/* * drivers/i2c/chips/tsl2563.c * * Copyright (C) 2008 Nokia Corporation * * Written by Timo O. Karjalainen <timo.o.karjalainen@nokia.com> * Contact: Amit Kucheria <amit.kucheria@verdurent.com> * * Converted to IIO driver * Amit Kucheria <amit.kucheria@verdurent.com> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA */ #include <linux/module.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/sched.h> #include <linux/mutex.h> #include <linux/delay.h> #include <linux/pm.h> #include <linux/err.h> #include <linux/slab.h> #include "../iio.h" #include "../sysfs.h" #include "../events.h" #include "tsl2563.h" /* Use this many bits for fraction part. */ #define ADC_FRAC_BITS (14) /* Given number of 1/10000's in ADC_FRAC_BITS precision. */ #define FRAC10K(f) (((f) * (1L << (ADC_FRAC_BITS))) / (10000)) /* Bits used for fraction in calibration coefficients.*/ #define CALIB_FRAC_BITS (10) /* 0.5 in CALIB_FRAC_BITS precision */ #define CALIB_FRAC_HALF (1 << (CALIB_FRAC_BITS - 1)) /* Make a fraction from a number n that was multiplied with b. */ #define CALIB_FRAC(n, b) (((n) << CALIB_FRAC_BITS) / (b)) /* Decimal 10^(digits in sysfs presentation) */ #define CALIB_BASE_SYSFS (1000) #define TSL2563_CMD (0x80) #define TSL2563_CLEARINT (0x40) #define TSL2563_REG_CTRL (0x00) #define TSL2563_REG_TIMING (0x01) #define TSL2563_REG_LOWLOW (0x02) /* data0 low threshold, 2 bytes */ #define TSL2563_REG_LOWHIGH (0x03) #define TSL2563_REG_HIGHLOW (0x04) /* data0 high threshold, 2 bytes */ #define TSL2563_REG_HIGHHIGH (0x05) #define TSL2563_REG_INT (0x06) #define TSL2563_REG_ID (0x0a) #define TSL2563_REG_DATA0LOW (0x0c) /* broadband sensor value, 2 bytes */ #define TSL2563_REG_DATA0HIGH (0x0d) #define TSL2563_REG_DATA1LOW (0x0e) /* infrared sensor value, 2 bytes */ #define TSL2563_REG_DATA1HIGH (0x0f) #define TSL2563_CMD_POWER_ON (0x03) #define TSL2563_CMD_POWER_OFF (0x00) #define TSL2563_CTRL_POWER_MASK (0x03) #define TSL2563_TIMING_13MS (0x00) #define TSL2563_TIMING_100MS (0x01) #define TSL2563_TIMING_400MS (0x02) #define TSL2563_TIMING_MASK (0x03) #define TSL2563_TIMING_GAIN16 (0x10) #define TSL2563_TIMING_GAIN1 (0x00) #define TSL2563_INT_DISBLED (0x00) #define TSL2563_INT_LEVEL (0x10) #define TSL2563_INT_PERSIST(n) ((n) & 0x0F) struct tsl2563_gainlevel_coeff { u8 gaintime; u16 min; u16 max; }; static const struct tsl2563_gainlevel_coeff tsl2563_gainlevel_table[] = { { .gaintime = TSL2563_TIMING_400MS | TSL2563_TIMING_GAIN16, .min = 0, .max = 65534, }, { .gaintime = TSL2563_TIMING_400MS | TSL2563_TIMING_GAIN1, .min = 2048, .max = 65534, }, { .gaintime = TSL2563_TIMING_100MS | TSL2563_TIMING_GAIN1, .min = 4095, .max = 37177, }, { .gaintime = TSL2563_TIMING_13MS | TSL2563_TIMING_GAIN1, .min = 3000, .max = 65535, }, }; struct tsl2563_chip { struct mutex lock; struct i2c_client *client; struct delayed_work poweroff_work; /* Remember state for suspend and resume functions */ bool suspended; struct tsl2563_gainlevel_coeff const *gainlevel; u16 low_thres; u16 high_thres; u8 intr; bool int_enabled; /* Calibration coefficients */ u32 calib0; u32 calib1; int cover_comp_gain; /* Cache current values, to be returned while suspended */ u32 data0; u32 data1; }; static