/* * OpenRISC process.c * * Linux architectural port borrowing liberally from similar works of * others. All original copyrights apply as per the original source * declaration. * * Modifications for the OpenRISC architecture: * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com> * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * This file handles the architecture-dependent parts of process handling... */ #define __KERNEL_SYSCALLS__ #include <stdarg.h> #include <linux/errno.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mm.h> #include <linux/stddef.h> #include <linux/unistd.h> #include <linux/ptrace.h> #include <linux/slab.h> #include <linux/elfcore.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/init_task.h> #include <linux/mqueue.h> #include <linux/fs.h> #include <asm/uaccess.h> #include <asm/pgtable.h> #include <asm/io.h> #include <asm/processor.h> #include <asm/spr_defs.h> #include <linux/smp.h> /* * Pointer to Current thread info structure. * * Used at user space -> kernel transitions. */ struct thread_info *current_thread_info_set[NR_CPUS] = { &init_thread_info, }; void machine_restart(void) { printk(KERN_INFO "*** MACHINE RESTART ***\n"); __asm__("l.nop 1"); } /* * Similar to machine_power_off, but don't shut off power. Add code * here to freeze the system for e.g. post-mortem debug purpose when * possible. This halt has nothing to do with the idle halt. */ void machine_halt(void) { printk(KERN_INFO "*** MACHINE HALT ***\n"); __asm__("l.nop 1"); } /* If or when software power-off is implemented, add code here. */ void machine_power_off(void) { printk(KERN_INFO "*** MACHINE POWER OFF ***\n"); __asm__("l.nop 1"); } void (*pm_power_off) (void) = machine_power_off; /* * When a process does an "exec", machine state like FPU and debug * registers need to be reset. This is a hook function for that. * Currently we don't have any such state to reset, so this is empty. */ void flush_thread(void) { } void show_regs(struct pt_regs *regs) { extern void show_registers(struct pt_regs *regs); /* __PHX__ cleanup this mess */ show_registers(regs); } unsigned long thread_saved_pc(struct task_struct *t) { return (unsigned long)user_regs(t->stack)->pc; } void release_thread(struct task_struct *dead_task) { } /* * Copy the thread-specific (arch specific) info from the current * process to the new one p */ extern asmlinkage void ret_from_fork(void); int copy_thread(unsigned long clone_flags, unsigned long usp, unsigned long unused, struct task_struct *p, struct pt_regs *regs) { struct pt_regs *childregs; struct pt_regs *kregs; unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; struct thread_info *ti; unsigned long top_of_kernel_stack; top_of_kernel_stack = sp; p->set_child_tid = p->clear_child_tid = NULL; /* Copy registers */ /* redzone */ sp -= STACK_FRAME_OVERHEAD; sp -= sizeof(struct pt_regs); childregs = (struct pt_regs *)sp; /* Copy parent registers */ *childregs = *regs; if ((childregs->sr & SPR_SR_SM) == 1) { /* for kernel thread, set `current_thread_info' * and stackptr in new task */ childregs->sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; childregs->gpr[10] = (unsigned long)task_thread_info(p); } else { childregs->sp = usp; } childregs->gpr[11] = 0; /* Result from fork() */ /* * The way this works is that at some point in the future * some task will call _switch to switch to the new task. * That will pop off the stack frame created below and start * the new task running at ret_from_fork. The new task will * do some house keeping and then return from the fork or clone * system call, using the stack frame created above. */ /* redzone */ sp -= STACK_FRAME_OVERHEAD; sp -= sizeof(struct pt_regs); kregs = (struct pt_regs *)sp; ti = task_thread_info(p); ti->ksp = sp; /* kregs->sp must store the location of the 'pre-switch' kernel stack * pointer... for a newly forked process, this is simply the top of * the kernel stack. */ kregs->sp = top_of_kernel_stack; kregs->gpr[3] = (unsigned long)current; /* arg to schedule_tail */ kregs->gpr[10] = (unsigned long)task_thread_info(p); kregs->gpr[9] = (unsigned long)ret_from_fork; return 0; } /* * Set up a thread for executing a new program */ void start_thread(struct pt_regs *regs, unsigned long pc, unsigned long sp) { unsigned long sr = regs->sr & ~SPR_SR_SM; set_fs(USER_DS); memset(regs->gpr, 0, sizeof(regs->gpr)); regs->pc = pc; regs->sr = sr; regs->sp = sp; /* printk("start thread, ksp = %lx\n", current_thread_info()->ksp);*/ } /* Fill in the fpu structure for a core dump. */ int dump_fpu(struct pt_regs *regs, elf_fpregset_t * fpu) { /* TODO */ return 0; } extern struct thread_info *_switch(struct thread_info *old_ti, struct thread_info *new_ti); struct task_struct *__switch_to(struct task_struct *old, struct task_struct *new) { struct task_struct *last; struct thread_info *new_ti, *old_ti; unsigned long flags; local_irq_save(flags); /* current_set is an array of saved current pointers * (one for each cpu). we need them at user->kernel transition, * while we save them at kernel->user transition */ new_ti = new->stack; old_ti = old->stack; current_thread_info_set[smp_processor_id()] = new_ti; last = (_switch(old_ti, new_ti))->task; local_irq_restore(flags); return last; } /* * Write out registers in core dump format, as defined by the * struct user_regs_struct */ void dump_elf_thread(elf_greg_t *dest, struct pt_regs* regs) { dest[0] = 0; /* r0 */ memcpy(dest+1, regs->gpr+1, 31*sizeof(unsigned long)); dest[32] = regs->pc; dest[33] = regs->sr; dest[34] = 0; dest[35] = 0; } extern void _kernel_thread_helper(void); void __noreturn kernel_thread_helper(int (*fn) (void *), void *arg) { do_exit(fn(arg)); } /* * Create a kernel thread. */ int kernel_thread(int (*fn) (void *), void *arg, unsigned long flags) { struct pt_regs regs; memset(®s, 0, sizeof(regs)); regs.gpr[20] = (unsigned long)fn; regs.gpr[22] = (unsigned long)arg; regs.sr = mfspr(SPR_SR); regs.pc = (unsigned long)_kernel_thread_helper; return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); } /* * sys_execve() executes a new program. */ asmlinkage long _sys_execve(const char __user *name, const char __user * const __user *argv, const char __user * const __user *envp, struct pt_regs *regs) { int error; char *filename; filename = getname(name); error = PTR_ERR(filename); if (IS_ERR(filename)) goto out; error = do_execve(filename, argv, envp, regs); putname(filename); out: return error; } unsigned long get_wchan(struct task_struct *p) { /* TODO */ return 0; } int kernel_execve(const char *filename, char *const argv[], char *const envp[]) { register long __res asm("r11") = __NR_execve; register long __a asm("r3") = (long)(filename); register long __b asm("r4") = (long)(argv); register long __c asm("r5") = (long)(envp); __asm__ volatile ("l.sys 1" : "=r" (__res), "=r"(__a), "=r"(__b), "=r"(__c) : "0"(__res), "1"(__a), "2"(__b), "3"(__c) : "r6", "r7", "r8", "r12", "r13", "r15", "r17", "r19", "r21", "r23", "r25", "r27", "r29", "r31"); __asm__ volatile ("l.nop"); return __res; }