/* * The NFC Controller Interface is the communication protocol between an * NFC Controller (NFCC) and a Device Host (DH). * * Copyright (C) 2011 Texas Instruments, Inc. * * Written by Ilan Elias <ilane@ti.com> * * Acknowledgements: * This file is based on hci_event.c, which was written * by Maxim Krasnyansky. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 * as published by the Free Software Foundation * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #define pr_fmt(fmt) KBUILD_MODNAME ": %s: " fmt, __func__ #include <linux/types.h> #include <linux/interrupt.h> #include <linux/bitops.h> #include <linux/skbuff.h> #include "../nfc.h" #include <net/nfc/nci.h> #include <net/nfc/nci_core.h> /* Handle NCI Response packets */ static void nci_core_reset_rsp_packet(struct nci_dev *ndev, struct sk_buff *skb) { struct nci_core_reset_rsp *rsp = (void *) skb->data; pr_debug("status 0x%x\n", rsp->status); if (rsp->status == NCI_STATUS_OK) { ndev->nci_ver = rsp->nci_ver; pr_debug("nci_ver 0x%x, config_status 0x%x\n", rsp->nci_ver, rsp->config_status); } nci_req_complete(ndev, rsp->status); } static void nci_core_init_rsp_packet(struct nci_dev *ndev, struct sk_buff *skb) { struct nci_core_init_rsp_1 *rsp_1 = (void *) skb->data; struct nci_core_init_rsp_2 *rsp_2; pr_debug("status 0x%x\n", rsp_1->status); if (rsp_1->status != NCI_STATUS_OK) goto exit; ndev->nfcc_features = __le32_to_cpu(rsp_1->nfcc_features); ndev->num_supported_rf_interfaces = rsp_1->num_supported_rf_interfaces; if (ndev->num_supported_rf_interfaces > NCI_MAX_SUPPORTED_RF_INTERFACES) { ndev->num_supported_rf_interfaces = NCI_MAX_SUPPORTED_RF_INTERFACES; } memcpy(ndev->supported_rf_interfaces, rsp_1->supported_rf_interfaces, ndev->num_supported_rf_interfaces); rsp_2 = (void *) (skb->data + 6 + rsp_1->num_supported_rf_interfaces); ndev->max_logical_connections = rsp_2->max_logical_connections; ndev->max_routing_table_size = __le16_to_cpu(rsp_2->max_routing_table_size); ndev->max_ctrl_pkt_payload_len = rsp_2->max_ctrl_pkt_payload_len; ndev->max_size_for_large_params = __le16_to_cpu(rsp_2->max_size_for_large_params); ndev->manufact_id = rsp_2->manufact_id; ndev->manufact_specific_info = __le32_to_cpu(rsp_2->manufact_specific_info); pr_debug("nfcc_features 0x%x\n", ndev->nfcc_features); pr_debug("num_supported_rf_interfaces %d\n", ndev->num_supported_rf_interfaces); pr_debug("supported_rf_interfaces[0] 0x%x\n", ndev->supported_rf_interfaces[0]); pr_debug("supported_rf_interfaces[1] 0x%x\n", ndev->supported_rf_interfaces[1]); pr_debug("supported_rf_interfaces[2] 0x%x\n", ndev->supported_rf_interfaces[2]); pr_debug("supported_rf_interfaces[3] 0x%x\n", ndev->supported_rf_interfaces[3]); pr_debug("max_logical_connections %d\n", ndev->max_logical_connections); pr_debug("max_routing_table_size %d\n", ndev->max_routing_table_size); pr_debug("max_ctrl_pkt_payload_len %d\n", ndev->max_ctrl_pkt_payload_len); pr_debug("max_size_for_large_params %d\n", ndev->max_size_for_large_params); pr_debug("manufact_id 0x%x\n", ndev->manufact_id); pr_debug("manufact_specific_info 0x%x\n", ndev->manufact_specific_info); exit: nci_req_complete(ndev, rsp_1->status); } static void nci_rf_disc_map_rsp_packet(struct nci_dev *ndev, struct sk_buff *skb) { __u8 status = skb->data[0]; pr_debug("status 0x%x\n", status); nci_req_complete(ndev, status); } static void nci_rf_disc_rsp_packet(struct nci_dev *ndev, struct sk_buff *skb) { __u8 status = skb->data[0]; pr_debug("status 0x%x\n", status); if (status == NCI_STATUS_OK) atomic_set(&ndev->state, NCI_DISCOVERY); nci_req_complete(ndev, status); } static void nci_rf_disc_select_rsp_packet(struct nci_dev *ndev, struct sk_buff *skb) { __u8 status = skb->data[0]; pr_debug("status 0x%x\n", status); /* Complete the request on intf_activated_ntf or generic_error_ntf */ if (status != NCI_STATUS_OK) nci_req_complete(ndev, status); } static void nci_rf_deactivate_rsp_packet(struct nci_dev *ndev, struct sk_buff *skb) { __u8 status = skb->data[0]; pr_debug("status 0x%x\n", status); /* If target was active, complete the request only in deactivate_ntf */ if ((status != NCI_STATUS_OK) || (atomic_read(&ndev->state) != NCI_POLL_ACTIVE)) { nci_clear_target_list(ndev); atomic_set(&ndev->state, NCI_IDLE); nci_req_complete(ndev, status); } } void nci_rsp_packet(struct nci_dev *ndev, struct sk_buff *skb) { __u16 rsp_opcode = nci_opcode(skb->data); /* we got a rsp, stop the cmd timer */ del_timer(&ndev->cmd_timer); pr_debug("NCI RX: MT=rsp, PBF=%d, GID=0x%x, OID=0x%x, plen=%d\n", nci_pbf(skb->data), nci_opcode_gid(rsp_opcode), nci_opcode_oid(rsp_opcode), nci_plen(skb->data)); /* strip the nci control header */ skb_pull(skb, NCI_CTRL_HDR_SIZE); switch (rsp_opcode) { case NCI_OP_CORE_RESET_RSP: nci_core_reset_rsp_packet(ndev, skb); break; case NCI_OP_CORE_INIT_RSP: nci_core_init_rsp_packet(ndev, skb); break; case NCI_OP_RF_DISCOVER_MAP_RSP: nci_rf_disc_map_rsp_packet(ndev, skb); break; case NCI_OP_RF_DISCOVER_RSP: nci_rf_disc_rsp_packet(ndev, skb); break; case NCI_OP_RF_DISCOVER_SELECT_RSP: nci_rf_disc_select_rsp_packet(ndev, skb); break; case NCI_OP_RF_DEACTIVATE_RSP: nci_rf_deactivate_rsp_packet(ndev, skb); break; default: pr_err("unknown rsp opcode 0x%x\n", rsp_opcode); break; } kfree_skb(skb); /* trigger the next cmd */ atomic_set(&ndev->cmd_cnt, 1); if (!skb_queue_empty(&ndev->cmd_q)) queue_work(ndev->cmd_wq, &ndev->cmd_work); }