/* * trace_events_filter - generic event filtering * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright (C) 2009 Tom Zanussi <tzanussi@gmail.com> */ #include <linux/module.h> #include <linux/ctype.h> #include <linux/mutex.h> #include <linux/perf_event.h> #include <linux/slab.h> #include "trace.h" #include "trace_output.h" #define DEFAULT_SYS_FILTER_MESSAGE \ "### global filter ###\n" \ "# Use this to set filters for multiple events.\n" \ "# Only events with the given fields will be affected.\n" \ "# If no events are modified, an error message will be displayed here" enum filter_op_ids { OP_OR, OP_AND, OP_GLOB, OP_NE, OP_EQ, OP_LT, OP_LE, OP_GT, OP_GE, OP_NONE, OP_OPEN_PAREN, }; struct filter_op { int id; char *string; int precedence; }; static struct filter_op filter_ops[] = { { OP_OR, "||", 1 }, { OP_AND, "&&", 2 }, { OP_GLOB, "~", 4 }, { OP_NE, "!=", 4 }, { OP_EQ, "==", 4 }, { OP_LT, "<", 5 }, { OP_LE, "<=", 5 }, { OP_GT, ">", 5 }, { OP_GE, ">=", 5 }, { OP_NONE, "OP_NONE", 0 }, { OP_OPEN_PAREN, "(", 0 }, }; enum { FILT_ERR_NONE, FILT_ERR_INVALID_OP, FILT_ERR_UNBALANCED_PAREN, FILT_ERR_TOO_MANY_OPERANDS, FILT_ERR_OPERAND_TOO_LONG, FILT_ERR_FIELD_NOT_FOUND, FILT_ERR_ILLEGAL_FIELD_OP, FILT_ERR_ILLEGAL_INTVAL, FILT_ERR_BAD_SUBSYS_FILTER, FILT_ERR_TOO_MANY_PREDS, FILT_ERR_MISSING_FIELD, FILT_ERR_INVALID_FILTER, FILT_ERR_IP_FIELD_ONLY, }; static char *err_text[] = { "No error", "Invalid operator", "Unbalanced parens", "Too many operands", "Operand too long", "Field not found", "Illegal operation for field type", "Illegal integer value", "Couldn't find or set field in one of a subsystem's events", "Too many terms in predicate expression", "Missing field name and/or value", "Meaningless filter expression", "Only 'ip' field is supported for function trace", }; struct opstack_op { int op; struct list_head list; }; struct postfix_elt { int op; char *operand; struct list_head list; }; struct filter_parse_state { struct filter_op *ops; struct list_head opstack; struct list_head postfix; int lasterr; int lasterr_pos; struct { char *string; unsigned int cnt; unsigned int tail; } infix; struct { char string[MAX_FILTER_STR_VAL]; int pos; unsigned int tail; } operand; }; struct pred_stack { struct filter_pred **preds; int index; }; #define DEFINE_COMPARISON_PRED(type) \ static int filter_pred_##type(struct filter_pred *pred, void *event) \ { \ type *addr = (type *)(event + pred->offset); \ type val = (type)pred->val; \ int match = 0; \ \ switch (pred->op) { \ case OP_LT: \ match = (*addr < val); \ break; \ case OP_LE: \ match = (*addr <= val); \ break; \ case OP_GT: \ match = (*addr > val); \ break; \ case OP_GE: \ match = (*addr >= val); \ break; \ default: \ break; \ } \ \ return match; \ } #define DEFINE_EQUALITY_PRED(size) \ static int filter_pred_##size(struct filter_pred *pred, void *event) \ { \ u##size *addr = (u##size *)(event + pred->offset); \ u##size val = (u##size)pred->val; \ int match; \ \ match = (val == *addr) ^ pred->not; \ \ return match; \ } DEFINE_COMPARISON_PRED(s64); DEFINE_COMPARISON_PRED(u64); DEFINE_COMPARISON_PRED(s32); DEFINE_COMPARISON_PRED(u32); DEFINE_COMPARISON_PRED(s16); DEFINE_COMPARISON_PRED(u16); DEFINE_COMPARISON_PRED(s8); DEFINE_COMPARISON_PRED(u8); DEFINE_EQUALITY_PRED(64); DEFINE_EQUALITY_PRED(32); DEFINE_EQUALITY_PRED(16); DEFINE_EQUALITY_PRED(8); /* Filter predicate for fixed sized arrays of characters */ static int filter_pred_string(struct filter_pred *pred, void *event) { char *addr = (char *)(event + pred->offset); int cmp, match; cmp = pred->regex.match(addr, &pred->regex, pred->regex.field_len); match = cmp ^ pred->not; return match; } /* Filter predicate for char * pointers */ static int filter_pred_pchar(struct filter_pred *pred, void *event) { char **addr = (char **)(event + pred->offset); int cmp, match; int len = strlen(*addr) + 1; /* including tailing '\0' */ cmp = pred->regex.match(*addr, &pred->regex, len); match = cmp ^ pred->not; return match; } /* * Filter predicate for dynamic sized arrays of characters. * These are implemented through a list of strings at the end * of the entry. * Also each of these strings have a field in the entry which * contains its offset from the beginning of the entry. * We have then first to get this field, dereference it * and add it to the address of the entry, and at last we have * the address of the string. */ static int filter_pred_strloc(struct filter_pred *pred, void *event) { u32 str_item = *(u32 *)(event + pred->offset); int str_loc = str_item & 0xffff; int str_len = str_item >> 16; char *addr = (char *)(event + str_loc); int cmp, match; cmp = pred->regex.match(addr, &pred->regex, str_len); match = cmp ^ pred->not; return match; } static int filter_pred_none(struct filter_pred *pred, void *event) { return 0; } /* * regex_match_foo - Basic regex callbacks * * @str: the string to be searched * @r: the regex structure containing the pattern string * @len: the length of the string to be searched (including '\0') * * Note: * - @str might not be NULL-terminated if it's of type DYN_STRING * or STATIC_STRING */ static int regex_match_full(char *str, struct regex *r, int len) { if (strncmp(str, r->pattern, len) == 0) return 1; return 0; } static int regex_match_front(char *str, struct regex *r, int len) { if (strncmp(str, r->pattern, r->len) == 0) return 1; return 0; } static int regex_match_middle(char *str, struct regex *r, int len) { if (strnstr(str, r->pattern, len)) return 1; return 0; } static int regex_match_end(char *str, struct regex *r, int len) { int strlen = len - 1; if (strlen >= r->len && memcmp(str + strlen - r->len, r->pattern, r->len) == 0) return 1; return 0; } /** * filter_parse_regex - parse a basic regex * @buff: the raw regex * @len: length of the regex * @search: will point to the beginning of the string to compare * @not: tell whether the match will have to be inverted * * This passes in a buffer containing a regex and this function will * set search to point to the search part of the buffer and * return the