/* * Portions copyright (C) 2003 Russell King, PXA MMCI Driver * Portions copyright (C) 2004-2005 Pierre Ossman, W83L51xD SD/MMC driver * * Copyright 2008 Embedded Alley Solutions, Inc. * Copyright 2009-2011 Freescale Semiconductor, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/ioport.h> #include <linux/platform_device.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/highmem.h> #include <linux/clk.h> #include <linux/err.h> #include <linux/completion.h> #include <linux/mmc/host.h> #include <linux/mmc/mmc.h> #include <linux/mmc/sdio.h> #include <linux/gpio.h> #include <linux/regulator/consumer.h> #include <linux/module.h> #include <linux/fsl/mxs-dma.h> #include <mach/mxs.h> #include <mach/common.h> #include <mach/mmc.h> #define DRIVER_NAME "mxs-mmc" /* card detect polling timeout */ #define MXS_MMC_DETECT_TIMEOUT (HZ/2) #define SSP_VERSION_LATEST 4 #define ssp_is_old() (host->version < SSP_VERSION_LATEST) /* SSP registers */ #define HW_SSP_CTRL0 0x000 #define BM_SSP_CTRL0_RUN (1 << 29) #define BM_SSP_CTRL0_SDIO_IRQ_CHECK (1 << 28) #define BM_SSP_CTRL0_IGNORE_CRC (1 << 26) #define BM_SSP_CTRL0_READ (1 << 25) #define BM_SSP_CTRL0_DATA_XFER (1 << 24) #define BP_SSP_CTRL0_BUS_WIDTH (22) #define BM_SSP_CTRL0_BUS_WIDTH (0x3 << 22) #define BM_SSP_CTRL0_WAIT_FOR_IRQ (1 << 21) #define BM_SSP_CTRL0_LONG_RESP (1 << 19) #define BM_SSP_CTRL0_GET_RESP (1 << 17) #define BM_SSP_CTRL0_ENABLE (1 << 16) #define BP_SSP_CTRL0_XFER_COUNT (0) #define BM_SSP_CTRL0_XFER_COUNT (0xffff) #define HW_SSP_CMD0 0x010 #define BM_SSP_CMD0_DBL_DATA_RATE_EN (1 << 25) #define BM_SSP_CMD0_SLOW_CLKING_EN (1 << 22) #define BM_SSP_CMD0_CONT_CLKING_EN (1 << 21) #define BM_SSP_CMD0_APPEND_8CYC (1 << 20) #define BP_SSP_CMD0_BLOCK_SIZE (16) #define BM_SSP_CMD0_BLOCK_SIZE (0xf << 16) #define BP_SSP_CMD0_BLOCK_COUNT (8) #define BM_SSP_CMD0_BLOCK_COUNT (0xff << 8) #define BP_SSP_CMD0_CMD (0) #define BM_SSP_CMD0_CMD (0xff) #define HW_SSP_CMD1 0x020 #define HW_SSP_XFER_SIZE 0x030 #define HW_SSP_BLOCK_SIZE 0x040 #define BP_SSP_BLOCK_SIZE_BLOCK_COUNT (4) #define BM_SSP_BLOCK_SIZE_BLOCK_COUNT (0xffffff << 4) #define BP_SSP_BLOCK_SIZE_BLOCK_SIZE (0) #define BM_SSP_BLOCK_SIZE_BLOCK_SIZE (0xf) #define HW_SSP_TIMING (ssp_is_old() ? 0x050 : 0x070) #define BP_SSP_TIMING_TIMEOUT (16) #define BM_SSP_TIMING_TIMEOUT (0xffff << 16) #define BP_SSP_TIMING_CLOCK_DIVIDE (8) #define BM_SSP_TIMING_CLOCK_DIVIDE (0xff << 8) #define BP_SSP_TIMING_CLOCK_RATE (0) #define BM_SSP_TIMING_CLOCK_RATE (0xff) #define HW_SSP_CTRL1 (ssp_is_old() ? 