/* * Driver for the Conexant CX25821 PCIe bridge * * Copyright (C) 2009 Conexant Systems Inc. * Authors <hiep.huynh@conexant.com>, <shu.lin@conexant.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include "cx25821-video.h" #include "cx25821-audio-upstream.h" #include <linux/fs.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/module.h> #include <linux/syscalls.h> #include <linux/file.h> #include <linux/fcntl.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/uaccess.h> MODULE_DESCRIPTION("v4l2 driver module for cx25821 based TV cards"); MODULE_AUTHOR("Hiep Huynh <hiep.huynh@conexant.com>"); MODULE_LICENSE("GPL"); static int _intr_msk = FLD_AUD_SRC_RISCI1 | FLD_AUD_SRC_OF | FLD_AUD_SRC_SYNC | FLD_AUD_SRC_OPC_ERR; int cx25821_sram_channel_setup_upstream_audio(struct cx25821_dev *dev, struct sram_channel *ch, unsigned int bpl, u32 risc) { unsigned int i, lines; u32 cdt; if (ch->cmds_start == 0) { cx_write(ch->ptr1_reg, 0); cx_write(ch->ptr2_reg, 0); cx_write(ch->cnt2_reg, 0); cx_write(ch->cnt1_reg, 0); return 0; } bpl = (bpl + 7) & ~7; /* alignment */ cdt = ch->cdt; lines = ch->fifo_size / bpl; if (lines > 3) lines = 3; BUG_ON(lines < 2); /* write CDT */ for (i = 0; i < lines; i++) { cx_write(cdt + 16 * i, ch->fifo_start + bpl * i); cx_write(cdt + 16 * i + 4, 0); cx_write(cdt + 16 * i + 8, 0); cx_write(cdt + 16 * i + 12, 0); } /* write CMDS */ cx_write(ch->cmds_start + 0, risc); cx_write(ch->cmds_start + 4, 0); cx_write(ch->cmds_start + 8, cdt); cx_write(ch->cmds_start + 12, AUDIO_CDT_SIZE_QW); cx_write(ch->cmds_start + 16, ch->ctrl_start); /* IQ size */ cx_write(ch->cmds_start + 20, AUDIO_IQ_SIZE_DW); for (i = 24; i < 80; i += 4) cx_write(ch->cmds_start + i, 0); /* fill registers */ cx_write(ch->ptr1_reg, ch->fifo_start); cx_write(ch->ptr2_reg, cdt); cx_write(ch->cnt2_reg, AUDIO_CDT_SIZE_QW); cx_write(ch->cnt1_reg, AUDIO_CLUSTER_SIZE_QW - 1); return 0; } static __le32 *cx25821_risc_field_upstream_audio(struct cx25821_dev *dev, __le32 *rp, dma_addr_t databuf_phys_addr, unsigned int bpl, int fifo_enable) { unsigned int line; struct sram_channel *sram_ch = dev->channels[dev->_audio_upstream_channel].sram_channels; int offset = 0; /* scan lines */ for (line = 0; line < LINES_PER_AUDIO_BUFFER; line++) { *(rp++) = cpu_to_le32(RISC_READ | RISC_SOL | RISC_EOL | bpl); *(rp++) = cpu_to_le32(databuf_phys_addr + offset); *(rp++) = cpu_to_le32(0); /* bits 63-32 */ /* Check if we need to enable the FIFO * after the first 3 lines. * For the upstream audio channel, * the risc engine will enable the FIFO */ if (fifo_enable && line == 2) { *(rp++) = RISC_WRITECR; *(rp++) = sram_ch->dma_ctl; *(rp++) = sram_ch->fld_aud_fifo_en; *(rp++) = 0x00000020; } offset += AUDIO_LINE_SIZE; } return rp; } int cx25821_risc_buffer_upstream_audio(struct cx25821_dev *dev, struct pci_dev *pci, unsigned int bpl, unsigned int lines) { __le32 *rp; int fifo_enable = 0; int frame = 0, i = 0; int frame_size = AUDIO_DATA_BUF_SZ; int databuf_offset = 0; int risc_flag = RISC_CNT_INC; dma_addr_t