int tsl2563_set_power(struct tsl2563_chip *chip, int on) { struct i2c_client *client = chip->client; u8 cmd; cmd = on ? TSL2563_CMD_POWER_ON : TSL2563_CMD_POWER_OFF; return i2c_smbus_write_byte_data(client, TSL2563_CMD | TSL2563_REG_CTRL, cmd); } /* * Return value is 0 for off, 1 for on, or a negative error * code if reading failed. */ static int tsl2563_get_power(struct tsl2563_chip *chip) { struct i2c_client *client = chip->client; int ret; ret = i2c_smbus_read_byte_data(client, TSL2563_CMD | TSL2563_REG_CTRL); if (ret < 0) return ret; return (ret & TSL2563_CTRL_POWER_MASK) == TSL2563_CMD_POWER_ON; } static int tsl2563_configure(struct tsl2563_chip *chip) { int ret; ret = i2c_smbus_write_byte_data(chip->client, TSL2563_CMD | TSL2563_REG_TIMING, chip->gainlevel->gaintime); if (ret) goto error_ret; ret = i2c_smbus_write_byte_data(chip->client, TSL2563_CMD | TSL2563_REG_HIGHLOW, chip->high_thres & 0xFF); if (ret) goto error_ret; ret = i2c_smbus_write_byte_data(chip->client, TSL2563_CMD | TSL2563_REG_HIGHHIGH, (chip->high_thres >> 8) & 0xFF); if (ret) goto error_ret; ret = i2c_smbus_write_byte_data(chip->client, TSL2563_CMD | TSL2563_REG_LOWLOW, chip->low_thres & 0xFF); if (ret) goto error_ret; ret = i2c_smbus_write_byte_data(chip->client, TSL2563_CMD | TSL2563_REG_LOWHIGH, (chip->low_thres >> 8) & 0xFF); /* Interrupt register is automatically written anyway if it is relevant so is not here */ error_ret: return ret; } static void tsl2563_poweroff_work(struct work_struct *work) { struct tsl2563_chip *chip = container_of(work, struct tsl2563_chip, poweroff_work.work); tsl2563_set_power(chip, 0); } static int tsl2563_detect(struct tsl2563_chip *chip) { int ret; ret = tsl2563_set_power(chip, 1); if (ret) return ret; ret = tsl2563_get_power(chip); if (ret < 0) return ret; return ret ? 0 : -ENODEV; } static int tsl2563_read_id(struct tsl2563_chip *chip, u8 *id) { struct i2c_client *client = chip->client; int ret; ret = i2c_smbus_read_byte_data(client, TSL2563_CMD | TSL2563_REG_ID); if (ret < 0) return ret; *id = ret; return 0; } /* * "Normalized" ADC value is one obtained with 400ms of integration time and * 16x gain. This function returns the number of bits of shift needed to * convert between normalized values and HW values obtained using given * timing and gain settings. */ static int adc_shiftbits(u8 timing) { int shift = 0; switch (timing & TSL2563_TIMING_MASK) { case TSL2563_TIMING_13MS: shift += 5; break; case TSL2563_TIMING_100MS: shift += 2; break; case TSL2563_TIMING_400MS: /* no-op */ break; } if (!(timing & TSL2563_TIMING_GAIN16)) shift += 4; return shift; } /* Convert a HW ADC value to normalized scale. */ static u32 normalize_adc(u16 adc, u8 timing) { return adc << adc_shiftbits(timing); } static void tsl2563_wait_adc(struct tsl2563_chip *chip) { unsigned int delay; switch (chip->gainlevel->gaintime & TSL2563_TIMING_MASK) { case TSL2563_TIMING_13MS: delay = 14; break; case TSL2563_TIMING_100MS: delay = 101; break; default: delay = 402; } /* * TODO: Make sure that we wait at least required delay but why we * have to extend it one tick more? */ schedule_timeout_interruptible(msecs_to_jiffies(delay) + 2); } static int