0x060 : 0x080) #define BM_SSP_CTRL1_SDIO_IRQ (1 << 31) #define BM_SSP_CTRL1_SDIO_IRQ_EN (1 << 30) #define BM_SSP_CTRL1_RESP_ERR_IRQ (1 << 29) #define BM_SSP_CTRL1_RESP_ERR_IRQ_EN (1 << 28) #define BM_SSP_CTRL1_RESP_TIMEOUT_IRQ (1 << 27) #define BM_SSP_CTRL1_RESP_TIMEOUT_IRQ_EN (1 << 26) #define BM_SSP_CTRL1_DATA_TIMEOUT_IRQ (1 << 25) #define BM_SSP_CTRL1_DATA_TIMEOUT_IRQ_EN (1 << 24) #define BM_SSP_CTRL1_DATA_CRC_IRQ (1 << 23) #define BM_SSP_CTRL1_DATA_CRC_IRQ_EN (1 << 22) #define BM_SSP_CTRL1_FIFO_UNDERRUN_IRQ (1 << 21) #define BM_SSP_CTRL1_FIFO_UNDERRUN_IRQ_EN (1 << 20) #define BM_SSP_CTRL1_RECV_TIMEOUT_IRQ (1 << 17) #define BM_SSP_CTRL1_RECV_TIMEOUT_IRQ_EN (1 << 16) #define BM_SSP_CTRL1_FIFO_OVERRUN_IRQ (1 << 15) #define BM_SSP_CTRL1_FIFO_OVERRUN_IRQ_EN (1 << 14) #define BM_SSP_CTRL1_DMA_ENABLE (1 << 13) #define BM_SSP_CTRL1_POLARITY (1 << 9) #define BP_SSP_CTRL1_WORD_LENGTH (4) #define BM_SSP_CTRL1_WORD_LENGTH (0xf << 4) #define BP_SSP_CTRL1_SSP_MODE (0) #define BM_SSP_CTRL1_SSP_MODE (0xf) #define HW_SSP_SDRESP0 (ssp_is_old() ? 0x080 : 0x0a0) #define HW_SSP_SDRESP1 (ssp_is_old() ? 0x090 : 0x0b0) #define HW_SSP_SDRESP2 (ssp_is_old() ? 0x0a0 : 0x0c0) #define HW_SSP_SDRESP3 (ssp_is_old() ? 0x0b0 : 0x0d0) #define HW_SSP_STATUS (ssp_is_old() ? 0x0c0 : 0x100) #define BM_SSP_STATUS_CARD_DETECT (1 << 28) #define BM_SSP_STATUS_SDIO_IRQ (1 << 17) #define HW_SSP_VERSION (cpu_is_mx23() ? 0x110 : 0x130) #define BP_SSP_VERSION_MAJOR (24) #define BF_SSP(value, field) (((value) << BP_SSP_##field) & BM_SSP_##field) #define MXS_MMC_IRQ_BITS (BM_SSP_CTRL1_SDIO_IRQ | \ BM_SSP_CTRL1_RESP_ERR_IRQ | \ BM_SSP_CTRL1_RESP_TIMEOUT_IRQ | \ BM_SSP_CTRL1_DATA_TIMEOUT_IRQ | \ BM_SSP_CTRL1_DATA_CRC_IRQ | \ BM_SSP_CTRL1_FIFO_UNDERRUN_IRQ | \ BM_SSP_CTRL1_RECV_TIMEOUT_IRQ | \ BM_SSP_CTRL1_FIFO_OVERRUN_IRQ) #define SSP_PIO_NUM 3 struct mxs_mmc_host { struct mmc_host *mmc; struct mmc_request *mrq; struct mmc_command *cmd; struct mmc_data *data; void __iomem *base; int irq; struct resource *res; struct resource *dma_res; struct clk *clk; unsigned int clk_rate; struct dma_chan *dmach; struct mxs_dma_data dma_data; unsigned int dma_dir; enum dma_transfer_direction slave_dirn; u32 ssp_pio_words[SSP_PIO_NUM]; unsigned int version; unsigned char bus_width; spinlock_t lock; int sdio_irq_en; }; static int mxs_mmc_get_ro(struct mmc_host *mmc) { struct mxs_mmc_host *host = mmc_priv(mmc); struct mxs_mmc_platform_data *pdata = mmc_dev(host->mmc)->platform_data; if (!pdata) return -EFAULT; if (!gpio_is_valid(pdata->wp_gpio)) return -EINVAL; return gpio_get_value(pdata->wp_gpio); } static int mxs_mmc_get_cd(struct mmc_host *mmc) { struct mxs_mmc_host *host = mmc_priv(mmc); return !