risc_phys_jump_addr; /* Virtual address of Risc buffer program */ rp = dev->_risc_virt_addr; /* sync instruction */ *(rp++) = cpu_to_le32(RISC_RESYNC | AUDIO_SYNC_LINE); for (frame = 0; frame < NUM_AUDIO_FRAMES; frame++) { databuf_offset = frame_size * frame; if (frame == 0) { fifo_enable = 1; risc_flag = RISC_CNT_RESET; } else { fifo_enable = 0; risc_flag = RISC_CNT_INC; } /* Calculate physical jump address */ if ((frame + 1) == NUM_AUDIO_FRAMES) { risc_phys_jump_addr = dev->_risc_phys_start_addr + RISC_SYNC_INSTRUCTION_SIZE; } else { risc_phys_jump_addr = dev->_risc_phys_start_addr + RISC_SYNC_INSTRUCTION_SIZE + AUDIO_RISC_DMA_BUF_SIZE * (frame + 1); } rp = cx25821_risc_field_upstream_audio(dev, rp, dev->_audiodata_buf_phys_addr + databuf_offset, bpl, fifo_enable); if (USE_RISC_NOOP_AUDIO) { for (i = 0; i < NUM_NO_OPS; i++) *(rp++) = cpu_to_le32(RISC_NOOP); } /* Loop to (Nth)FrameRISC or to Start of Risc program & * generate IRQ */ *(rp++) = cpu_to_le32(RISC_JUMP | RISC_IRQ1 | risc_flag); *(rp++) = cpu_to_le32(risc_phys_jump_addr); *(rp++) = cpu_to_le32(0); /* Recalculate virtual address based on frame index */ rp = dev->_risc_virt_addr + RISC_SYNC_INSTRUCTION_SIZE / 4 + (AUDIO_RISC_DMA_BUF_SIZE * (frame + 1) / 4); } return 0; } void cx25821_free_memory_audio(struct cx25821_dev *dev) { if (dev->_risc_virt_addr) { pci_free_consistent(dev->pci, dev->_audiorisc_size, dev->_risc_virt_addr, dev->_risc_phys_addr); dev->_risc_virt_addr = NULL; } if (dev->_audiodata_buf_virt_addr) { pci_free_consistent(dev->pci, dev->_audiodata_buf_size, dev->_audiodata_buf_virt_addr, dev->_audiodata_buf_phys_addr); dev->_audiodata_buf_virt_addr = NULL; } } void cx25821_stop_upstream_audio(struct cx25821_dev *dev) { struct sram_channel *sram_ch = dev->channels[AUDIO_UPSTREAM_SRAM_CHANNEL_B].sram_channels; u32 tmp = 0; if (!dev->_audio_is_running) { printk(KERN_DEBUG pr_fmt("No audio file is currently running so return!\n")); return; } /* Disable RISC interrupts */ cx_write(sram_ch->int_msk, 0); /* Turn OFF risc and fifo enable in AUD_DMA_CNTRL */ tmp = cx_read(sram_ch->dma_ctl); cx_write(sram_ch->dma_ctl, tmp & ~(sram_ch->fld_aud_fifo_en | sram_ch->fld_aud_risc_en)); /* Clear data buffer memory */ if (dev->_audiodata_buf_virt_addr) memset(dev->_audiodata_buf_virt_addr, 0, dev->_audiodata_buf_size); dev->_audio_is_running = 0; dev->_is_first_audio_frame = 0; dev->_audioframe_count = 0; dev->_audiofile_status = END_OF_FILE; kfree(dev->_irq_audio_queues); dev->_irq_audio_queues = NULL; kfree(dev->_audiofilename); } void cx25821_free_mem_upstream_audio(struct cx25821_dev *dev) { if (dev->_audio_is_running) cx25821_stop_upstream_audio(dev); cx25821_free_memory_audio(dev); } int cx25821_get_audio_data(struct cx25821_dev *dev, struct sram_channel *sram_ch) { struct file *myfile; int frame_index_temp = dev->_audioframe_index; int i = 0; int line_size = AUDIO_LINE_SIZE; int frame_size = AUDIO_DATA_BUF_SZ; int frame_offset = frame_size * frame_index_temp; ssize_t vfs_read_retval = 0; char mybuf[line_size]; loff_t file_offset = dev->_audioframe_count * frame_size; loff_t pos; mm_segment_t old_fs; if (dev->_audiofile_status == END_OF_FILE) return 0; myfile = filp_open(dev->_audiofilename, O_RDONLY | O_LARGEFILE, 0); if (IS_ERR(myfile)) { const int open_errno = -PTR_ERR(myfile); pr_err("%s(): ERROR opening file(%s) with errno = %d!