#include <linux/linkage.h> #include <linux/errno.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/ioport.h> #include <linux/interrupt.h> #include <linux/timex.h> #include <linux/random.h> #include <linux/kprobes.h> #include <linux/init.h> #include <linux/kernel_stat.h> #include <linux/device.h> #include <linux/bitops.h> #include <linux/acpi.h> #include <linux/io.h> #include <linux/delay.h> #include <linux/atomic.h> #include <asm/timer.h> #include <asm/hw_irq.h> #include <asm/pgtable.h> #include <asm/desc.h> #include <asm/apic.h> #include <asm/setup.h> #include <asm/i8259.h> #include <asm/traps.h> #include <asm/prom.h> /* * ISA PIC or low IO-APIC triggered (INTA-cycle or APIC) interrupts: * (these are usually mapped to vectors 0x30-0x3f) */ /* * The IO-APIC gives us many more interrupt sources. Most of these * are unused but an SMP system is supposed to have enough memory ... * sometimes (mostly wrt. hw bugs) we get corrupted vectors all * across the spectrum, so we really want to be prepared to get all * of these. Plus, more powerful systems might have more than 64 * IO-APIC registers. * * (these are usually mapped into the 0x30-0xff vector range) */ #ifdef CONFIG_X86_32 /* * Note that on a 486, we don't want to do a SIGFPE on an irq13 * as the irq is unreliable, and exception 16 works correctly * (ie as explained in the intel literature). On a 386, you * can't use exception 16 due to bad IBM design, so we have to * rely on the less exact irq13. * * Careful.. Not only is IRQ13 unreliable, but it is also * leads to races. IBM designers who came up with it should * be shot. */ static irqreturn_t math_error_irq(int cpl, void *dev_id) { outb(0, 0xF0); if (ignore_fpu_irq || !boot_cpu_data.hard_math) return IRQ_NONE; math_error(get_irq_regs(), 0, X86_TRAP_MF); return IRQ_HANDLED; } /* * New motherboards sometimes make IRQ 13 be a PCI interrupt, * so allow interrupt sharing. */ static struct irqaction fpu_irq = { .handler = math_error_irq, .name = "fpu", .flags = IRQF_NO_THREAD, }; #endif /* * IRQ2 is cascade interrupt to second interrupt controller */ static struct irqaction irq2 = { .handler = no_action, .name = "cascade", .flags = IRQF_NO_THREAD, }; DEFINE_PER_CPU(vector_irq_t, vector_irq) = { [0 ... NR_VECTORS - 1] = -1, }; int vector_used_by_percpu_irq(unsigned int vector) { int cpu; for_each_online_cpu(cpu) { if (per_cpu(vector_irq, cpu)[vector] != -1) return 1; } return 0; } void __init init_ISA_irqs(void) { struct irq_chip *chip = legacy_pic->chip; const char *name = chip->name; int i; #if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC) init_bsp_APIC(); #endif legacy_pic->init(0); for (i = 0; i < legacy_pic->nr_legacy_irqs; i++) irq_set_chip_and_handler_name(i, chip, handle_level_irq, name); } void __init init_IRQ(void) { int i; /* * We probably need a better place for this, but it works for * now ... */ x86_add_irq_domains(); /* * On cpu 0, Assign IRQ0_VECTOR..IRQ15_VECTOR's to IRQ 0..15. * If these IRQ's are handled by legacy interrupt-controllers like PIC, * then this configuration will likely be static after the boot. If * these IRQ's are handled by more mordern controllers like IO-APIC, * then this vector space can be freed and re-used dynamically as the * irq's migrate etc. */ for (i = 0; i < legacy_pic->nr_legacy_irqs; i++) per_cpu(vector_irq, 0)[IRQ0_VECTOR + i] = i; x86_init.irqs.intr_init(); } /* * Setup the vector to irq mappings. */ void setup_vector_irq(int cpu) { #ifndef CONFIG_X86_IO_APIC int irq; /* * On most of the platforms, legacy PIC delivers the interrupts on the * boot cpu. But there are certain platforms where PIC interrupts are * delivered to multiple cpu's. If the legacy IRQ is handled by the * legacy PIC, for the new cpu that is coming