf(stderr, " %3.2f", 1.0 * p->tsc / units * p->aperf / p->mperf / interval_float); } else { if (p->aperf > p->tsc || p->mperf > p->tsc) { fprintf(stderr, " ***"); } else { fprintf(stderr, "%3.1f*", 1.0 * p->tsc / units * p->aperf / p->mperf / interval_float); } } } /* TSC */ fprintf(stderr, "%5.2f", 1.0 * p->tsc/units/interval_float); if (do_nhm_cstates) { if (!skip_c1) fprintf(stderr, " %6.2f", 100.0 * p->c1/p->tsc); else fprintf(stderr, " ****"); } if (do_nhm_cstates) fprintf(stderr, " %6.2f", 100.0 * p->c3/p->tsc); if (do_nhm_cstates) fprintf(stderr, " %6.2f", 100.0 * p->c6/p->tsc); if (do_snb_cstates) fprintf(stderr, " %6.2f", 100.0 * p->c7/p->tsc); if (do_snb_cstates) fprintf(stderr, " %6.2f", 100.0 * p->pc2/p->tsc); if (do_nhm_cstates) fprintf(stderr, " %6.2f", 100.0 * p->pc3/p->tsc); if (do_nhm_cstates) fprintf(stderr, " %6.2f", 100.0 * p->pc6/p->tsc); if (do_snb_cstates) fprintf(stderr, " %6.2f", 100.0 * p->pc7/p->tsc); if (extra_msr_offset) fprintf(stderr, " 0x%016llx", p->extra_msr); putc('\n', stderr); } void print_counters(struct counters *counters) { struct counters *cnt; static int printed; if (!printed || !summary_only) print_header(); if (num_cpus > 1) print_cnt(cnt_average); printed = 1; if (summary_only) return; for (cnt = counters; cnt != NULL; cnt = cnt->next) print_cnt(cnt); } #define SUBTRACT_COUNTER(after, before, delta) (delta = (after - before), (before > after)) int compute_delta(struct counters *after, struct counters *before, struct counters *delta) { int errors = 0; int perf_err = 0; skip_c0 = skip_c1 = 0; for ( ; after && before && delta; after = after->next, before = before->next, delta = delta->next) { if (before->cpu != after->cpu) { printf("cpu configuration changed: %d != %d\n", before->cpu, after->cpu); return -1; } if (SUBTRACT_COUNTER(after->tsc, before->tsc, delta->tsc)) { fprintf(stderr, "cpu%d TSC went backwards %llX to %llX\n", before->cpu, before->tsc, after->tsc); errors++; } /* check for TSC < 1 Mcycles over interval */ if (delta->tsc < (1000 * 1000)) { fprintf(stderr, "Insanely slow TSC rate," " TSC stops in idle?\n"); fprintf(stderr, "You can disable all c-states" " by booting with \"idle=poll\"\n"); fprintf(stderr, "or just the deep ones with" " \"processor.max_cstate=1\"\n"); exit(-3); } if (SUBTRACT_COUNTER(after->c3, before->c3, delta->c3)) { fprintf(stderr, "cpu%d c3 counter went backwards %llX to %llX\n", before->cpu, before->c3, after->c3); errors++; } if (SUBTRACT_COUNTER(after->c6, before->c6, delta->c6)) { fprintf(stderr, "cpu%d c6 counter went backwards %llX to %llX\n", before->cpu, before->c6, after->c6); errors++; } if (SUBTRACT_COUNTER(after->c7, before->c7, delta->c7)) { fprintf(stderr, "cpu%d c7 counter went backwards %llX to %llX\n", before->cpu, before->c7, after->c7); errors++; } if (SUBTRACT_COUNTER(after->pc2, before->pc2, delta->pc2)) { fprintf(stderr, "cpu%d pc2 counter went backwards %llX to %llX\n", before->cpu, before->pc2, after->pc2); errors++; } if (SUBTRACT_COUNTER(after->pc3, before->pc3, delta->pc3)) { fprintf(stderr, "cpu%d pc3 counter went backwards %llX to %llX\n", before->cpu, before->pc3, after->pc3); errors++; } if (SUBTRACT_COUNTER(after->pc6, before->pc6, delta->pc6)) { fprintf(stderr, "cpu%d pc6 counter went backwards %llX to %llX\n", before->cpu, before->pc6, after->pc6); errors++; } if (SUBTRACT_COUNTER(after->pc7, before->pc7, delta->pc7)) { fprintf(stderr, "cpu%d pc7 counter went backwards %llX to %llX\n", before->cpu, before->pc7, after->pc7); errors++; } perf_err = SUBTRACT_COUNTER(after->aperf, before->aperf, delta->aperf); if (perf_err) { fprintf(stderr, "cpu%d aperf counter went backwards %llX to %llX\n", before->cpu, before->aperf, after->aperf); } perf_err |= SUBTRACT_COUNTER(after->mperf, before->mperf, delta->mperf); if (perf_err) { fprintf(stderr, "cpu%d mperf counter went backwards %llX to %llX\n", before->cpu, before->mperf, after->mperf); } if (perf_err) { if (!aperf_mperf_unstable) { fprintf(stderr, "%s: APERF or MPERF went backwards *\n", progname); fprintf(stderr, "* Frequency results do not cover entire interval *\n"); fprintf(stderr, "* fix this by running Linux-2.6.30 or later *\n"); aperf_mperf_unstable = 1; } /* * mperf delta is likely a huge "positive" number * can not use it for calculating c0 time */ skip_c0 = 1; skip_c1 = 1; } /* * As mperf and tsc collection are not atomic, * it is possible for mperf's non-halted cycles * to exceed TSC's all cycles: show c1 = 0% in that case. */ if (delta->mperf > delta->tsc) delta->c1 = 0; else /* normal case, derive c1 */ delta->c1 = delta->tsc - delta->mperf - delta->c3 - delta->c6 - delta->c7; if (delta->mperf == 0) delta->mperf = 1; /* divide by 0 protection */ /* * for "extra msr", just copy the latest w/o subtracting */ delta->extra_msr = after->extra_msr; if (errors) { fprintf(stderr, "ERROR cpu%d before:\n", before->cpu); dump_cnt(before); fprintf(stderr, "ERROR cpu%d after:\n", before->cpu); dump_cnt(after); errors = 0; } } return 0; } void compute_average(struct counters *delta, struct counters *avg) { struct counters *sum; sum = calloc(1, sizeof(struct counters)); if (sum == NULL) { perror("calloc sum"); exit(1); } for (; delta; delta = delta->next) { sum->tsc += delta->tsc; sum->c1 += delta->c1; sum->c3 += delta->c3; sum->c6 += delta->c6; sum->c7 += delta->c7; sum->aperf += delta->aperf; sum->mperf += delta->mperf; sum->pc2 += delta->pc2; sum->pc3 += delta->pc3; sum->pc6 += delta->pc6; sum->pc7 += delta->pc7; } avg->tsc = sum->tsc/num_cpus; avg->c1 = sum->c1/num_cpus; avg->c3 = sum->c3/num_cpus; avg->c6 = sum->c6/num_cpus; avg->c7 = sum->c7/num_cpus; avg->aperf = sum->aperf/num_cpus; avg->mperf = sum->mperf/num_cpus; avg->pc2 = sum->pc2/num_cpus; avg->pc3 = sum->pc3/num_cpus; avg->pc6 = sum->pc6/num_cpus; avg->pc7 = sum->pc7/num_cpus; free(sum); } int get_counters(struct counters *cnt) { for ( ; cnt; cnt = cnt->next) { if (cpu_migrate(cnt->cpu)) return -1; if (get_msr(cnt->cpu, MSR_TSC, &cnt->tsc)) return -1; if (has_aperf) { if (get_msr(cnt->cpu, MSR_APERF, &cnt->aperf)) return -1; if (get_msr(cnt->cpu, MSR_MPERF, &cnt->mperf)) return -1; } if (do_nhm_cstates) { if (get_msr(cnt->cpu, MSR_CORE_C3_RESIDENCY, &cnt->c3)) return -1; if (get_msr(cnt->cpu, MSR_CORE_C6_RESIDENCY, &cnt->c6)) return -1; } if (do_snb_cstates) if (get_msr(cnt->cpu, MSR_CORE_C7_RESIDENCY, &cnt->c7)) return -1; if (do_nhm_cstates) { if (get_msr(cnt->cpu, MSR_PKG_C3_RESIDENCY, &cnt->pc3)) return -1; if (get_msr(cnt->cpu, MSR_PKG_C6_RESIDENCY, &cnt->pc6)) return -1; } if (do_snb_cstates) { if (get_msr(cnt->cpu, MSR_PKG_C2_RESIDENCY, &cnt->pc2)) return -1; if (get_msr(cnt->cpu, MSR_PKG_C7_RESIDENCY, &cnt->pc7)) return -1; } if (extra_msr_offset) if (get_msr(cnt->cpu, extra_msr_offset, &cnt->extra_msr)) return -1; } return 0; } void print_nehalem_info(void) { unsigned long long msr; unsigned int ratio; if (!do_nehalem_platform_info) return; get_msr(0, MSR_NEHALEM_PLATFORM_INFO, &msr); ratio = (msr >> 40) & 0xFF; fprintf(stderr, "%d * %.0f = %.0f MHz max efficiency\n", ratio, bclk, ratio * bclk); ratio = (msr >> 8) & 0xFF; fprintf(stderr, "%d * %.0f = %.0f MHz TSC frequency\n", ratio, bclk, ratio * bclk); if (verbose > 1) fprintf(stderr, "MSR_NEHALEM_PLATFORM_INFO: 0x%llx\n", msr); if (!do_nehalem_turbo_ratio_limit) return; get_msr(0, MSR_NEHALEM_TURBO_RATIO_LIMIT, &msr); ratio = (msr >> 24) & 0xFF; if (ratio) fprintf(stderr, "%d * %.0f = %.0f MHz max turbo 4 active cores\n", ratio, bclk, ratio * bclk); ratio = (msr >> 16) & 0xFF; if (ratio) fprintf(stderr, "%d * %.0f = %.0f MHz max turbo 3 active cores\n", ratio, bclk, ratio * bclk); ratio = (msr >> 8) & 0xFF; if (ratio) fprintf(stderr, "%d * %.0f = %.0f MHz max turbo 2 active cores\n", ratio, bclk, ratio * bclk); ratio = (msr >> 0) & 0xFF; if (ratio) fprintf(stderr, "%d * %.0f = %.0f MHz max turbo 1 active cores\n", ratio, bclk, ratio * bclk); } void free_counter_list(struct counters *list) { struct counters *p; for (p = list; p; ) { struct counters *free_me; free_me = p; p = p->next; free(free_me); } } void free_all_counters(void) { free_counter_list(cnt_even); cnt_even = NULL; free_counter_list(cnt_odd); cnt_odd = NULL; free_counter_list(cnt_delta); cnt_delta = NULL; free_counter_list(cnt_average); cnt_average = NULL; } void insert_counters(struct counters **list, struct counters *new) { struct counters *prev; /* * list was empty */ if (*list == NULL) { new->next = *list; *list = new; return; } if (!summary_only) show_cpu = 1; /* there is more than one CPU */ /* * insert on front of list. * It is sorted by ascending package#, core#, cpu# */ if (((*list)->pkg > new->pkg) || (((*list)->pkg == new->pkg) && ((*list)->core > new->core)) || (((*list)->pkg == new->pkg) && ((*list)->core == new->core) && ((*list)->cpu > new->cpu))) { new->next = *list; *list = new; return; } prev = *list; while (prev->next && (prev->next->pkg < new->pkg)) { prev = prev->next; if (!summary_only) show_pkg = 1; /* there is more than 1 package */ } while (prev->next && (prev->next->pkg == new->pkg) && (prev->next->core < new->core)) { prev = prev->next; if (!summary_only) show_core = 1; /* there is more than 1 core */ } while (prev->next && (prev->next->pkg == new->pkg) && (prev->next->core == new->core) && (prev->next->cpu < new->cpu)) { prev = prev->next; } /* * insert after "prev" */ new->next = prev->next; prev->next = new; } void alloc_new_counters(int pkg, int core, int cpu) { struct counters *new; if (verbose > 1) printf("pkg%d core%d, cpu%d\n", pkg, core, cpu); new = (struct counters *)calloc(1, sizeof(struct counters)); if (new == NULL) { perror("calloc"); exit(1); } new->pkg = pkg; new->core = core; new->cpu = cpu; insert_counters(&cnt_odd, new); new = (struct counters *)calloc(1, sizeof(struct counters)); if (new == NULL) { perror("calloc"); exit(1); } new->pkg = pkg; new->core = core; new->cpu = cpu; insert_counters(&cnt_even, new); new = (struct counters *)calloc(1, sizeof(struct counters)); if (new == NULL) { perror("calloc"); exit(1); } new->pkg = pkg; new->core = core; new->cpu = cpu; insert_counters(&cnt_delta, new); new = (struct counters *)calloc(1, sizeof(struct counters)); if (new == NULL) { perror("calloc"); exit(1); } new->pkg = pkg; new->core = core; new->cpu = cpu; cnt_average = new; } int get_physical_package_id(int cpu) { char path[64]; FILE *filep; int pkg; sprintf(path, "/sys/devices/system/cpu/cpu%d/topology/physical_package_id", cpu); filep = fopen(path, "r"); if (filep == NULL) { perror(path); exit(1); } fscanf(filep, "%d", &pkg); fclose(filep); return pkg; } int get_core_id(int cpu) { char path[64]; FILE *filep; int core; sprintf(path, "/sys/devices/system/cpu/cpu%d/topology/core_id", cpu); filep = fopen(path, "r"); if (filep == NULL) { perror(path); exit(1); } fscanf(filep, "%d", &core); fclose(filep); return core; } /* * run func(pkg, core, cpu) on every cpu in /proc/stat */ int for_all_cpus(void (func)(int, int, int)) { FILE *fp; int cpu_count; int retval; fp = fopen(proc_stat, "r"); if (fp == NULL) { perror(proc_stat); exit(1); } retval = fscanf(fp, "cpu %*d %*d %*d %*d %*d %*d %*d %*d %*d %*d\n"); if (retval != 0) { perror("/proc/stat format"); exit(1); } for (cpu_count = 0; ; cpu_count++) { int cpu; retval = fscanf(fp, "cpu%u %*d %*d %*d %*d %*d %*d %*d %*d %*d %*d\n", &cpu); if (retval != 1) break; func(get_physical_package_id(cpu), get_core_id(cpu), cpu); } fclose(fp); return cpu_count; } void re_initialize(void) { free_all_counters(); num_cpus = for_all_cpus(alloc_new_counters); cpu_mask_uninit(); cpu_mask_init(num_cpus); printf("turbostat: re-initialized with num_cpus %d\n", num_cpus); } void dummy(int pkg, int core, int cpu) { return; } /* * check to see if a cpu came on-line */ int verify_num_cpus(void) { int new_num_cpus; new_num_cpus = for_all_cpus(dummy); if (new_num_cpus != num_cpus) { if (verbose) printf("num_cpus was %d, is now %d\n", num_cpus, new_num_cpus); return -1; } return 0; } void turbostat_loop() { restart: get_counters(cnt_even); gettimeofday(&tv_even, (struct timezone *)NULL); while (1) { if (verify_num_cpus()) { re_initialize(); goto restart; } sleep(interval_sec); if (get_counters(cnt_odd)) { re_initialize(); goto restart; } gettimeofday(&tv_odd, (struct timezone *)NULL); compute_delta(cnt_odd, cnt_even, cnt_delta); timersub(&tv_odd, &tv_even, &tv_delta); compute_average(cnt_delta, cnt_average); print_counters(cnt_delta); sleep(interval_sec); if (get_counters(cnt_even)) { re_initialize(); goto restart; } gettimeofday(&tv_even, (struct timezone *)NULL); compute_delta(cnt_even, cnt_odd, cnt_delta); timersub(&tv_even, &tv_odd, &tv_delta); compute_average(cnt_delta, cnt_average); print_counters(cnt_delta); } } void check_dev_msr() { struct stat sb; if (stat("/dev/cpu/0/msr", &sb)) { fprintf(stderr, "no /dev/cpu/0/msr\n"); fprintf(stderr, "Try \"# modprobe msr\"\n"); exit(-5); } } void check_super_user() { if (getuid() != 0) { fprintf(stderr, "must be root\n"); exit(-6); } } int has_nehalem_turbo_ratio_limit(unsigned int family, unsigned int model) { if (!genuine_intel) return 0; if (family != 6) return 0; switch (model) { case 0x1A: /* Core i7, Xeon 5500 series - Bloomfield, Gainstown NHM-EP */ case 0x1E: /* Core i7 and i5 Processor - Clarksfield, Lynnfield, Jasper Forest */ case 0x1F: /* Core i7 and i5 Processor - Nehalem */ case 0x25: /* Westmere Client - Clarkdale, Arrandale */ case 0x2C: /* Westmere EP - Gulftown */ case 0x2A: /* SNB */ case 0x2D: /* SNB Xeon */ case 0x3A: /* IVB */ case 0x3D: /* IVB Xeon */ return 1; case 0x2E: /* Nehalem-EX Xeon - Beckton */ case 0x2F: /* Westmere-EX Xeon - Eagleton */ default: return 0; } } int is_snb(unsigned int family, unsigned int model) { if (!genuine_intel) return 0; switch (model) { case 0x2A: case 0x2D: return 1; } return 0; } double discover_bclk(unsigned int family, unsigned int model) { if (is_snb(family, model)) return 100.00; else return 133.33; } void check_cpuid() { unsigned int eax, ebx, ecx, edx, max_level; unsigned int fms, family, model, stepping; eax = ebx = ecx = edx = 0; asm("cpuid" : "=a" (max_level), "=b" (ebx), "=c" (ecx), "=d" (edx) : "a" (0)); if (ebx == 0x756e6547 && edx == 0x49656e69 && ecx == 0x6c65746e) genuine_intel = 1; if (verbose) fprintf(stderr, "%.4s%.4s%.4s ", (char *)&ebx, (char *)&edx, (char *)&ecx); asm("cpuid" : "=a" (fms), "=c" (ecx), "=d" (edx) : "a" (1) : "ebx"); family = (fms >> 8) & 0xf; model = (fms >> 4) & 0xf; stepping = fms & 0xf; if (family == 6 || family == 0xf) model += ((fms >> 16) & 0xf) << 4; if (verbose) fprintf(stderr, "%d CPUID levels; family:model:stepping 0x%x:%x:%x (%d:%d:%d)\n", max_level, family, model, stepping, family, model, stepping); if (!