type of search it is (see enum above). * This does modify buff. * * Returns enum type. * search returns the pointer to use for comparison. * not returns 1 if buff started with a '!' * 0 otherwise. */ enum regex_type filter_parse_regex(char *buff, int len, char **search, int *not) { int type = MATCH_FULL; int i; if (buff[0] == '!') { *not = 1; buff++; len--; } else *not = 0; *search = buff; for (i = 0; i < len; i++) { if (buff[i] == '*') { if (!i) { *search = buff + 1; type = MATCH_END_ONLY; } else { if (type == MATCH_END_ONLY) type = MATCH_MIDDLE_ONLY; else type = MATCH_FRONT_ONLY; buff[i] = 0; break; } } } return type; } static void filter_build_regex(struct filter_pred *pred) { struct regex *r = &pred->regex; char *search; enum regex_type type = MATCH_FULL; int not = 0; if (pred->op == OP_GLOB) { type = filter_parse_regex(r->pattern, r->len, &search, ¬); r->len = strlen(search); memmove(r->pattern, search, r->len+1); } switch (type) { case MATCH_FULL: r->match = regex_match_full; break; case MATCH_FRONT_ONLY: r->match = regex_match_front; break; case MATCH_MIDDLE_ONLY: r->match = regex_match_middle; break; case MATCH_END_ONLY: r->match = regex_match_end; break; } pred->not ^= not; } enum move_type { MOVE_DOWN, MOVE_UP_FROM_LEFT, MOVE_UP_FROM_RIGHT }; static struct filter_pred * get_pred_parent(struct filter_pred *pred, struct filter_pred *preds, int index, enum move_type *move) { if (pred->parent & FILTER_PRED_IS_RIGHT) *move = MOVE_UP_FROM_RIGHT; else *move = MOVE_UP_FROM_LEFT; pred = &preds[pred->parent & ~FILTER_PRED_IS_RIGHT]; return pred; } enum walk_return { WALK_PRED_ABORT, WALK_PRED_PARENT, WALK_PRED_DEFAULT, }; typedef int (*filter_pred_walkcb_t) (enum move_type move, struct filter_pred *pred, int *err, void *data); static int walk_pred_tree(struct filter_pred *preds, struct filter_pred *root, filter_pred_walkcb_t cb, void *data) { struct filter_pred *pred = root; enum move_type move = MOVE_DOWN; int done = 0; if (!preds) return -EINVAL; do { int err = 0, ret; ret = cb(move, pred, &err, data); if (ret == WALK_PRED_ABORT) return err; if (ret == WALK_PRED_PARENT) goto get_parent; switch (move) { case MOVE_DOWN: if (pred->left != FILTER_PRED_INVALID) { pred = &preds[pred->left]; continue; } goto get_parent; case MOVE_UP_FROM_LEFT: pred = &preds[pred->right]; move = MOVE_DOWN; continue; case MOVE_UP_FROM_RIGHT: get_parent: if (pred == root) break; pred = get_pred_parent(pred, preds, pred->parent, &move); continue; } done = 1; } while (!done); /* We are fine. */ return 0; } /* * A series of AND or ORs where found together. Instead of * climbing up and down the tree branches, an array of the * ops were made in order of checks. We can just move across * the array and short circuit if needed. */ static int process_ops(struct filter_pred *preds, struct filter_pred *op, void *rec) { struct filter_pred *pred; int match = 0; int type; int i; /* * Micro-optimization: We set type to true if op * is an OR and false otherwise (AND). Then we * just need to test if the match is equal to * the type, and if it is, we can short circuit the * rest of the checks: * * if ((match && op->op == OP_OR) || * (!match && op->op == OP_AND)) * return match; */ type = op->op == OP_OR; for (i = 0; i < op->val; i++) { pred = &preds[op->ops[i]]; if (!WARN_ON_ONCE(!pred->fn)) match = pred->fn(pred, rec); if (!!match == type) return match; } return match; } struct filter_match_preds_data { struct filter_pred *preds; int match; void *rec; }; static int filter_match_preds_cb(enum move_type move, struct filter_pred *pred, int *err, void *data) { struct filter_match_preds_data *d = data; *err = 0; switch (move) { case MOVE_DOWN: /* only AND and OR have children */ if (pred->left != FILTER_PRED_INVALID) { /* If ops is set, then it was folded. */ if (!pred->ops) return WALK_PRED_DEFAULT; /* We can treat folded ops as a leaf node */ d->match = process_ops(d->preds, pred, d->rec); } else { if (!WARN_ON_ONCE(!pred->fn)) d->match = pred->fn(pred, d->rec); } return WALK_PRED_PARENT; case MOVE_UP_FROM_LEFT: /* * Check for short circuits. * * Optimization: !!match == (pred->op == OP_OR) * is the same as: * if ((match && pred->op == OP_OR) || * (!match && pred->op == OP_AND)) */ if (!!d->match == (pred->op == OP_OR)) return WALK_PRED_PARENT; break; case MOVE_UP_FROM_RIGHT: break; } return WALK_PRED_DEFAULT; } /* return 1 if event matches, 0 otherwise (discard) */ int filter_match_preds(struct event_filter *filter, void *rec) { struct filter_pred *preds; struct filter_pred *root; struct filter_match_preds_data data = { /* match is currently meaningless */ .match = -1, .rec = rec, }; int n_preds, ret; /* no filter is considered a match */ if (!filter) return 1; n_preds = filter->n_preds; if (!n_preds) return 1; /* * n_preds, root and filter->preds are protect with preemption disabled. */ root = rcu_dereference_sched(filter->root); if (!root) return 1; data.preds = preds = rcu_dereference_sched(filter->preds); ret = walk_pred_tree(preds, root, filter_match_preds_cb, &data); WARN_ON(ret); return data.match; } EXPORT_SYMBOL_GPL(filter_match_preds); static void parse_error(struct filter_parse_state *ps, int err, int pos) { ps->lasterr = err; ps->lasterr_pos = pos; } static void remove_filter_string(struct event_filter *filter) { if (!filter) return; kfree(filter->filter_string); filter->filter_string = NULL; } static int replace_filter_string(struct event_filter *filter, char *filter_string) { kfree(filter->filter_string); filter->filter_string = kstrdup(filter_string, GFP_KERNEL); if (!filter->filter_string) return -ENOMEM; return 0; } static int append_filter_string(struct event_filter *filter, char *string) { int newlen; char *new_filter_string; BUG_ON(!filter->filter_string); newlen = strlen(filter->filter_string) + strlen(string) + 1; new_filter_string = kmalloc(newlen, GFP_KERNEL); if (!new_filter_string) return -ENOMEM; strcpy(new_filter_string, filter->filter_string); strcat(new_filter_string, string); kfree(filter->filter_string); filter->filter_string = new_filter_string; return 0; } static void append_filter_err(struct filter_parse_state *ps, struct event_filter *filter) { int pos = ps->lasterr_pos; char *buf, *pbuf; buf = (char *)__get_free_page(GFP_TEMPORARY); if (!buf) return; append_filter_string(filter, "\n"); memset(buf, ' ', PAGE_SIZE); if (pos > PAGE_SIZE - 128) pos = 0; buf[pos] = '^'; pbuf = &buf[pos] + 1; sprintf(pbuf, "\nparse_error: %s\n", err_text[ps->lasterr]); append_filter_string(filter, buf); free_page((unsigned long) buf); } void print_event_filter(struct ftrace_event_call *call, struct trace_seq *s) { struct event_filter *filter; mutex_lock(&event_mutex); filter = call->filter; if (filter && filter->filter_string) trace_seq_printf(s, "%s\n", filter->filter_string); else trace_seq_printf(s, "none\n"); mutex_unlock(&event_mutex); } void print_subsystem_event_filter(struct event_subsystem *system, struct trace_seq *s) { struct event_filter *filter; mutex_lock(&event_mutex); filter = system->filter; if (filter && filter->filter_string) trace_seq_printf(s, "%s\n", filter->filter_string); else trace_seq_printf(s, DEFAULT_SYS_FILTER_MESSAGE "\n"); mutex_unlock(&event_mutex); } static struct ftrace_event_field * __find_event_field(struct list_head *head, char *name) { struct ftrace_event_field *field; list_for_each_entry(field, head, link) { if (!strcmp(field->name, name)) return field; } return NULL; } static struct ftrace_event_field * find_event_field(struct ftrace_event_call *call, char *name) { struct ftrace_event_field *field; struct list_head *head; field = __find_event_field(&ftrace_common_fields, name); if (field) return field; head = trace_get_fields(call); return __find_event_field(head, name); } static int __alloc_pred_stack(struct pred_stack *stack, int n_preds) { stack->preds = kcalloc(n_preds + 1, sizeof(*stack->preds), GFP_KERNEL); if (!stack->preds) return -ENOMEM; stack->index = n_preds; return 0; } static void __free_pred_stack(struct pred_stack *stack) { kfree(stack->preds); stack->index = 0; } static int __push_pred_stack(struct pred_stack *stack, struct filter_pred *pred) { int index = stack->index; if (WARN_ON(index == 0)) return -ENOSPC; stack->preds[--index] = pred; stack->index = index; return 0; } static struct filter_pred * __pop_pred_stack(struct pred_stack *stack) { struct filter_pred *pred; int index = stack->index; pred = stack->preds[index++]; if (!pred) return NULL; stack->index = index; return pred; } static int filter_set_pred(struct event_filter *filter, int idx, struct pred_stack *stack, struct filter_pred *src) { struct filter_pred *dest = &filter->preds[idx]; struct filter_pred *left; struct filter_pred *right; *dest = *src; dest->index = idx; if (dest->op == OP_OR || dest->op == OP_AND) { right = __pop_pred_stack(stack); left = __pop_pred_stack(stack); if (!left || !right) return -EINVAL; /* * If both children can be folded * and they are the same op as this op or a leaf, * then this op can be folded. */ if (left->index & FILTER_PRED_FOLD && (left->op == dest->op || left->left == FILTER_PRED_INVALID) && right->index & FILTER_PRED_FOLD && (right->op == dest->op || right->left == FILTER_PRED_INVALID)) dest->index |= FILTER_PRED_FOLD; dest->left = left->index & ~FILTER_PRED_FOLD; dest->right = right->index & ~FILTER_PRED_FOLD; left->parent = dest->index & ~FILTER_PRED_FOLD; right->parent = dest->index | FILTER_PRED_IS_RIGHT; } else { /* * Make dest->left invalid to be used as a quick * way to know this is a leaf node. */ dest->left = FILTER_PRED_INVALID; /* All leafs allow folding the parent ops. */ dest->index |= FILTER_PRED_FOLD; } return __push_pred_stack(stack, dest); } static void __free_preds(struct event_filter *filter) { int i; if (filter->preds) { for (i = 0; i < filter->n_preds; i++) kfree(filter->preds[i].ops); kfree(filter->preds); filter->preds = NULL; } filter->a_preds = 0; filter->n_preds = 0; } static void filter_disable(struct ftrace_event_call *call) { call->flags &= ~TRACE_EVENT_FL_FILTERED; } static void __free_filter(struct event_filter *filter) { if (!filter) return; __free_preds(filter); kfree(filter->filter_string); kfree(filter); } /* * Called when destroying the ftrace_event_call. * The call is being freed, so we do not need to worry about * the call being currently used. This is for module code removing * the tracepoints from within it. */ void destroy_preds(struct ftrace_event_call *call) { __free_filter(call->filter); call->filter = NULL; } static struct event_filter *__alloc_filter(void) { struct event_filter *filter; filter = kzalloc(sizeof(*filter), GFP_KERNEL); return filter; } static int __alloc_preds(struct event_filter *filter, int n_preds) { struct filter_pred *pred; int i; if (filter->preds) __free_preds(filter); filter->preds = kcalloc(n_preds, sizeof(*filter->preds), GFP_KERNEL); if (!filter->preds) return -ENOMEM; filter->a_preds = n_preds; filter->n_preds = 0; for (i = 0; i < n_preds; i++) { pred = &filter->preds[i]; pred->fn = filter_pred_none; } return 0; } static void filter_free_subsystem_preds(struct event_subsystem *system) { struct ftrace_event_call *call; list_for_each_entry(call, &ftrace_events, list) { if (strcmp(call->class->system, system->name) != 0) continue; filter_disable(call); remove_filter_string(call->filter); } } static void filter_free_subsystem_filters(struct event_subsystem *system) { struct ftrace_event_call *call; list_for_each_entry(call, &ftrace_events, list) { if (strcmp(call->class->system, system->name) != 0) continue; __free_filter(call->filter); call->filter = NULL; } } static int filter_add_pred(struct filter_parse_state *ps, struct event_filter *filter, struct filter_pred *pred, struct pred_stack *stack) { int err; if (WARN_ON(filter->n_preds == filter->a_preds)) { parse_error(ps, FILT_ERR_TOO_MANY_PREDS, 0); return -ENOSPC; } err = filter_set_pred(filter, filter->n_preds, stack, pred); if (err) return err; filter->n_preds++; return 0; } int filter_assign_type(const char *type) { if (strstr(type, "__data_loc") && strstr(type, "char")) return