(readl(host->base + HW_SSP_STATUS) & BM_SSP_STATUS_CARD_DETECT); } static void mxs_mmc_reset(struct mxs_mmc_host *host) { u32 ctrl0, ctrl1; mxs_reset_block(host->base); ctrl0 = BM_SSP_CTRL0_IGNORE_CRC; ctrl1 = BF_SSP(0x3, CTRL1_SSP_MODE) | BF_SSP(0x7, CTRL1_WORD_LENGTH) | BM_SSP_CTRL1_DMA_ENABLE | BM_SSP_CTRL1_POLARITY | BM_SSP_CTRL1_RECV_TIMEOUT_IRQ_EN | BM_SSP_CTRL1_DATA_CRC_IRQ_EN | BM_SSP_CTRL1_DATA_TIMEOUT_IRQ_EN | BM_SSP_CTRL1_RESP_TIMEOUT_IRQ_EN | BM_SSP_CTRL1_RESP_ERR_IRQ_EN; writel(BF_SSP(0xffff, TIMING_TIMEOUT) | BF_SSP(2, TIMING_CLOCK_DIVIDE) | BF_SSP(0, TIMING_CLOCK_RATE), host->base + HW_SSP_TIMING); if (host->sdio_irq_en) { ctrl0 |= BM_SSP_CTRL0_SDIO_IRQ_CHECK; ctrl1 |= BM_SSP_CTRL1_SDIO_IRQ_EN; } writel(ctrl0, host->base + HW_SSP_CTRL0); writel(ctrl1, host->base + HW_SSP_CTRL1); } static void mxs_mmc_start_cmd(struct mxs_mmc_host *host, struct mmc_command *cmd); static void mxs_mmc_request_done(struct mxs_mmc_host *host) { struct mmc_command *cmd = host->cmd; struct mmc_data *data = host->data; struct mmc_request *mrq = host->mrq; if (mmc_resp_type(cmd) & MMC_RSP_PRESENT) { if (mmc_resp_type(cmd) & MMC_RSP_136) { cmd->resp[3] = readl(host->base + HW_SSP_SDRESP0); cmd->resp[2] = readl(host->base + HW_SSP_SDRESP1); cmd->resp[1] = readl(host->base + HW_SSP_SDRESP2); cmd->resp[0] = readl(host->base + HW_SSP_SDRESP3); } else { cmd->resp[0] = readl(host->base + HW_SSP_SDRESP0); } } if (data) { dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma_dir); /* * If there was an error on any block, we mark all * data blocks as being in error. */ if (!data->error) data->bytes_xfered = data->blocks * data->blksz; else data->bytes_xfered = 0; host->data = NULL; if (mrq->stop) { mxs_mmc_start_cmd(host, mrq->stop); return; } } host->mrq = NULL; mmc_request_done(host->mmc, mrq); } static void mxs_mmc_dma_irq_callback(void *param) { struct mxs_mmc_host *host = param; mxs_mmc_request_done(host); } static irqreturn_t mxs_mmc_irq_handler(int irq, void *dev_id) { struct mxs_mmc_host *host = dev_id; struct mmc_command *cmd = host->cmd; struct mmc_data *data = host->data; u32 stat; spin_lock(&host->lock); stat = readl(host->base + HW_SSP_CTRL1); writel(stat & MXS_MMC_IRQ_BITS, host->base + HW_SSP_CTRL1 + MXS_CLR_ADDR); spin_unlock(&host->lock); if ((stat & BM_SSP_CTRL1_SDIO_IRQ) && (stat & BM_SSP_CTRL1_SDIO_IRQ_EN)) mmc_signal_sdio_irq(host->mmc); if (stat & BM_SSP_CTRL1_RESP_TIMEOUT_IRQ) cmd->error = -ETIMEDOUT; else if (stat & BM_SSP_CTRL1_RESP_ERR_IRQ) cmd->error = -EIO; if (data) { if (stat & (BM_SSP_CTRL1_DATA_TIMEOUT_IRQ | BM_SSP_CTRL1_RECV_TIMEOUT_IRQ)) data->error = -ETIMEDOUT; else if (stat & BM_SSP_CTRL1_DATA_CRC_IRQ) data->error = -EILSEQ; else if (stat & (BM_SSP_CTRL1_FIFO_UNDERRUN_IRQ | BM_SSP_CTRL1_FIFO_OVERRUN_IRQ)) data->error = -EIO; } return IRQ_HANDLED; } static struct dma_async_tx_descriptor *mxs_mmc_prep_dma( struct mxs_mmc_host *host, unsigned long flags) { struct dma_async_tx_descriptor *desc; struct mmc_data *data = host->data; struct scatterlist * sgl; unsigned int sg_len; if (data) { /* data */ dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma_dir); sgl = data->sg; sg_len = data->sg_len; } else { /* pio */ sgl = (struct scatterlist *) host->ssp_pio_words; sg_len = SSP_PIO_NUM; } desc = dmaengine_prep_slave_sg(host->dmach, sgl, sg_len, host->slave_dirn, flags); if (desc) { desc->callback = mxs_mmc_dma_irq_callback; desc->callback_param = host; } else { if (data) dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma_dir); } return desc; } static void mxs_mmc_bc(struct mxs_mmc_host *host) { struct mmc_command *cmd = host->cmd; struct dma_async_tx_descriptor *desc; u32 ctrl0, cmd0, cmd1; ctrl0 = BM_SSP_CTRL0_ENABLE | BM_SSP_CTRL0_IGNORE_CRC; cmd0 = BF_SSP(cmd->opcode, CMD0_CMD) | BM_SSP_CMD0_APPEND_8CYC; cmd1 = cmd->arg; if (host->sdio_irq_en) { ctrl0 |= BM_SSP_CTRL0_SDIO_IRQ_CHECK; cmd0 |= BM_SSP_CMD0_CONT_CLKING_EN | BM_SSP_CMD0_SLOW_CLKING_EN; } host->ssp_pio_words[0] = ctrl0; host->ssp_pio_words[1] = cmd0; host->ssp_pio_words[2] = cmd1; host->dma_dir = DMA_NONE; host->slave_dirn = DMA_TRANS_NONE; desc = mxs_mmc_prep_dma(host, DMA_CTRL_ACK); if (!desc) goto out; dmaengine_submit(desc); dma_async_issue_pending(host->dmach); return; out: dev_warn(mmc_dev(host->mmc), "%s: failed to prep dma\n", __func__); } static void mxs_mmc_ac(struct mxs_mmc_host *host) { struct mmc_command *cmd = host->cmd; struct dma_async_tx_descriptor *desc; u32 ignore_crc, get_resp, long_resp; u32 ctrl0, cmd0, cmd1; ignore_crc = (mmc_resp_type(cmd) & MMC_RSP_CRC) ? 0 : BM_SSP_CTRL0_IGNORE_CRC; get_resp = (mmc_resp_type(cmd) & MMC_RSP_PRESENT) ? BM_SSP_CTRL0_GET_RESP : 0; long_resp = (mmc_resp_type(cmd) & MMC_RSP_136) ? BM_SSP_CTRL0_LONG_RESP : 0; ctrl0 = BM_SSP_CTRL0_ENABLE | ignore_crc | get_resp | long_resp; cmd0 = BF_SSP(cmd->opcode, CMD0_CMD); cmd1 = cmd->arg; if (host->sdio_irq_en) { ctrl0 |= BM_SSP_CTRL0_SDIO_IRQ_CHECK; cmd0 |= BM_SSP_CMD0_CONT_CLKING_EN | BM_SSP_CMD0_SLOW_CLKING_EN; } host->ssp_pio_words[0] = ctrl0; host->ssp_pio_words[1] = cmd0; host->ssp_pio_words[2] = cmd1; host->dma_dir = DMA_NONE; host->slave_dirn = DMA_TRANS_NONE; desc = mxs_mmc_prep_dma(host, DMA_CTRL_ACK); if (!desc) goto out; dmaengine_submit(desc); dma_async_issue_pending(host->dmach); return; out: dev_warn(mmc_dev(host->mmc), "%s: failed to prep dma\n", __func__); } static unsigned short mxs_ns_to_ssp_ticks(unsigned