(edx & (1 << 5))) { fprintf(stderr, "CPUID: no MSR\n"); exit(1); } /* * check max extended function levels of CPUID. * This is needed to check for invariant TSC. * This check is valid for both Intel and AMD. */ ebx = ecx = edx = 0; asm("cpuid" : "=a" (max_level), "=b" (ebx), "=c" (ecx), "=d" (edx) : "a" (0x80000000)); if (max_level < 0x80000007) { fprintf(stderr, "CPUID: no invariant TSC (max_level 0x%x)\n", max_level); exit(1); } /* * Non-Stop TSC is advertised by CPUID.EAX=0x80000007: EDX.bit8 * this check is valid for both Intel and AMD */ asm("cpuid" : "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) : "a" (0x80000007)); has_invariant_tsc = edx & (1 << 8); if (!has_invariant_tsc) { fprintf(stderr, "No invariant TSC\n"); exit(1); } /* * APERF/MPERF is advertised by CPUID.EAX=0x6: ECX.bit0 * this check is valid for both Intel and AMD */ asm("cpuid" : "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) : "a" (0x6)); has_aperf = ecx & (1 << 0); if (!has_aperf) { fprintf(stderr, "No APERF MSR\n"); exit(1); } do_nehalem_platform_info = genuine_intel && has_invariant_tsc; do_nhm_cstates = genuine_intel; /* all Intel w/ non-stop TSC have NHM counters */ do_snb_cstates = is_snb(family, model); bclk = discover_bclk(family, model); do_nehalem_turbo_ratio_limit = has_nehalem_turbo_ratio_limit(family, model); } void usage() { fprintf(stderr, "%s: [-v] [-M MSR#] [-i interval_sec | command ...]\n", progname); exit(1); } /* * in /dev/cpu/ return success for names that are numbers * ie. filter out ".", "..", "microcode". */ int dir_filter(const struct dirent *dirp) { if (isdigit(dirp->d_name[0])) return 1; else return 0; } int open_dev_cpu_msr(int dummy1) { return 0; } void turbostat_init() { check_cpuid(); check_dev_msr(); check_super_user(); num_cpus = for_all_cpus(alloc_new_counters); cpu_mask_init(num_cpus); if (verbose) print_nehalem_info(); } int fork_it(char **argv) { int retval; pid_t child_pid; get_counters(cnt_even); gettimeofday(&tv_even, (struct timezone *)NULL); child_pid = fork(); if (!child_pid) { /* child */ execvp(argv[0], argv); } else { int status; /* parent */ if (child_pid == -1) { perror("fork"); exit(1); } signal(SIGINT, SIG_IGN); signal(SIGQUIT, SIG_IGN); if (waitpid(child_pid, &status, 0) == -1) { perror("wait"); exit(1); } } get_counters(cnt_odd); gettimeofday(&tv_odd, (struct timezone *)NULL); retval = compute_delta(cnt_odd, cnt_even, cnt_delta); timersub(&tv_odd, &tv_even, &tv_delta); compute_average(cnt_delta, cnt_average); if (!retval) print_counters(cnt_delta); fprintf(stderr, "%.6f sec\n", tv_delta.tv_sec + tv_delta.tv_usec/1000000.0); return 0; } void cmdline(int argc, char **argv) { int opt; progname = argv[0]; while ((opt = getopt(argc, argv, "+svi:M:")) != -1) { switch (opt) { case 's': summary_only++; break; case 'v': verbose++; break; case 'i': interval_sec = atoi(optarg); break; case 'M': sscanf(optarg, "%x", &extra_msr_offset); if (verbose > 1) fprintf(stderr, "MSR 0x%X\n", extra_msr_offset); break; default: usage(); } } } int main(int argc, char **argv) { cmdline(argc, argv); if (verbose > 1) fprintf(stderr, "turbostat Dec 6, 2010" " - Len Brown <lenb@kernel.org>\n"); if (verbose > 1) fprintf(stderr, "http://userweb.kernel.org/~lenb/acpi/utils/pmtools/turbostat/\n"); turbostat_init(); /* * if any params left, it must be a command to fork */ if (argc - optind) return fork_it(argv + optind); else turbostat_loop(); return 0; }