FILTER_DYN_STRING; if (strchr(type, '[') && strstr(type, "char")) return FILTER_STATIC_STRING; return FILTER_OTHER; } static bool is_function_field(struct ftrace_event_field *field) { return field->filter_type == FILTER_TRACE_FN; } static bool is_string_field(struct ftrace_event_field *field) { return field->filter_type == FILTER_DYN_STRING || field->filter_type == FILTER_STATIC_STRING || field->filter_type == FILTER_PTR_STRING; } static int is_legal_op(struct ftrace_event_field *field, int op) { if (is_string_field(field) && (op != OP_EQ && op != OP_NE && op != OP_GLOB)) return 0; if (!is_string_field(field) && op == OP_GLOB) return 0; return 1; } static filter_pred_fn_t select_comparison_fn(int op, int field_size, int field_is_signed) { filter_pred_fn_t fn = NULL; switch (field_size) { case 8: if (op == OP_EQ || op == OP_NE) fn = filter_pred_64; else if (field_is_signed) fn = filter_pred_s64; else fn = filter_pred_u64; break; case 4: if (op == OP_EQ || op == OP_NE) fn = filter_pred_32; else if (field_is_signed) fn = filter_pred_s32; else fn = filter_pred_u32; break; case 2: if (op == OP_EQ || op == OP_NE) fn = filter_pred_16; else if (field_is_signed) fn = filter_pred_s16; else fn = filter_pred_u16; break; case 1: if (op == OP_EQ || op == OP_NE) fn = filter_pred_8; else if (field_is_signed) fn = filter_pred_s8; else fn = filter_pred_u8; break; } return fn; } static int init_pred(struct filter_parse_state *ps, struct ftrace_event_field *field, struct filter_pred *pred) { filter_pred_fn_t fn = filter_pred_none; unsigned long long val; int ret; pred->offset = field->offset; if (!is_legal_op(field, pred->op)) { parse_error(ps, FILT_ERR_ILLEGAL_FIELD_OP, 0); return -EINVAL; } if (is_string_field(field)) { filter_build_regex(pred); if (field->filter_type == FILTER_STATIC_STRING) { fn = filter_pred_string; pred->regex.field_len = field->size; } else if (field->filter_type == FILTER_DYN_STRING) fn = filter_pred_strloc; else fn = filter_pred_pchar; } else if (is_function_field(field)) { if (strcmp(field->name, "ip")) { parse_error(ps, FILT_ERR_IP_FIELD_ONLY, 0); return -EINVAL; } } else { if (field->is_signed) ret = strict_strtoll(pred->regex.pattern, 0, &val); else ret = strict_strtoull(pred->regex.pattern, 0, &val); if (ret) { parse_error(ps, FILT_ERR_ILLEGAL_INTVAL, 0); return -EINVAL; } pred->val = val; fn = select_comparison_fn(pred->op, field->size, field->is_signed); if (!fn) { parse_error(ps, FILT_ERR_INVALID_OP, 0); return -EINVAL; } } if (pred->op == OP_NE) pred->not = 1; pred->fn = fn; return 0; } static void parse_init(struct filter_parse_state *ps, struct filter_op *ops, char *infix_string) { memset(ps, '\0', sizeof(*ps)); ps->infix.string = infix_string; ps->infix.cnt = strlen(infix_string); ps->ops = ops; INIT_LIST_HEAD(&ps->opstack); INIT_LIST_HEAD(&ps->postfix); } static char infix_next(struct filter_parse_state *ps) { ps->infix.cnt--; return ps->infix.string[ps->infix.tail++]; } static char infix_peek(struct filter_parse_state *ps) { if (ps->infix.tail == strlen(ps->infix.string)) return 0; return ps->infix.string[ps->infix.tail]; } static void infix_advance(struct filter_parse_state *ps) { ps->infix.cnt--; ps->infix.tail++; } static inline int is_precedence_lower(struct filter_parse_state *ps, int a, int b) { return ps->ops[a].precedence < ps->ops[b].precedence; } static inline int is_op_char(struct filter_parse_state *ps, char c) { int i; for (i = 0; strcmp(ps->ops[i].string, "OP_NONE"); i++) { if (ps->ops[i].string[0] == c) return 1; } return 0; } static int infix_get_op(struct filter_parse_state *ps, char firstc) { char nextc = infix_peek(ps); char opstr[3]; int i; opstr[0] = firstc; opstr[1] = nextc; opstr[2] = '\0'; for (i = 0; strcmp(ps->ops[i].string, "OP_NONE"); i++) { if (!strcmp(opstr, ps->ops[i].string)) { infix_advance(ps); return ps->ops[i].id; } } opstr[1] = '\0'; for (i = 0; strcmp(ps->ops[i].string, "OP_NONE"); i++) { if (!strcmp(opstr, ps->ops[i].string)) return ps->ops[i].id; } return OP_NONE; } static inline void clear_operand_string(struct filter_parse_state *ps) { memset(ps->operand.string, '\0', MAX_FILTER_STR_VAL); ps->operand.tail = 0; } static inline int append_operand_char(struct filter_parse_state *ps, char c) { if (ps->operand.tail == MAX_FILTER_STR_VAL - 1) return -EINVAL; ps->operand.string[ps->operand.tail++] = c; return 0; } static int filter_opstack_push(struct filter_parse_state *ps, int op) { struct opstack_op *opstack_op; opstack_op = kmalloc(sizeof(*opstack_op), GFP_KERNEL); if (!opstack_op) return -ENOMEM; opstack_op->op = op; list_add(&opstack_op->list, &ps->opstack); return 0; } static int filter_opstack_empty(struct filter_parse_state *ps) { return list_empty(&ps->opstack); } static int filter_opstack_top(struct filter_parse_state *ps) { struct opstack_op *opstack_op; if (filter_opstack_empty(ps)) return OP_NONE; opstack_op = list_first_entry(&ps->opstack, struct opstack_op, list); return opstack_op->op; } static int filter_opstack_pop(struct filter_parse_state *ps) { struct opstack_op *opstack_op; int op; if (filter_opstack_empty(ps)) return OP_NONE; opstack_op = list_first_entry(&ps->opstack, struct opstack_op, list); op = opstack_op->op; list_del(&opstack_op->list); kfree(opstack_op); return op; } static void filter_opstack_clear(struct filter_parse_state *ps) { while (!filter_opstack_empty(ps)) filter_opstack_pop(ps); } static char *curr_operand(struct filter_parse_state *ps) { return ps->operand.string; } static int postfix_append_operand(struct filter_parse_state *ps, char *operand) { struct postfix_elt *elt; elt = kmalloc(sizeof(*elt), GFP_KERNEL); if (!elt) return -ENOMEM; elt->op = OP_NONE; elt->operand = kstrdup(operand, GFP_KERNEL); if (!elt->operand) { kfree(elt); return -ENOMEM; } list_add_tail(&elt->list, &ps->postfix); return 0; } static int postfix_append_op(struct filter_parse_state *ps, int op) { struct postfix_elt *elt; elt = kmalloc(sizeof(*elt), GFP_KERNEL); if (!elt) return -ENOMEM; elt->op = op; elt->operand = NULL; list_add_tail(&elt->list, &ps->postfix); return 0; } static void postfix_clear(struct filter_parse_state *ps) { struct postfix_elt *elt; while (!list_empty(&ps->postfix)) { elt = list_first_entry(&ps->postfix, struct postfix_elt, list); list_del(&elt->list); kfree(elt->operand); kfree(elt); } } static int filter_parse(struct filter_parse_state *ps) { int in_string = 0; int op, top_op; char ch; while ((ch = infix_next(ps))) { if (ch == '"') { in_string ^= 1; continue; } if (in_string) goto parse_operand; if (isspace(ch)) continue; if (is_op_char(ps, ch)) { op = infix_get_op(ps, ch); if (op == OP_NONE) { parse_error(ps, FILT_ERR_INVALID_OP, 0); return -EINVAL; } if (strlen(curr_operand(ps))) { postfix_append_operand(ps, curr_operand(ps)); clear_operand_string(ps); } while (!filter_opstack_empty(ps)) { top_op = filter_opstack_top(ps); if (!is_precedence_lower(ps, top_op, op)) { top_op = filter_opstack_pop(ps); postfix_append_op(ps, top_op); continue; } break; } filter_opstack_push(ps, op); continue; } if (ch == '(') { filter_opstack_push(ps, OP_OPEN_PAREN); continue; } if (ch == ')') { if (strlen(curr_operand(ps))) { postfix_append_operand(ps, curr_operand(ps)); clear_operand_string(ps); } top_op = filter_opstack_pop(ps); while (top_op != OP_NONE) { if (top_op == OP_OPEN_PAREN) break; postfix_append_op(ps, top_op); top_op = filter_opstack_pop(ps); } if (top_op == OP_NONE) { parse_error(ps, FILT_ERR_UNBALANCED_PAREN, 0); return -EINVAL; } continue; } parse_operand: if (append_operand_char(ps, ch)) { parse_error(ps, FILT_ERR_OPERAND_TOO_LONG, 0); return -EINVAL; } } if (strlen(curr_operand(ps))) postfix_append_operand(ps, curr_operand(ps)); while (!filter_opstack_empty(ps)) { top_op = filter_opstack_pop(ps); if (top_op == OP_NONE) break; if (top_op == OP_OPEN_PAREN) { parse_error(ps, FILT_ERR_UNBALANCED_PAREN, 0); return -EINVAL; } postfix_append_op(ps, top_op); } return 0; } static struct filter_pred *create_pred(struct filter_parse_state *ps, struct ftrace_event_call *call, int op, char *operand1, char *operand2) { struct ftrace_event_field *field; static struct filter_pred pred; memset(&pred, 0, sizeof(pred)); pred.op = op; if (op == OP_AND || op == OP_OR) return &pred; if (!operand1 || !operand2) { parse_error(ps, FILT_ERR_MISSING_FIELD, 0); return NULL; } field = find_event_field(call, operand1); if (!field) { parse_error(ps, FILT_ERR_FIELD_NOT_FOUND, 0); return NULL; } strcpy(pred.regex.pattern, operand2); pred.regex.len = strlen(pred.regex.pattern); pred.field = field; return init_pred(ps, field, &pred) ? NULL : &pred; } static int check_preds(struct filter_parse_state *ps) { int n_normal_preds = 0, n_logical_preds = 0; struct postfix_elt *elt; list_for_each_entry(elt, &ps->postfix, list) { if (elt->op == OP_NONE) continue; if (elt->op == OP_AND || elt->op == OP_OR) { n_logical_preds++; continue; } n_normal_preds++; } if (!n_normal_preds || n_logical_preds >= n_normal_preds) { parse_error(ps, FILT_ERR_INVALID_FILTER, 0); return -EINVAL; } return 0; } static int count_preds(struct filter_parse_state *ps) { struct postfix_elt *elt; int n_preds = 0; list_for_each_entry(elt, &ps->postfix, list) { if (elt->op == OP_NONE) continue; n_preds++; } return n_preds; } struct check_pred_data { int count; int max; }; static int check_pred_tree_cb(enum move_type move, struct filter_pred *pred, int *err, void *data) { struct check_pred_data *d = data; if (WARN_ON(d->count++ > d->max)) { *err = -EINVAL; return WALK_PRED_ABORT; } return WALK_PRED_DEFAULT; } /* * The tree is walked at filtering of an event. If the tree is not correctly * built, it may cause an infinite loop. Check here that the tree does * indeed terminate. */ static int check_pred_tree(struct event_filter *filter, struct filter_pred *root) { struct check_pred_data data = { /* * The max that we can hit a node is three times. * Once going down, once coming up from left, and * once coming up from right. This is more than enough * since leafs are only hit a single time. */ .max = 3 * filter->n_preds, .count = 0, }; return walk_pred_tree(filter->preds, root, check_pred_tree_cb, &data); } static int count_leafs_cb(enum move_type move, struct filter_pred *pred, int *err, void *data) { int *count = data; if ((move == MOVE_DOWN) && (pred->left == FILTER_PRED_INVALID)) (*count)++; return WALK_PRED_DEFAULT; } static int count_leafs(struct filter_pred *preds, struct filter_pred *root) { int count = 0, ret; ret = walk_pred_tree(preds, root, count_leafs_cb, &count); WARN_ON(ret); return count; } struct fold_pred_data { struct filter_pred *root; int count; int children; }; static int fold_pred_cb(enum move_type move, struct filter_pred *pred, int *err, void *data) { struct fold_pred_data *d = data; struct filter_pred *root = d->root; if (move != MOVE_DOWN) return WALK_PRED_DEFAULT; if (pred->left != FILTER_PRED_INVALID) return WALK_PRED_DEFAULT; if (WARN_ON(d->count == d->children)) { *err = -EINVAL; return WALK_PRED_ABORT; } pred->index &= ~FILTER_PRED_FOLD; root->ops[d->count++] = pred->index; return WALK_PRED_DEFAULT; } static int fold_pred(struct filter_pred *preds, struct filter_pred *root) { struct fold_pred_data data = { .root = root, .count = 0, }; int children; /* No need to keep the fold flag */ root->index &= ~FILTER_PRED_FOLD; /* If the root is a leaf then do nothing */ if (root->left == FILTER_PRED_INVALID) return 0; /* count the children */ children = count_leafs(preds, &preds[root->left]); children += count_leafs(preds, &preds[root->right]); root->ops = kcalloc(children, sizeof(*root->ops), GFP_KERNEL); if (!root->ops) return -ENOMEM; root->val = children; data.children = children; return walk_pred_tree(preds, root, fold_pred_cb, &data); } static int fold_pred_tree_cb(enum move_type move, struct filter_pred *pred, int *err, void *data) { struct filter_pred *preds = data; if (move != MOVE_DOWN) return WALK_PRED_DEFAULT; if (!