\n", __func__, dev->_audiofilename, open_errno); return PTR_ERR(myfile); } else { if (!(myfile->f_op)) { pr_err("%s(): File has no file operations registered!\n", __func__); filp_close(myfile, NULL); return -EIO; } if (!myfile->f_op->read) { pr_err("%s(): File has no READ operations registered!\n", __func__); filp_close(myfile, NULL); return -EIO; } pos = myfile->f_pos; old_fs = get_fs(); set_fs(KERNEL_DS); for (i = 0; i < dev->_audio_lines_count; i++) { pos = file_offset; vfs_read_retval = vfs_read(myfile, mybuf, line_size, &pos); if (vfs_read_retval > 0 && vfs_read_retval == line_size && dev->_audiodata_buf_virt_addr != NULL) { memcpy((void *)(dev->_audiodata_buf_virt_addr + frame_offset / 4), mybuf, vfs_read_retval); } file_offset += vfs_read_retval; frame_offset += vfs_read_retval; if (vfs_read_retval < line_size) { pr_info("Done: exit %s() since no more bytes to read from Audio file\n", __func__); break; } } if (i > 0) dev->_audioframe_count++; dev->_audiofile_status = (vfs_read_retval == line_size) ? IN_PROGRESS : END_OF_FILE; set_fs(old_fs); filp_close(myfile, NULL); } return 0; } static void cx25821_audioups_handler(struct work_struct *work) { struct cx25821_dev *dev = container_of(work, struct cx25821_dev, _audio_work_entry); if (!dev) { pr_err("ERROR %s(): since container_of(work_struct) FAILED!\n", __func__); return; } cx25821_get_audio_data(dev, dev->channels[dev->_audio_upstream_channel]. sram_channels); } int cx25821_openfile_audio(struct cx25821_dev *dev, struct sram_channel *sram_ch) { struct file *myfile; int i = 0, j = 0; int line_size = AUDIO_LINE_SIZE; ssize_t vfs_read_retval = 0; char mybuf[line_size]; loff_t pos; loff_t offset = (unsigned long)0; mm_segment_t old_fs; myfile = filp_open(dev->_audiofilename, O_RDONLY | O_LARGEFILE, 0); if (IS_ERR(myfile)) { const int open_errno = -PTR_ERR(myfile); pr_err("%s(): ERROR opening file(%s) with errno = %d!\n", __func__, dev->_audiofilename, open_errno); return PTR_ERR(myfile); } else { if (!(myfile->f_op)) { pr_err("%s(): File has no file operations registered!\n", __func__); filp_close(myfile, NULL); return -EIO; } if (!myfile->f_op->read) { pr_err("%s(): File has no READ operations registered!\n", __func__); filp_close(myfile, NULL); return -EIO; } pos = myfile->f_pos; old_fs = get_fs(); set_fs(KERNEL_DS); for (j = 0; j < NUM_AUDIO_FRAMES; j++) { for (i = 0; i < dev->_audio_lines_count; i++) { pos = offset; vfs_read_retval = vfs_read(myfile, mybuf, line_size, &pos); if (vfs_read_retval > 0 && vfs_read_retval == line_size && dev->_audiodata_buf_virt_addr != NULL) { memcpy((void *)(dev-> _audiodata_buf_virt_addr + offset / 4), mybuf, vfs_read_retval); } offset += vfs_read_retval; if (vfs_read_retval < line_size) { pr_info("Done: exit %s() since no more bytes to read from Audio file\n", __func__); break; } } if (i > 0) dev->_audioframe_count++; if (vfs_read_retval < line_size) break; } dev->_audiofile_status = (vfs_read_retval == line_size) ? IN_PROGRESS : END_OF_FILE; set_fs(old_fs); myfile->f_pos = 0; filp_close(myfile, NULL); } return 0; } static int cx25821_audio_upstream_buffer_prepare(struct cx25821_dev *dev, struct sram_channel *sram_ch, int bpl) { int ret = 0; dma_addr_t dma_addr; dma_addr_t data_dma_addr; cx25821_free_memory_audio(dev); dev->_risc_virt_addr = pci_alloc_consistent(dev->pci, dev->audio_upstream_riscbuf_size, &dma_addr); dev->_risc_virt_start_addr = dev->_risc_virt_addr; dev->_risc_phys_start_addr = dma_addr; dev->_risc_phys_addr = dma_addr; dev->_audiorisc_size = dev->audio_upstream_riscbuf_size; if (!dev->_risc_virt_addr) { printk(KERN_DEBUG pr_fmt("ERROR: pci_alloc_consistent() FAILED to allocate memory for RISC program! Returning\n")); return -ENOMEM; } /* Clear out memory at address */ memset(dev->_risc_virt_addr, 0, dev->_audiorisc_size); /* For Audio Data buffer allocation */ dev->_audiodata_buf_virt_addr = pci_alloc_consistent(dev->pci, dev->audio_upstream_databuf_size, &data_dma_addr); dev->_audiodata_buf_phys_addr = data_dma_addr; dev->_audiodata_buf_size = dev->audio_upstream_databuf_size; if (!dev->_audiodata_buf_virt_addr) { printk(KERN_DEBUG pr_fmt("ERROR: pci_alloc_consistent() FAILED to allocate memory for data buffer! Returning\n")); return -ENOMEM; } /* Clear out memory at address */ memset(dev->_audiodata_buf_virt_addr, 0, dev->_audiodata_buf_size); ret = cx25821_openfile_audio(dev, sram_ch); if (ret < 0) return ret; /* Creating RISC programs */ ret = cx25821_risc_buffer_upstream_audio(dev, dev->pci, bpl, dev->_audio_lines_count); if (ret < 0) { printk(KERN_DEBUG pr_fmt("ERROR creating audio upstream RISC programs!\n")); goto error; } return 0; error: return ret; } int cx25821_audio_upstream_irq(struct cx25821_dev *dev, int chan_num, u32 status) { int i = 0; u32 int_msk_tmp; struct sram_channel *channel = dev->channels[chan_num].sram_channels; dma_addr_t risc_phys_jump_addr; __le32 *rp; if (status & FLD_AUD_SRC_RISCI1) { /* Get interrupt_index of the program that interrupted */ u32 prog_cnt = cx_read(channel->gpcnt); /* Since we've identified our IRQ, clear our bits from the * interrupt mask and interrupt status registers */ cx_write(channel->int_msk, 0); cx_write(channel->int_stat, cx_read(channel->int_stat)); spin_lock(&dev->slock); while (prog_cnt != dev->_last_index_irq) { /* Update _last_index_irq */ if (dev->_last_index_irq < (NUMBER_OF_PROGRAMS - 1)) dev->_last_index_irq++; else dev->_last_index_irq = 0; dev->_audioframe_index = dev->_last_index_irq; queue_work(dev->_irq_audio_queues, &dev->_audio_work_entry); } if (dev->_is_first_audio_frame) { dev->_is_first_audio_frame = 0; if (dev->_risc_virt_start_addr != NULL) { risc_phys_jump_addr = dev->_risc_phys_start_addr + RISC_SYNC_INSTRUCTION_SIZE + AUDIO_RISC_DMA_BUF_SIZE; rp = cx25821_risc_field_upstream_audio(dev, dev->_risc_virt_start_addr + 1, dev->_audiodata_buf_phys_addr, AUDIO_LINE_SIZE, FIFO_DISABLE); if (USE_RISC_NOOP_AUDIO) { for (i = 0; i < NUM_NO_OPS; i++) { *(rp++) = cpu_to_le32(RISC_NOOP); } } /* Jump to 2nd Audio Frame */ *(rp++) = cpu_to_le32(RISC_JUMP | RISC_IRQ1 | RISC_CNT_RESET); *(rp++) = cpu_to_le32(risc_phys_jump_addr); *(rp++) = cpu_to_le32(0); } } spin_unlock(&dev->slock); } else { if (status & FLD_AUD_SRC_OF) pr_warn("%s(): Audio Received Overflow Error Interrupt!\n", __func__); if (status & FLD_AUD_SRC_SYNC) pr_warn("%s(): Audio Received Sync Error Interrupt!\n", __func__); if (status & FLD_AUD_SRC_OPC_ERR) pr_warn("%s(): Audio Received OpCode Error Interrupt!\n", __func__); /* Read and write back the interrupt status register to clear * our bits */ cx_write(channel->int_stat, cx_read(channel->int_stat)); } if (dev->_audiofile_status == END_OF_FILE) { pr_warn("EOF Channel Audio Framecount = %d\n", dev->_audioframe_count); return -1; } /* ElSE, set the interrupt mask register, re-enable irq. */ int_msk_tmp = cx_read(channel->int_msk); cx_write(channel->int_msk, int_msk_tmp |= _intr_msk); return 0; } static irqreturn_t cx25821_upstream_irq_audio(int irq, void *dev_id) { struct cx25821_dev *dev = dev_id; u32 msk_stat, audio_status; int handled = 0; struct sram_channel *sram_ch; if (!dev) return -1; sram_ch = dev->channels[dev->_audio_upstream_channel].sram_channels; msk_stat = cx_read(sram_ch->int_mstat); audio_status = cx_read(sram_ch->int_stat); /* Only deal with our interrupt */ if (audio_status) { handled = cx25821_audio_upstream_irq(dev, dev->_audio_upstream_channel, audio_status); } if (handled < 0) cx25821_stop_upstream_audio(dev); else handled += handled; return IRQ_RETVAL(handled); } static void cx25821_wait_fifo_enable(struct cx25821_dev *dev, struct sram_channel *sram_ch) { int count = 0; u32 tmp; do { /* Wait 10 microsecond before checking to see if the FIFO is * turned ON. */ udelay(10); tmp = cx_read(sram_ch->dma_ctl); /* 10 millisecond timeout */ if (count++ > 1000) { pr_err("ERROR: %s() fifo is NOT turned on. Timeout!\n", __func__); return; } } while (!(tmp & sram_ch->fld_aud_fifo_en)); } int cx25821_start_audio_dma_upstream(struct cx25821_dev *dev, struct sram_channel *sram_ch) { u32 tmp = 0; int err = 0; /* Set the physical start address of the RISC program in the initial * program counter(IPC) member of the CMDS. */ cx_write(sram_ch->cmds_start + 0, dev->_risc_phys_addr); /* Risc IPC High 64 bits 63-32 */ cx_write(sram_ch->cmds_start + 4, 0); /* reset counter */ cx_write(sram_ch->gpcnt_ctl, 3); /* Set the line length (It looks like we do not need to set the * line length) */ cx_write(sram_ch->aud_length, AUDIO_LINE_SIZE & FLD_AUD_DST_LN_LNGTH); /* Set the input mode to 16-bit */ tmp = cx_read(sram_ch->aud_cfg); tmp |= FLD_AUD_SRC_ENABLE | FLD_AUD_DST_PK_MODE | FLD_AUD_CLK_ENABLE | FLD_AUD_MASTER_MODE | FLD_AUD_CLK_SELECT_PLL_D | FLD_AUD_SONY_MODE; cx_write(sram_ch->aud_cfg, tmp); /* Read and write back the interrupt status register to clear it */ tmp = cx_read(sram_ch->int_stat); cx_write(sram_ch->int_stat, tmp); /* Clear our bits from the interrupt status register. */ cx_write(sram_ch->int_stat, _intr_msk); /* Set the interrupt mask register, enable irq. */ cx_set(PCI_INT_MSK, cx_read(PCI_INT_MSK) | (1 << sram_ch->irq_bit)); tmp = cx_read(sram_ch->int_msk); cx_write(sram_ch->int_msk, tmp |= _intr_msk); err = request_irq(dev->pci->irq, cx25821_upstream_irq_audio, IRQF_SHARED, dev->name, dev); if (err < 0) { pr_err("%s: can't get upstream IRQ %d\n", dev->name, dev->pci->irq); goto fail_irq; } /* Start the DMA engine */ tmp = cx_read(sram_ch->dma_ctl); cx_set(sram_ch->dma_ctl, tmp | sram_ch->fld_aud_risc_en); dev->_audio_is_running = 1; dev->_is_first_audio_frame = 1; /* The fifo_en bit turns on by the first Risc program */ cx25821_wait_fifo_enable(dev, sram_ch); return 0; fail_irq: cx25821_dev_unregister(dev); return err; } int cx25821_audio_upstream_init(struct cx25821_dev *dev, int channel_select) { struct sram_channel *sram_ch; int retval = 0; int err = 0; int str_length = 0; if (dev->_audio_is_running) { pr_warn("Audio Channel is still running so return!\n"); return 0; } dev->_audio_upstream_channel = channel_select; sram_ch = dev->channels[channel_select].sram_channels; /* Work queue */ INIT_WORK(&dev->_audio_work_entry, cx25821_audioups_handler); dev->_irq_audio_queues = create_singlethread_workqueue("cx25821_audioworkqueue"); if (!dev->_irq_audio_queues) { printk(KERN_DEBUG pr_fmt("ERROR: create_singlethread_workqueue() for Audio FAILED!\n")); return -ENOMEM; } dev->_last_index_irq = 0; dev->_audio_is_running = 0; dev->_audioframe_count = 0; dev->_audiofile_status = RESET_STATUS; dev->_audio_lines_count = LINES_PER_AUDIO_BUFFER; _line_size = AUDIO_LINE_SIZE; if (dev->input_audiofilename) { str_length = strlen(dev->input_audiofilename); dev->_audiofilename = kmemdup(dev->input_audiofilename, str_length + 1, GFP_KERNEL); if (!dev->_audiofilename) goto error; /* Default if filename is empty string */ if (strcmp(dev->input_audiofilename, "") == 0) dev->_audiofilename = "/root/audioGOOD.wav"; } else { str_length = strlen(_defaultAudioName); dev->_audiofilename = kmemdup(_defaultAudioName, str_length + 1, GFP_KERNEL); if (!dev->_audiofilename) goto error; } retval = cx25821_sram_channel_setup_upstream_audio(dev, sram_ch, _line_size, 0); dev->audio_upstream_riscbuf_size = AUDIO_RISC_DMA_BUF_SIZE * NUM_AUDIO_PROGS + RISC_SYNC_INSTRUCTION_SIZE; dev->audio_upstream_databuf_size = AUDIO_DATA_BUF_SZ * NUM_AUDIO_PROGS; /* Allocating buffers and prepare RISC program */ retval = cx25821_audio_upstream_buffer_prepare(dev, sram_ch, _line_size); if (retval < 0) { pr_err("%s: Failed to set up Audio upstream buffers!\n", dev->name); goto error; } /* Start RISC engine */ cx25821_start_audio_dma_upstream(dev, sram_ch); return 0; error: cx25821_dev_unregister(dev); return err; }