tsl2563_adjust_gainlevel(struct tsl2563_chip *chip, u16 adc) { struct i2c_client *client = chip->client; if (adc > chip->gainlevel->max || adc < chip->gainlevel->min) { (adc > chip->gainlevel->max) ? chip->gainlevel++ : chip->gainlevel--; i2c_smbus_write_byte_data(client, TSL2563_CMD | TSL2563_REG_TIMING, chip->gainlevel->gaintime); tsl2563_wait_adc(chip); tsl2563_wait_adc(chip); return 1; } else return 0; } static int tsl2563_get_adc(struct tsl2563_chip *chip) { struct i2c_client *client = chip->client; u16 adc0, adc1; int retry = 1; int ret = 0; if (chip->suspended) goto out; if (!chip->int_enabled) { cancel_delayed_work(&chip->poweroff_work); if (!tsl2563_get_power(chip)) { ret = tsl2563_set_power(chip, 1); if (ret) goto out; ret = tsl2563_configure(chip); if (ret) goto out; tsl2563_wait_adc(chip); } } while (retry) { ret = i2c_smbus_read_word_data(client, TSL2563_CMD | TSL2563_REG_DATA0LOW); if (ret < 0) goto out; adc0 = ret; ret = i2c_smbus_read_word_data(client, TSL2563_CMD | TSL2563_REG_DATA1LOW); if (ret < 0) goto out; adc1 = ret; retry = tsl2563_adjust_gainlevel(chip, adc0); } chip->data0 = normalize_adc(adc0, chip->gainlevel->gaintime); chip->data1 = normalize_adc(adc1, chip->gainlevel->gaintime); if (!chip->int_enabled) schedule_delayed_work(&chip->poweroff_work, 5 * HZ); ret = 0; out: return ret; } static inline int calib_to_sysfs(u32 calib) { return (int) (((calib * CALIB_BASE_SYSFS) + CALIB_FRAC_HALF) >> CALIB_FRAC_BITS); } static inline u32 calib_from_sysfs(int value) { return (((u32) value) << CALIB_FRAC_BITS) / CALIB_BASE_SYSFS; } /* * Conversions between lux and ADC values. * * The basic formula is lux = c0 * adc0 - c1 * adc1, where c0 and c1 are * appropriate constants. Different constants are needed for different * kinds of light, determined by the ratio adc1/adc0 (basically the ratio * of the intensities in infrared and visible wavelengths). lux_table below * lists the upper threshold of the adc1/adc0 ratio and the corresponding * constants. */ struct tsl2563_lux_coeff { unsigned long ch_ratio; unsigned long ch0_coeff; unsigned long ch1_coeff; }; static const struct tsl2563_lux_coeff lux_table[] = { { .ch_ratio = FRAC10K(1300), .ch0_coeff = FRAC10K(315), .ch1_coeff = FRAC10K(262), }, { .ch_ratio = FRAC10K(2600), .ch0_coeff = FRAC10K(337), .ch1_coeff = FRAC10K(430), }, { .ch_ratio = FRAC10K(3900), .ch0_coeff = FRAC10K(363), .ch1_coeff = FRAC10K(529), }, { .ch_ratio = FRAC10K(5200), .ch0_coeff = FRAC10K(392), .ch1_coeff = FRAC10K(605), }, { .ch_ratio = FRAC10K(6500), .ch0_coeff = FRAC10K(229), .ch1_coeff = FRAC10K(291), }, { .ch_ratio = FRAC10K(8000), .ch0_coeff = FRAC10K(157), .ch1_coeff = FRAC10K(180), }, { .ch_ratio = FRAC10K(13000), .ch0_coeff = FRAC10K(34), .ch1_coeff = FRAC10K(26), }, { .ch_ratio = ULONG_MAX, .ch0_coeff = 0, .ch1_coeff = 0, }, }; /* * Convert normalized, scaled ADC values to lux. */ static unsigned int adc_to_lux(u32 adc0, u32 adc1) { const struct tsl2563_lux_coeff *lp = lux_table; unsigned long ratio, lux, ch0 = adc0, ch1 = adc1; ratio = ch0 ? ((ch1 << ADC_FRAC_BITS) / ch0) : ULONG_MAX; while (lp->ch_ratio < ratio) lp++; lux = ch0 * lp->ch0_coeff - ch1 * lp->ch1_coeff; return (unsigned int) (lux >> ADC_FRAC_BITS); } /*--------------------------------------------------------------*/ /* Sysfs interface */ /*--------------------------------------------------------------*/ /* Apply calibration coefficient to ADC count. */ static u32 calib_adc(u32 adc, u32 calib) { unsigned long scaled = adc; scaled *= calib; scaled >>= CALIB_FRAC_BITS; return (u32) scaled; } static int tsl2563_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct tsl2563_chip *chip = iio_priv(indio_dev); if (chan->channel == 0) chip->calib0 = calib_from_sysfs(val); else chip->calib1 = calib_from_sysfs(val); return 0; } static int tsl2563_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long m) { int ret = -EINVAL; u32 calib0, calib1; struct tsl2563_chip *chip = iio_priv(indio_dev); mutex_lock(&chip->lock); switch (m) { case 0: switch (chan->type) { case IIO_LIGHT: ret = tsl2563_get_adc(chip); if (ret) goto error_ret; calib0 = calib_adc(chip->data0, chip->calib0) * chip->cover_comp_gain; calib1 = calib_adc(chip->data1, chip->calib1) * chip->cover_comp_gain; *val = adc_to_lux(calib0, calib1); ret = IIO_VAL_INT; break; case IIO_INTENSITY: ret = tsl2563_get_adc(chip); if (ret) goto error_ret; if (chan->channel == 0) *val = chip->data0; else *val = chip->data1; ret = IIO_VAL_INT; break; default: break; } break; case IIO_CHAN_INFO_CALIBSCALE: if (chan->channel == 0) *val = calib_to_sysfs(chip->calib0); else *val = calib_to_sysfs(chip->calib1); ret = IIO_VAL_INT; break; default: ret = -EINVAL; goto error_ret; } error_ret: mutex_unlock(&chip->lock); return ret; } static const struct iio_chan_spec tsl2563_channels[] = { { .type = IIO_LIGHT, .indexed = 1, .channel = 0, }, { .type = IIO_INTENSITY, .modified = 1, .channel2 = IIO_MOD_LIGHT_BOTH, .info_mask = IIO_CHAN_INFO_CALIBSCALE_SEPARATE_BIT, .event_mask = (IIO_EV_BIT(IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING) | IIO_EV_BIT(IIO_EV_TYPE_THRESH, IIO_EV_DIR_FALLING)), }, { .type = IIO_INTENSITY, .modified = 1, .channel2 = IIO_MOD_LIGHT_IR, .info_mask = IIO_CHAN_INFO_CALIBSCALE_SEPARATE_BIT, } }; static int tsl2563_read_thresh(struct iio_dev *indio_dev, u64 event_code, int *val) { struct tsl2563_chip *chip = iio_priv(indio_dev); switch (IIO_EVENT_CODE_EXTRACT_DIR(event_code)) { case IIO_EV_DIR_RISING: *val = chip->high_thres; break; case IIO_EV_DIR_FALLING: *val = chip->low_thres; break; default: return -EINVAL; } return 0; } static int tsl2563_write_thresh(struct iio_dev *indio_dev, u64 event_code, int val) { struct tsl2563_chip *chip = iio_priv(indio_dev); int ret; u8 address; if (IIO_EVENT_CODE_EXTRACT_DIR(event_code) == IIO_EV_DIR_RISING) address = TSL2563_REG_HIGHLOW; else address = TSL2563_REG_LOWLOW; mutex_lock(&chip->lock); ret = i2c_smbus_write_byte_data(chip->client, TSL2563_CMD | address, val & 0xFF); if (ret) goto error_ret; ret = i2c_smbus_write_byte_data(chip->client, TSL2563_CMD | (address + 1), (val >> 8) & 0xFF); if (IIO_EVENT_CODE_EXTRACT_DIR(event_code) == IIO_EV_DIR_RISING) chip->high_thres = val; else chip->low_thres = val; error_ret: mutex_unlock(&chip->lock); return ret; } static irqreturn_t tsl2563_event_handler(int irq, void *private) { struct iio_dev *dev_info = private; struct tsl2563_chip *chip = iio_priv(dev_info); iio_push_event(dev_info, IIO_UNMOD_EVENT_CODE(IIO_LIGHT, 0, IIO_EV_TYPE_THRESH, IIO_EV_DIR_EITHER), iio_get_time_ns()); /* clear the interrupt and push the event */ i2c_smbus_write_byte(chip->client, TSL2563_CMD | TSL2563_CLEARINT); return IRQ_HANDLED; } static int tsl2563_write_interrupt_config(struct iio_dev *indio_dev, u64 event_code, int state) { struct tsl2563_chip *chip = iio_priv(indio_dev); int ret = 0; mutex_lock(&chip->lock); if (state && !(chip->intr & 0x30)) { chip->intr &= ~0x30; chip->intr |= 0x10; /* ensure the chip is actually on */ cancel_delayed_work(&chip->poweroff_work); if (!tsl2563_get_power(chip)) { ret = tsl2563_set_power(chip, 1); if (ret) goto out; ret = tsl2563_configure(chip); if (ret) goto out; } ret = i2c_smbus_write_byte_data(chip->client, TSL2563_CMD | TSL2563_REG_INT, chip->intr); chip->int_enabled = true; } if (!state && (chip->intr & 0x30)) { chip->intr |= ~0x30; ret = i2c_smbus_write_byte_data(chip->client, TSL2563_CMD | TSL2563_REG_INT, chip->intr); chip->int_enabled = false; /* now the interrupt is not enabled, we can go to sleep */ schedule_delayed_work(&chip->poweroff_work, 5 * HZ); } out: mutex_unlock(&chip->lock); return ret; } static int tsl2563_read_interrupt_config(struct iio_dev *indio_dev, u64 event_code) { struct tsl2563_chip *chip = iio_priv(indio_dev); int ret; mutex_lock(&chip->lock); ret = i2c_smbus_read_byte_data(chip->client, TSL2563_CMD | TSL2563_REG_INT); mutex_unlock(&chip->lock); if (ret < 0) goto error_ret; ret = !!(ret & 0x30); error_ret: return ret; } /*--------------------------------------------------------------*/ /* Probe, Attach, Remove */ /*--------------------------------------------------------------*/ static struct i2c_driver tsl2563_i2c_driver; static const struct iio_info tsl2563_info_no_irq = { .driver_module = THIS_MODULE, .read_raw = &tsl2563_read_raw, .write_raw = &tsl2563_write_raw, }; static const struct iio_info tsl2563_info = { .driver_module = THIS_MODULE, .read_raw = &tsl2563_read_raw, .write_raw = &tsl2563_write_raw, .read_event_value = &tsl2563_read_thresh, .write_event_value = &tsl2563_write_thresh, .read_event_config = &tsl2563_read_interrupt_config, .write_event_config = &tsl2563_write_interrupt_config, }; static int __devinit tsl2563_probe(struct i2c_client *client, const struct i2c_device_id *device_id) { struct iio_dev *indio_dev; struct tsl2563_chip *chip; struct tsl2563_platform_data *pdata = client->dev.platform_data; int err = 0; u8 id = 0; indio_dev = iio_allocate_device(sizeof(*chip)); if (!indio_dev) return -ENOMEM; chip = iio_priv(indio_dev); i2c_set_clientdata(client, chip); chip->client = client; err = tsl2563_detect(chip); if (err) { dev_err(&client->dev, "detect error %d\n", -err); goto fail1; } err = tsl2563_read_id(chip, &id); if (err) { dev_err(&client->dev, "read id error %d\n", -err); goto fail1; } mutex_init(&chip->lock); /* Default values used until userspace says otherwise */ chip->low_thres = 0x0; chip->high_thres = 0xffff; chip->gainlevel = tsl2563_gainlevel_table; chip->intr = TSL2563_INT_PERSIST(4); chip->calib0 = calib_from_sysfs(CALIB_BASE_SYSFS); chip->calib1 = calib_from_sysfs(CALIB_BASE_SYSFS); if (pdata) chip->cover_comp_gain = pdata->cover_comp_gain; else chip->cover_comp_gain = 1; dev_info(&client->dev, "model %d, rev. %d\n", id >> 4, id & 0x0f); indio_dev->name = client->name; indio_dev->channels = tsl2563_channels; indio_dev->num_channels = ARRAY_SIZE(tsl2563_channels); indio_dev->dev.parent = &client->dev; indio_dev->modes = INDIO_DIRECT_MODE; if (client->irq) indio_dev->info = &tsl2563_info; else indio_dev->info = &tsl2563_info_no_irq; if (client->irq) { err = request_threaded_irq(client->irq, NULL, &tsl2563_event_handler, IRQF_TRIGGER_RISING | IRQF_ONESHOT, "tsl2563_event", indio_dev); if (err) { dev_err(&client->dev, "irq request error %d\n", -err); goto fail1; } } err = tsl2563_configure(chip); if (err) { dev_err(&client->dev, "configure error %d\n", -err); goto fail2; } INIT_DELAYED_WORK(&chip->poweroff_work, tsl2563_poweroff_work); /* The interrupt cannot yet be enabled so this is fine without lock */ schedule_delayed_work(&chip->poweroff_work, 5 * HZ); err = iio_device_register(indio_dev); if (err) { dev_err(&client->dev, "iio registration error %d\n", -err); goto fail3; } return 0; fail3: cancel_delayed_work(&chip->poweroff_work); flush_scheduled_work(); fail2: if (client->irq) free_irq(client->irq, indio_dev); fail1: iio_free_device(indio_dev); return err; } static int tsl2563_remove(struct i2c_client *client) { struct tsl2563_chip *chip = i2c_get_clientdata(client); struct iio_dev *indio_dev = iio_priv_to_dev(chip); iio_device_unregister(indio_dev); if (!chip->int_enabled) cancel_delayed_work(&chip->poweroff_work); /* Ensure that interrupts are disabled - then flush any bottom halves */ chip->intr |= ~0x30; i2c_smbus_write_byte_data(chip->client, TSL2563_CMD | TSL2563_REG_INT, chip->intr); flush_scheduled_work(); tsl2563_set_power(chip, 0); if (client->irq) free_irq(client->irq, indio_dev); iio_free_device(indio_dev); return 0; } #ifdef CONFIG_PM_SLEEP static int tsl2563_suspend(struct device *dev) { struct tsl2563_chip *chip = i2c_get_clientdata(to_i2c_client(dev)); int ret; mutex_lock(&chip->lock); ret = tsl2563_set_power(chip, 0); if (ret) goto out; chip->suspended = true; out: mutex_unlock(&chip->lock); return ret; } static int tsl2563_resume(struct device *dev) { struct tsl2563_chip *chip = i2c_get_clientdata(to_i2c_client(dev)); int ret; mutex_lock(&chip->lock); ret = tsl2563_set_power(chip, 1); if (ret) goto out; ret = tsl2563_configure(chip); if (ret) goto out; chip->suspended = false; out: mutex_unlock(&chip->lock); return ret; } static SIMPLE_DEV_PM_OPS(tsl2563_pm_ops, tsl2563_suspend, tsl2563_resume); #define TSL2563_PM_OPS (&tsl2563_pm_ops) #else #define TSL2563_PM_OPS NULL #endif static const struct i2c_device_id tsl2563_id[] = { { "tsl2560", 0 }, { "tsl2561", 1 }, { "tsl2562", 2 }, { "tsl2563", 3 }, {} }; MODULE_DEVICE_TABLE(i2c, tsl2563_id); static struct i2c_driver tsl2563_i2c_driver = { .driver = { .name = "tsl2563", .pm = TSL2563_PM_OPS, }, .probe = tsl2563_probe, .remove = __devexit_p(tsl2563_remove), .id_table = tsl2563_id, }; module_i2c_driver(tsl2563_i2c_driver); MODULE_AUTHOR("Nokia Corporation"); MODULE_DESCRIPTION("tsl2563 light sensor driver"); MODULE_LICENSE("GPL");