(pred->index & FILTER_PRED_FOLD)) return WALK_PRED_DEFAULT; *err = fold_pred(preds, pred); if (*err) return WALK_PRED_ABORT; /* eveyrhing below is folded, continue with parent */ return WALK_PRED_PARENT; } /* * To optimize the processing of the ops, if we have several "ors" or * "ands" together, we can put them in an array and process them all * together speeding up the filter logic. */ static int fold_pred_tree(struct event_filter *filter, struct filter_pred *root) { return walk_pred_tree(filter->preds, root, fold_pred_tree_cb, filter->preds); } static int replace_preds(struct ftrace_event_call *call, struct event_filter *filter, struct filter_parse_state *ps, char *filter_string, bool dry_run) { char *operand1 = NULL, *operand2 = NULL; struct filter_pred *pred; struct filter_pred *root; struct postfix_elt *elt; struct pred_stack stack = { }; /* init to NULL */ int err; int n_preds = 0; n_preds = count_preds(ps); if (n_preds >= MAX_FILTER_PRED) { parse_error(ps, FILT_ERR_TOO_MANY_PREDS, 0); return -ENOSPC; } err = check_preds(ps); if (err) return err; if (!dry_run) { err = __alloc_pred_stack(&stack, n_preds); if (err) return err; err = __alloc_preds(filter, n_preds); if (err) goto fail; } n_preds = 0; list_for_each_entry(elt, &ps->postfix, list) { if (elt->op == OP_NONE) { if (!operand1) operand1 = elt->operand; else if (!operand2) operand2 = elt->operand; else { parse_error(ps, FILT_ERR_TOO_MANY_OPERANDS, 0); err = -EINVAL; goto fail; } continue; } if (WARN_ON(n_preds++ == MAX_FILTER_PRED)) { parse_error(ps, FILT_ERR_TOO_MANY_PREDS, 0); err = -ENOSPC; goto fail; } pred = create_pred(ps, call, elt->op, operand1, operand2); if (!pred) { err = -EINVAL; goto fail; } if (!dry_run) { err = filter_add_pred(ps, filter, pred, &stack); if (err) goto fail; } operand1 = operand2 = NULL; } if (!dry_run) { /* We should have one item left on the stack */ pred = __pop_pred_stack(&stack); if (!pred) return -EINVAL; /* This item is where we start from in matching */ root = pred; /* Make sure the stack is empty */ pred = __pop_pred_stack(&stack); if (WARN_ON(pred)) { err = -EINVAL; filter->root = NULL; goto fail; } err = check_pred_tree(filter, root); if (err) goto fail; /* Optimize the tree */ err = fold_pred_tree(filter, root); if (err) goto fail; /* We don't set root until we know it works */ barrier(); filter->root = root; } err = 0; fail: __free_pred_stack(&stack); return err; } struct filter_list { struct list_head list; struct event_filter *filter; }; static int replace_system_preds(struct event_subsystem *system, struct filter_parse_state *ps, char *filter_string) { struct ftrace_event_call *call; struct filter_list *filter_item; struct filter_list *tmp; LIST_HEAD(filter_list); bool fail = true; int err; list_for_each_entry(call, &ftrace_events, list) { if (strcmp(call->class->system, system->name) != 0) continue; /* * Try to see if the filter can be applied * (filter arg is ignored on dry_run) */ err = replace_preds(call, NULL, ps, filter_string, true); if (err) call->flags |= TRACE_EVENT_FL_NO_SET_FILTER; else call->flags &= ~TRACE_EVENT_FL_NO_SET_FILTER; } list_for_each_entry(call, &ftrace_events, list) { struct event_filter *filter; if (strcmp(call->class->system, system->name) != 0) continue; if (call->flags & TRACE_EVENT_FL_NO_SET_FILTER) continue; filter_item = kzalloc(sizeof(*filter_item), GFP_KERNEL); if (!filter_item) goto fail_mem; list_add_tail(&filter_item->list, &filter_list); filter_item->filter = __alloc_filter(); if (!filter_item->filter) goto fail_mem; filter = filter_item->filter; /* Can only fail on no memory */ err = replace_filter_string(filter, filter_string); if (err) goto fail_mem; err = replace_preds(call, filter, ps, filter_string, false); if (err) { filter_disable(call); parse_error(ps, FILT_ERR_BAD_SUBSYS_FILTER, 0); append_filter_err(ps, filter); } else call->flags |= TRACE_EVENT_FL_FILTERED; /* * Regardless of if this returned an error, we still * replace the filter for the call. */ filter = call->filter; rcu_assign_pointer(call->filter, filter_item->filter); filter_item->filter = filter; fail = false; } if (fail) goto fail; /* * The calls can still be using the old filters. * Do a synchronize_sched() to ensure all calls are * done with them before we free them. */ synchronize_sched(); list_for_each_entry_safe(filter_item, tmp, &filter_list, list) { __free_filter(filter_item->filter); list_del(&filter_item->list); kfree(filter_item); } return 0; fail: /* No call succeeded */ list_for_each_entry_safe(filter_item, tmp, &filter_list, list) { list_del(&filter_item->list); kfree(filter_item); } parse_error(ps, FILT_ERR_BAD_SUBSYS_FILTER, 0); return -EINVAL; fail_mem: /* If any call succeeded, we still need to sync */ if (!fail) synchronize_sched(); list_for_each_entry_safe(filter_item, tmp, &filter_list, list) { __free_filter(filter_item->filter); list_del(&filter_item->list); kfree(filter_item); } return -ENOMEM; } static int create_filter_start(char *filter_str, bool set_str, struct filter_parse_state **psp, struct event_filter **filterp) { struct event_filter *filter; struct filter_parse_state *ps = NULL; int err = 0; WARN_ON_ONCE(*psp || *filterp); /* allocate everything, and if any fails, free all and fail */ filter = __alloc_filter(); if (filter && set_str) err = replace_filter_string(filter, filter_str); ps = kzalloc(sizeof(*ps), GFP_KERNEL); if (!filter || !ps || err) { kfree(ps); __free_filter(filter); return -ENOMEM; } /* we're committed to creating a new filter */ *filterp = filter; *psp = ps; parse_init(ps, filter_ops, filter_str); err = filter_parse(ps); if (err && set_str) append_filter_err(ps, filter); return err; } static void create_filter_finish(struct filter_parse_state *ps) { if (ps) { filter_opstack_clear(ps); postfix_clear(ps); kfree(ps); } } /** * create_filter - create a filter for a ftrace_event_call * @call: ftrace_event_call to create a filter for * @filter_str: filter string * @set_str: remember @filter_str and enable detailed error in filter * @filterp: out param for created filter (always updated on return) * * Creates a filter for @call with @filter_str. If @set_str is %true, * @filter_str