online, setup the static * legacy vector to irq mapping: */ for (irq = 0; irq < legacy_pic->nr_legacy_irqs; irq++) per_cpu(vector_irq, cpu)[IRQ0_VECTOR + irq] = irq; #endif __setup_vector_irq(cpu); } static void __init smp_intr_init(void) { #ifdef CONFIG_SMP #if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC) /* * The reschedule interrupt is a CPU-to-CPU reschedule-helper * IPI, driven by wakeup. */ alloc_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt); /* IPIs for invalidation */ #define ALLOC_INVTLB_VEC(NR) \ alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+NR, \ invalidate_interrupt##NR) switch (NUM_INVALIDATE_TLB_VECTORS) { default: ALLOC_INVTLB_VEC(31); case 31: ALLOC_INVTLB_VEC(30); case 30: ALLOC_INVTLB_VEC(29); case 29: ALLOC_INVTLB_VEC(28); case 28: ALLOC_INVTLB_VEC(27); case 27: ALLOC_INVTLB_VEC(26); case 26: ALLOC_INVTLB_VEC(25); case 25: ALLOC_INVTLB_VEC(24); case 24: ALLOC_INVTLB_VEC(23); case 23: ALLOC_INVTLB_VEC(22); case 22: ALLOC_INVTLB_VEC(21); case 21: ALLOC_INVTLB_VEC(20); case 20: ALLOC_INVTLB_VEC(19); case 19: ALLOC_INVTLB_VEC(18); case 18: ALLOC_INVTLB_VEC(17); case 17: ALLOC_INVTLB_VEC(16); case 16: ALLOC_INVTLB_VEC(15); case 15: ALLOC_INVTLB_VEC(14); case 14: ALLOC_INVTLB_VEC(13); case 13: ALLOC_INVTLB_VEC(12); case 12: ALLOC_INVTLB_VEC(11); case 11: ALLOC_INVTLB_VEC(10); case 10: ALLOC_INVTLB_VEC(9); case 9: ALLOC_INVTLB_VEC(8); case 8: ALLOC_INVTLB_VEC(7); case 7: ALLOC_INVTLB_VEC(6); case 6: ALLOC_INVTLB_VEC(5); case 5: ALLOC_INVTLB_VEC(4); case 4: ALLOC_INVTLB_VEC(3); case 3: ALLOC_INVTLB_VEC(2); case 2: ALLOC_INVTLB_VEC(1); case 1: ALLOC_INVTLB_VEC(0); break; } /* IPI for generic function call */ alloc_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt); /* IPI for generic single function call */ alloc_intr_gate(CALL_FUNCTION_SINGLE_VECTOR, call_function_single_interrupt); /* Low priority IPI to cleanup after moving an irq */ set_intr_gate(IRQ_MOVE_CLEANUP_VECTOR, irq_move_cleanup_interrupt); set_bit(IRQ_MOVE_CLEANUP_VECTOR, used_vectors); /* IPI used for rebooting/stopping */ alloc_intr_gate(REBOOT_VECTOR, reboot_interrupt); #endif #endif /* CONFIG_SMP */ } static void __init apic_intr_init(void) { smp_intr_init(); #ifdef CONFIG_X86_THERMAL_VECTOR alloc_intr_gate(THERMAL_APIC_VECTOR, thermal_interrupt); #endif #ifdef CONFIG_X86_MCE_THRESHOLD alloc_intr_gate(THRESHOLD_APIC_VECTOR, threshold_interrupt); #endif #if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC) /* self generated IPI for local APIC timer */ alloc_intr_gate(LOCAL_TIMER_VECTOR, apic_timer_interrupt); /* IPI for X86 platform specific use */ alloc_intr_gate(X86_PLATFORM_IPI_VECTOR, x86_platform_ipi); /* IPI vectors for APIC spurious and error interrupts */ alloc_intr_gate(SPURIOUS_APIC_VECTOR, spurious_interrupt); alloc_intr_gate(ERROR_APIC_VECTOR, error_interrupt); /* IRQ work interrupts: */ # ifdef CONFIG_IRQ_WORK alloc_intr_gate(IRQ_WORK_VECTOR, irq_work_interrupt); # endif #endif } void __init native_init_IRQ(void) { int i; /* Execute any quirks before the call gates are initialised: */ x86_init.irqs.pre_vector_init(); apic_intr_init(); /* * Cover the whole vector space, no vector can escape * us. (some of these will be overridden and become * 'special' SMP interrupts) */ i = FIRST_EXTERNAL_VECTOR; for_each_clear_bit_from(i, used_vectors, NR_VECTORS) { /* IA32_SYSCALL_VECTOR could be used in trap_init already. */ set_intr_gate(i, interrupt[i - FIRST_EXTERNAL_VECTOR]); } if (!acpi_ioapic && !of_ioapic) setup_irq(2, &irq2); #ifdef CONFIG_X86_32 /* * External FPU? Set up irq13 if so, for * original braindamaged IBM FERR coupling. */ if (boot_cpu_data.hard_math && !cpu_has_fpu) setup_irq(FPU_IRQ, &fpu_irq); irq_ctx_init(smp_processor_id()); #endif }