clock_rate, unsigned ns) { const unsigned int ssp_timeout_mul = 4096; /* * Calculate ticks in ms since ns are large numbers * and might overflow */ const unsigned int clock_per_ms = clock_rate / 1000; const unsigned int ms = ns / 1000; const unsigned int ticks = ms * clock_per_ms; const unsigned int ssp_ticks = ticks / ssp_timeout_mul; WARN_ON(ssp_ticks == 0); return ssp_ticks; } static void mxs_mmc_adtc(struct mxs_mmc_host *host) { struct mmc_command *cmd = host->cmd; struct mmc_data *data = cmd->data; struct dma_async_tx_descriptor *desc; struct scatterlist *sgl = data->sg, *sg; unsigned int sg_len = data->sg_len; int i; unsigned short dma_data_dir, timeout; enum dma_transfer_direction slave_dirn; unsigned int data_size = 0, log2_blksz; unsigned int blocks = data->blocks; u32 ignore_crc, get_resp, long_resp, read; u32 ctrl0, cmd0, cmd1, val; ignore_crc = (mmc_resp_type(cmd) & MMC_RSP_CRC) ? 0 : BM_SSP_CTRL0_IGNORE_CRC; get_resp = (mmc_resp_type(cmd) & MMC_RSP_PRESENT) ? BM_SSP_CTRL0_GET_RESP : 0; long_resp = (mmc_resp_type(cmd) & MMC_RSP_136) ? BM_SSP_CTRL0_LONG_RESP : 0; if (data->flags & MMC_DATA_WRITE) { dma_data_dir = DMA_TO_DEVICE; slave_dirn = DMA_MEM_TO_DEV; read = 0; } else { dma_data_dir = DMA_FROM_DEVICE; slave_dirn = DMA_DEV_TO_MEM; read = BM_SSP_CTRL0_READ; } ctrl0 = BF_SSP(host->bus_width, CTRL0_BUS_WIDTH) | ignore_crc | get_resp | long_resp | BM_SSP_CTRL0_DATA_XFER | read | BM_SSP_CTRL0_WAIT_FOR_IRQ | BM_SSP_CTRL0_ENABLE; cmd0 = BF_SSP(cmd->opcode, CMD0_CMD); /* get logarithm to base 2 of block size for setting register */ log2_blksz = ilog2(data->blksz); /* * take special care of the case that data size from data->sg * is not equal to blocks x blksz */ for_each_sg(sgl, sg, sg_len, i) data_size += sg->length; if (data_size != data->blocks * data->blksz) blocks = 1; /* xfer count, block size and count need to be set differently */ if (ssp_is_old()) { ctrl0 |= BF_SSP(data_size, CTRL0_XFER_COUNT); cmd0 |= BF_SSP(log2_blksz, CMD0_BLOCK_SIZE) | BF_SSP(blocks - 1, CMD0_BLOCK_COUNT); } else { writel(data_size, host->base + HW_SSP_XFER_SIZE); writel(BF_SSP(log2_blksz, BLOCK_SIZE_BLOCK_SIZE) | BF_SSP(blocks - 1, BLOCK_SIZE_BLOCK_COUNT), host->base + HW_SSP_BLOCK_SIZE); } if ((cmd->opcode == MMC_STOP_TRANSMISSION) || (cmd->opcode == SD_IO_RW_EXTENDED)) cmd0 |= BM_SSP_CMD0_APPEND_8CYC; cmd1 = cmd->arg; if (host->sdio_irq_en) { ctrl0 |= BM_SSP_CTRL0_SDIO_IRQ_CHECK; cmd0 |= BM_SSP_CMD0_CONT_CLKING_EN | BM_SSP_CMD0_SLOW_CLKING_EN; } /* set the timeout count */ timeout = mxs_ns_to_ssp_ticks(host->clk_rate, data->timeout_ns); val = readl(host->base + HW_SSP_TIMING); val &= ~(BM_SSP_TIMING_TIMEOUT); val |= BF_SSP(timeout, TIMING_TIMEOUT); writel(val, host->base + HW_SSP_TIMING); /* pio */ host->ssp_pio_words[0] = ctrl0; host->ssp_pio_words[1] = cmd0; host->ssp_pio_words[2] = cmd1; host->dma_dir = DMA_NONE; host->slave_dirn = DMA_TRANS_NONE; desc = mxs_mmc_prep_dma(host, 0); if (!desc) goto out; /* append data sg */ WARN_ON(host->data != NULL); host->data = data; host->dma_dir = dma_data_dir; host->slave_dirn = slave_dirn; desc = mxs_mmc_prep_dma(host, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) goto out; dmaengine_submit(desc); dma_async_issue_pending(host->dmach); return; out: dev_warn(mmc_dev(host->mmc), "%s: failed to prep dma\n", __func__); } static void mxs_mmc_start_cmd(struct mxs_mmc_host *host, struct mmc_command *cmd) { host->cmd = cmd; switch (mmc_cmd_type(cmd)) { case MMC_CMD_BC: mxs_mmc_bc(host); break; case MMC_CMD_BCR: mxs_mmc_ac(host); break; case MMC_CMD_AC: mxs_mmc_ac(host); break; case MMC_CMD_ADTC: mxs_mmc_adtc(host); break; default: dev_warn(mmc_dev(host->mmc), "%s: unknown MMC command\n", __func__); break; } } static void mxs_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq) { struct mxs_mmc_host *host = mmc_priv(mmc); WARN_ON(host->mrq != NULL); host->mrq = mrq; mxs_mmc_start_cmd(host, mrq->cmd); } static void mxs_mmc_set_clk_rate(struct mxs_mmc_host *host, unsigned int rate) { unsigned int ssp_clk, ssp_sck; u32 clock_divide, clock_rate; u32 val; ssp_clk = clk_get_rate(host->clk); for (clock_divide = 2; clock_divide <= 254; clock_divide += 2) { clock_rate = DIV_ROUND_UP(ssp_clk, rate * clock_divide); clock_rate = (clock_rate > 0) ? clock_rate - 1 : 0; if (clock_rate <= 255) break; } if (clock_divide > 254) { dev_err(mmc_dev(host->mmc), "%s: cannot set clock to %d\n", __func__, rate); return; } ssp_sck = ssp_clk / clock_divide / (1 + clock_rate); val = readl(host->base + HW_SSP_TIMING); val &= ~(BM_SSP_TIMING_CLOCK_DIVIDE | BM_SSP_TIMING_CLOCK_RATE); val |= BF_SSP(clock_divide, TIMING_CLOCK_DIVIDE); val |= BF_SSP(clock_rate, TIMING_CLOCK_RATE); writel(val, host->base + HW_SSP_TIMING); host->clk_rate = ssp_sck; dev_dbg(mmc_dev(host->mmc), "%s: clock_divide %d, clock_rate %d, ssp_clk %d, rate_actual %d, rate_requested %d\n", __func__, clock_divide, clock_rate, ssp_clk, ssp_sck, rate); } static void mxs_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { struct mxs_mmc_host *host = mmc_priv(mmc); if (ios->bus_width == MMC_BUS_WIDTH_8) host->bus_width = 2; else if (ios->bus_width == MMC_BUS_WIDTH_4) host->bus_width = 1; else host->bus_width = 0; if (ios->clock) mxs_mmc_set_clk_rate(host, ios->clock); } static void mxs_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable) { struct