is copied and recorded in the new filter. * * On success, returns 0 and *@filterp points to the new filter. On * failure, returns -errno and *@filterp may point to %NULL or to a new * filter. In the latter case, the returned filter contains error * information if @set_str is %true and the caller is responsible for * freeing it. */ static int create_filter(struct ftrace_event_call *call, char *filter_str, bool set_str, struct event_filter **filterp) { struct event_filter *filter = NULL; struct filter_parse_state *ps = NULL; int err; err = create_filter_start(filter_str, set_str, &ps, &filter); if (!err) { err = replace_preds(call, filter, ps, filter_str, false); if (err && set_str) append_filter_err(ps, filter); } create_filter_finish(ps); *filterp = filter; return err; } /** * create_system_filter - create a filter for an event_subsystem * @system: event_subsystem to create a filter for * @filter_str: filter string * @filterp: out param for created filter (always updated on return) * * Identical to create_filter() except that it creates a subsystem filter * and always remembers @filter_str. */ static int create_system_filter(struct event_subsystem *system, char *filter_str, struct event_filter **filterp) { struct event_filter *filter = NULL; struct filter_parse_state *ps = NULL; int err; err = create_filter_start(filter_str, true, &ps, &filter); if (!err) { err = replace_system_preds(system, ps, filter_str); if (!err) { /* System filters just show a default message */ kfree(filter->filter_string); filter->filter_string = NULL; } else { append_filter_err(ps, filter); } } create_filter_finish(ps); *filterp = filter; return err; } int apply_event_filter(struct ftrace_event_call *call, char *filter_string) { struct event_filter *filter; int err = 0; mutex_lock(&event_mutex); if (!strcmp(strstrip(filter_string), "0")) { filter_disable(call); filter = call->filter; if (!filter) goto out_unlock; RCU_INIT_POINTER(call->filter, NULL); /* Make sure the filter is not being used */ synchronize_sched(); __free_filter(filter); goto out_unlock; } err = create_filter(call, filter_string, true, &filter); /* * Always swap the call filter with the new filter * even if there was an error. If there was an error * in the filter, we disable the filter and show the error * string */ if (filter) { struct event_filter *tmp = call->filter; if (!err) call->flags |= TRACE_EVENT_FL_FILTERED; else filter_disable(call); rcu_assign_pointer(call->filter, filter); if (tmp) { /* Make sure the call is done with the filter */ synchronize_sched(); __free_filter(tmp); } } out_unlock: mutex_unlock(&event_mutex); return err; } int apply_subsystem_event_filter(struct event_subsystem *system, char *filter_string) { struct event_filter *filter; int err = 0; mutex_lock(&event_mutex); /* Make sure the system still has events */ if (!system->nr_events) { err = -ENODEV; goto out_unlock; } if (!strcmp(strstrip(filter_string), "0")) { filter_free_subsystem_preds(system); remove_filter_string(system->filter); filter = system->filter; system->filter = NULL; /* Ensure all filters are no longer used */ synchronize_sched(); filter_free_subsystem_filters(system); __free_filter(filter); goto out_unlock; } err = create_system_filter(system, filter_string, &filter); if (filter) { /* * No event actually uses the system filter * we can free it without synchronize_sched(). */ __free_filter(system->filter); system->filter = filter; } out_unlock: mutex_unlock(&event_mutex); return err; } #ifdef CONFIG_PERF_EVENTS void ftrace_profile_free_filter(struct perf_event *event) { struct event_filter *filter = event->filter; event->filter = NULL; __free_filter(filter); } struct function_filter_data { struct ftrace_ops *ops; int first_filter; int first_notrace; }; #ifdef CONFIG_FUNCTION_TRACER static char ** ftrace_function_filter_re(char *buf, int len, int *count) { char *str, *sep, **re; str = kstrndup(buf, len, GFP_KERNEL); if (!str) return NULL; /* * The argv_split function takes white space * as a separator, so convert ',' into spaces. */ while ((sep = strchr(str, ','))) *sep = ' '; re = argv_split(GFP_KERNEL, str, count); kfree(str); return re; } static int ftrace_function_set_regexp(struct ftrace_ops *ops, int filter, int reset, char *re, int len) { int ret; if (filter) ret = ftrace_set_filter(ops, re, len, reset); else ret = ftrace_set_notrace(ops, re, len, reset); return ret; } static int __ftrace_function_set_filter(int filter, char *buf, int len, struct function_filter_data *data) { int i, re_cnt, ret; int *reset; char **re; reset = filter ? &data->first_filter : &data->first_notrace; /* * The 'ip' field could have multiple filters set, separated * either by space or comma. We first cut the filter and apply * all pieces separatelly. */ re = ftrace_function_filter_re(buf, len, &re_cnt); if (!re) return -EINVAL; for (i = 0; i < re_cnt; i++) { ret = ftrace_function_set_regexp(data->ops, filter, *reset, re[i], strlen(re[i])); if (ret) break; if (*reset) *reset = 0; } argv_free(re); return ret; } static int ftrace_function_check_pred(struct filter_pred *pred, int leaf) { struct ftrace_event_field *field = pred->field; if (leaf) { /* * Check the leaf predicate for function trace, verify: * - only '==' and '!=' is used * - the 'ip' field is used */ if ((pred->op != OP_EQ) && (pred->op != OP_NE)) return -EINVAL; if (strcmp(field->name, "ip")) return -EINVAL; } else { /* * Check the non leaf predicate for function trace, verify: * - only '||' is used */ if (pred->op != OP_OR) return -EINVAL; } return 0; } static int ftrace_function_set_filter_cb(enum move_type move, struct filter_pred *pred, int *err, void *data) { /* Checking the node is valid for function trace. */ if ((move != MOVE_DOWN) || (pred->left != FILTER_PRED_INVALID)) { *err = ftrace_function_check_pred(pred, 0); } else { *err = ftrace_function_check_pred(pred, 1); if (*err) return WALK_PRED_ABORT; *err = __ftrace_function_set_filter(pred->op == OP_EQ, pred->regex.pattern, pred->regex.len, data); } return (*err) ? WALK_PRED_ABORT : WALK_PRED_DEFAULT; } static int ftrace_function_set_filter(struct perf_event *event, struct event_filter *filter) { struct function_filter_data data = { .first_filter = 1, .first_notrace = 1, .ops = &event->ftrace_ops, }; return walk_pred_tree(filter->preds, filter->root, ftrace_function_set_filter_cb, &data); } #else static int ftrace_function_set_filter(struct perf_event *event, struct event_filter *filter) { return -ENODEV; } #endif /* CONFIG_FUNCTION_TRACER */ int ftrace_profile_set_filter(struct perf_event *event, int event_id, char *filter_str) { int err; struct event_filter *filter; struct ftrace_event_call *call; mutex_lock(&event_mutex); call = event->tp_event; err = -EINVAL; if (!call) goto out_unlock; err = -EEXIST; if (event->filter) goto out_unlock; err = create_filter(call, filter_str, false, &filter); if (err) goto free_filter; if (ftrace_event_is_function(call)) err = ftrace_function_set_filter(event, filter); else event->filter = filter; free_filter: if (err || ftrace_event_is_function(call)) __free_filter(filter); out_unlock: mutex_unlock(&event_mutex); return err; } #endif /* CONFIG_PERF_EVENTS */ #ifdef CONFIG_FTRACE_STARTUP_TEST #include <linux/types.h> #include <linux/tracepoint.h> #define CREATE_TRACE_POINTS #include "trace_events_filter_test.h" #define DATA_REC(m, va, vb, vc, vd, ve, vf, vg, vh, nvisit) \ { \ .filter = FILTER, \ .rec = { .a = va, .b = vb, .c = vc, .d = vd, \ .e = ve, .f = vf, .g = vg, .h = vh }, \ .match = m, \ .not_visited = nvisit, \ } #define YES 1 #define NO 0 static struct test_filter_data_t { char *filter; struct ftrace_raw_ftrace_test_filter rec; int match; char *not_visited; } test_filter_data[] = { #define FILTER "a == 1 && b == 1 && c == 1 && d == 1 && " \ "e == 1 && f == 1 && g == 1 && h == 1" DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, ""), DATA_REC(NO, 0, 1, 1, 1, 1, 1, 1, 1, "bcdefgh"), DATA_REC(NO, 1, 1, 1, 1, 1, 1, 1, 0, ""), #undef FILTER #define FILTER "a == 1 || b == 1 || c == 1 || d == 1 || " \ "e == 1 || f == 1 || g == 1 || h == 1" DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 0, ""), DATA_REC(YES, 0, 0, 0, 0, 0, 0, 0, 1, ""), DATA_REC(YES, 1, 0, 0, 0, 0, 0, 0, 0, "bcdefgh"), #undef FILTER #define FILTER "(a == 1 || b == 1) && (c == 1 || d == 1) && " \ "(e == 1 || f == 1) && (g == 1 || h == 1)" DATA_REC(NO, 0, 0, 1, 1, 1, 1, 1, 1, "dfh"), DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""), DATA_REC(YES, 1, 0, 1, 0, 0, 1, 0, 1, "bd"), DATA_REC(NO, 1, 0, 1, 0, 0, 1, 0, 0, "bd"), #undef FILTER #define FILTER "(a == 1 && b == 1) || (c == 1 && d == 1) || " \ "(e == 1 && f == 1) || (g == 1 && h == 1)" DATA_REC(YES, 1, 0, 1, 1, 1, 1, 1, 1, "efgh"), DATA_REC(YES, 0, 0, 0, 0, 0, 0, 1, 1, ""), DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 1, ""), #undef FILTER #define FILTER "(a == 1 && b == 1) && (c == 1 && d == 1) && " \ "(e == 1 && f == 1) || (g == 1 && h == 1)" DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 0, "gh"), DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 1, ""), DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, ""), #undef FILTER #define FILTER "((a == 1 || b == 1) || (c == 1 || d == 1) || " \ "(e == 1 || f == 1)) && (g == 1 || h == 1)" DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 1, "bcdef"), DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 0, ""), DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, "h"), #undef FILTER #define FILTER "((((((((a == 1) && (b == 1)) || (c == 1)) && (d == 1)) || " \ "(e == 1)) && (f == 1)) || (g == 1)) && (h == 1))" DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "ceg"), DATA_REC(NO, 0, 1, 0, 1, 0, 1, 0, 1, ""), DATA_REC(NO, 1, 0, 1, 0, 1, 0, 1, 0, ""), #undef FILTER #define FILTER "((((((((a == 1) || (b == 1)) && (c == 1)) || (d == 1)) && " \ "(e == 1)) || (f == 1)) && (g == 1)) || (h == 1))" DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "bdfh"), DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""), DATA_REC(YES, 1, 0, 1, 0, 1, 0, 1, 0, "bdfh"), }; #undef DATA_REC #undef FILTER #undef YES #undef NO #define DATA_CNT (sizeof(test_filter_data)/sizeof(struct test_filter_data_t)) static int test_pred_visited; static int test_pred_visited_fn(struct filter_pred *pred, void *event) { struct ftrace_event_field *field = pred->field; test_pred_visited = 1; printk(KERN_INFO "\npred visited %s\n", field->name); return 1; } static int test_walk_pred_cb(enum move_type move, struct filter_pred *pred, int *err, void *data) { char *fields = data; if ((move == MOVE_DOWN) && (pred->left == FILTER_PRED_INVALID)) { struct ftrace_event_field *field = pred->field; if (!field) { WARN(1, "all leafs should have field defined"); return WALK_PRED_DEFAULT; } if (!strchr(fields, *field->name)) return WALK_PRED_DEFAULT; WARN_ON(!pred->fn); pred->fn = test_pred_visited_fn; } return WALK_PRED_DEFAULT; } static __init int ftrace_test_event_filter(void) { int i; printk(KERN_INFO "Testing ftrace filter: "); for (i = 0; i < DATA_CNT; i++) { struct event_filter *filter = NULL; struct test_filter_data_t *d = &test_filter_data[i]; int err; err = create_filter(&event_ftrace_test_filter, d->filter, false, &filter); if (err) { printk(KERN_INFO "Failed to get filter for '%s', err %d\n", d->filter, err); __free_filter(filter); break; } /* * The preemption disabling is not really needed for self * tests, but the rcu dereference will complain without it. */ preempt_disable(); if (*d->not_visited) walk_pred_tree(filter->preds, filter->root, test_walk_pred_cb, d->not_visited); test_pred_visited = 0; err = filter_match_preds(filter, &d->rec); preempt_enable(); __free_filter(filter); if (test_pred_visited) { printk(KERN_INFO "Failed, unwanted pred visited for filter %s\n", d->filter); break; } if (err != d->match) { printk(KERN_INFO "Failed to match filter '%s', expected %d\n", d->filter, d->match); break; } } if (i == DATA_CNT) printk(KERN_CONT "OK\n"); return 0; } late_initcall(ftrace_test_event_filter); #endif /* CONFIG_FTRACE_STARTUP_TEST */