mxs_mmc_host *host = mmc_priv(mmc); unsigned long flags; spin_lock_irqsave(&host->lock, flags); host->sdio_irq_en = enable; if (enable) { writel(BM_SSP_CTRL0_SDIO_IRQ_CHECK, host->base + HW_SSP_CTRL0 + MXS_SET_ADDR); writel(BM_SSP_CTRL1_SDIO_IRQ_EN, host->base + HW_SSP_CTRL1 + MXS_SET_ADDR); if (readl(host->base + HW_SSP_STATUS) & BM_SSP_STATUS_SDIO_IRQ) mmc_signal_sdio_irq(host->mmc); } else { writel(BM_SSP_CTRL0_SDIO_IRQ_CHECK, host->base + HW_SSP_CTRL0 + MXS_CLR_ADDR); writel(BM_SSP_CTRL1_SDIO_IRQ_EN, host->base + HW_SSP_CTRL1 + MXS_CLR_ADDR); } spin_unlock_irqrestore(&host->lock, flags); } static const struct mmc_host_ops mxs_mmc_ops = { .request = mxs_mmc_request, .get_ro = mxs_mmc_get_ro, .get_cd = mxs_mmc_get_cd, .set_ios = mxs_mmc_set_ios, .enable_sdio_irq = mxs_mmc_enable_sdio_irq, }; static bool mxs_mmc_dma_filter(struct dma_chan *chan, void *param) { struct mxs_mmc_host *host = param; if (!mxs_dma_is_apbh(chan)) return false; if (chan->chan_id != host->dma_res->start) return false; chan->private = &host->dma_data; return true; } static int mxs_mmc_probe(struct platform_device *pdev) { struct mxs_mmc_host *host; struct mmc_host *mmc; struct resource *iores, *dmares, *r; struct mxs_mmc_platform_data *pdata; int ret = 0, irq_err, irq_dma; dma_cap_mask_t mask; iores = platform_get_resource(pdev, IORESOURCE_MEM, 0); dmares = platform_get_resource(pdev, IORESOURCE_DMA, 0); irq_err = platform_get_irq(pdev, 0); irq_dma = platform_get_irq(pdev, 1); if (!iores || !dmares || irq_err < 0 || irq_dma < 0) return -EINVAL; r = request_mem_region(iores->start, resource_size(iores), pdev->name); if (!r) return -EBUSY; mmc = mmc_alloc_host(sizeof(struct mxs_mmc_host), &pdev->dev); if (!mmc) { ret = -ENOMEM; goto out_release_mem; } host = mmc_priv(mmc); host->base = ioremap(r->start, resource_size(r)); if (!host->base) { ret = -ENOMEM; goto out_mmc_free; } /* only major verion does matter */ host->version = readl(host->base + HW_SSP_VERSION) >> BP_SSP_VERSION_MAJOR; host->mmc = mmc; host->res = r; host->dma_res = dmares; host->irq = irq_err; host->sdio_irq_en = 0; host->clk = clk_get(&pdev->dev, NULL); if (IS_ERR(host->clk)) { ret = PTR_ERR(host->clk); goto out_iounmap; } clk_prepare_enable(host->clk); mxs_mmc_reset(host); dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); host->dma_data.chan_irq = irq_dma; host->dmach = dma_request_channel(mask, mxs_mmc_dma_filter, host); if (!host->dmach) { dev_err(mmc_dev(host->mmc), "%s: failed to request dma\n", __func__); goto out_clk_put; } /* set mmc core parameters */ mmc->ops = &mxs_mmc_ops; mmc->caps = MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SDIO_IRQ | MMC_CAP_NEEDS_POLL; pdata = mmc_dev(host->mmc)->platform_data; if (pdata) { if (pdata->flags & SLOTF_8_BIT_CAPABLE) mmc->caps |= MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA; if (pdata->flags & SLOTF_4_BIT_CAPABLE) mmc->caps |= MMC_CAP_4_BIT_DATA; } mmc->f_min = 400000; mmc->f_max = 288000000; mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34; mmc->max_segs = 52; mmc->max_blk_size = 1 << 0xf; mmc->max_blk_count = (ssp_is_old()) ? 0xff : 0xffffff; mmc->max_req_size = (ssp_is_old()) ? 0xffff : 0xffffffff; mmc->max_seg_size = dma_get_max_seg_size(host->dmach->device->dev); platform_set_drvdata(pdev, mmc); ret = request_irq(host->irq, mxs_mmc_irq_handler, 0, DRIVER_NAME, host); if (ret) goto out_free_dma; spin_lock_init(&host->lock); ret = mmc_add_host(mmc); if (ret) goto out_free_irq; dev_info(mmc_dev(host->mmc), "initialized\n"); return 0; out_free_irq: free_irq(host->irq, host); out_free_dma: if (host->dmach) dma_release_channel(host->dmach); out_clk_put: clk_disable_unprepare(host->clk); clk_put(host->clk); out_iounmap: iounmap(host->base); out_mmc_free: mmc_free_host(mmc); out_release_mem: release_mem_region(iores->start, resource_size(iores)); return ret; } static int mxs_mmc_remove(struct platform_device *pdev) { struct mmc_host *mmc = platform_get_drvdata(pdev); struct mxs_mmc_host *host = mmc_priv(mmc); struct resource *res = host->res; mmc_remove_host(mmc); free_irq(host->irq, host); platform_set_drvdata(pdev, NULL); if (host->dmach) dma_release_channel(host->dmach); clk_disable_unprepare(host->clk); clk_put(host->clk); iounmap(host->base); mmc_free_host(mmc); release_mem_region(res->start, resource_size(res)); return 0; } #ifdef CONFIG_PM static int mxs_mmc_suspend(struct device *dev) { struct mmc_host *mmc = dev_get_drvdata(dev); struct mxs_mmc_host *host = mmc_priv(mmc); int ret = 0; ret = mmc_suspend_host(mmc); clk_disable_unprepare(host->clk); return ret; } static int mxs_mmc_resume(struct device *dev) { struct mmc_host *mmc = dev_get_drvdata(dev); struct mxs_mmc_host *host = mmc_priv(mmc); int ret = 0; clk_prepare_enable(host->clk); ret = mmc_resume_host(mmc); return ret; } static const struct dev_pm_ops mxs_mmc_pm_ops = { .suspend = mxs_mmc_suspend, .resume = mxs_mmc_resume, }; #endif static struct platform_driver mxs_mmc_driver = { .probe = mxs_mmc_probe, .remove = mxs_mmc_remove, .driver = { .name = DRIVER_NAME, .owner = THIS_MODULE, #ifdef CONFIG_PM .pm = &mxs_mmc_pm_ops, #endif }, }; module_platform_driver(mxs_mmc_driver); MODULE_DESCRIPTION("FREESCALE MXS MMC peripheral"); MODULE_AUTHOR("Freescale Semiconductor"); MODULE_LICENSE("GPL");