/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1998-2003 Hewlett-Packard Co * David Mosberger-Tang <davidm@hpl.hp.com> * Stephane Eranian <eranian@hpl.hp.com> * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com> * Copyright (C) 1999 VA Linux Systems * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved. * * Routines used by ia64 machines with contiguous (or virtually contiguous) * memory. */ #include <linux/bootmem.h> #include <linux/efi.h> #include <linux/memblock.h> #include <linux/mm.h> #include <linux/nmi.h> #include <linux/swap.h> #include <asm/meminit.h> #include <asm/pgalloc.h> #include <asm/pgtable.h> #include <asm/sections.h> #include <asm/mca.h> #ifdef CONFIG_VIRTUAL_MEM_MAP static unsigned long max_gap; #endif /** * show_mem - give short summary of memory stats * * Shows a simple page count of reserved and used pages in the system. * For discontig machines, it does this on a per-pgdat basis. */ void show_mem(unsigned int filter) { int i, total_reserved = 0; int total_shared = 0, total_cached = 0; unsigned long total_present = 0; pg_data_t *pgdat; printk(KERN_INFO "Mem-info:\n"); show_free_areas(filter); printk(KERN_INFO "Node memory in pages:\n"); if (filter & SHOW_MEM_FILTER_PAGE_COUNT) return; for_each_online_pgdat(pgdat) { unsigned long present; unsigned long flags; int shared = 0, cached = 0, reserved = 0; int nid = pgdat->node_id; if (skip_free_areas_node(filter, nid)) continue; pgdat_resize_lock(pgdat, &flags); present = pgdat->node_present_pages; for(i = 0; i < pgdat->node_spanned_pages; i++) { struct page *page; if (unlikely(i % MAX_ORDER_NR_PAGES == 0)) touch_nmi_watchdog(); if (pfn_valid(pgdat->node_start_pfn + i)) page = pfn_to_page(pgdat->node_start_pfn + i); else { #ifdef CONFIG_VIRTUAL_MEM_MAP if (max_gap < LARGE_GAP) continue; #endif i = vmemmap_find_next_valid_pfn(nid, i) - 1; continue; } if (PageReserved(page)) reserved++; else if (PageSwapCache(page)) cached++; else if (page_count(page)) shared += page_count(page)-1; } pgdat_resize_unlock(pgdat, &flags); total_present += present; total_reserved += reserved; total_cached += cached; total_shared += shared; printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, " "shrd: %10d, swpd: %10d\n", nid, present, reserved, shared, cached); } printk(KERN_INFO "%ld pages of RAM\n", total_present); printk(KERN_INFO "%d reserved pages\n", total_reserved); printk(KERN_INFO "%d pages shared\n", total_shared); printk(KERN_INFO "%d pages swap cached\n", total_cached); printk(KERN_INFO "Total of %ld pages in page table cache\n", quicklist_total_size()); printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages()); } /* physical address where the bootmem map is located */ unsigned long bootmap_start; /** * find_bootmap_location - callback to find a memory area for the bootmap * @start: start of region * @end: end of region * @arg: unused callback data * * Find a place to put the bootmap and return its starting address in * bootmap_start. This address must be page-aligned. */ static int __init find_bootmap_location (u64 start, u64 end, void *arg) { u64 needed = *(unsigned long *)arg; u64 range_start, range_end, free_start; int i; #if IGNORE_PFN0 if (start == PAGE_OFFSET) { start += PAGE_SIZE; if (start >= end) return 0; } #endif free_start = PAGE_OFFSET; for (i = 0; i < num_rsvd_regions; i++) { range_start = max(start, free_start); range_end = min(end, rsvd_region[i].start & PAGE_MASK); free_start = PAGE_ALIGN(rsvd_region[i].end); if (range_end <= range_start) continue; /* skip over empty range */ if (range_end - range_start >= needed) { bootmap_start = __pa(range_start); return -1; /* done */ } /* nothing more available in this segment */ if (range_end == end) return 0; } return 0; } #ifdef CONFIG_SMP static void *cpu_data; /** * per_cpu_init - setup per-cpu variables * * Allocate and setup per-cpu data areas. */ void * __cpuinit per_cpu_init (void) { static bool first_time = true; void *cpu0_data = __cpu0_per_cpu; unsigned int cpu; if (!first_time) goto skip; first_time = false; /* * get_free_pages() cannot be used before cpu_init() done. * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs * to avoid that AP calls get_zeroed_page(). */ for_each_possible_cpu(cpu) { void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start; memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start); __per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start; per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu]; /* * percpu area for cpu0 is moved from the __init area * which is setup by head.S and used till this point. * Update ar.k3. This move is ensures that percpu * area for cpu0 is on the correct node and its * virtual address isn't insanely far from other * percpu areas which is important for congruent * percpu allocator. */ if (cpu == 0) ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) - (unsigned long)__per_cpu_start); cpu_data += PERCPU_PAGE_SIZE; } skip: return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; } static inline void alloc_per_cpu_data(void) { cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * num_possible_cpus(), PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); } /** * setup_per_cpu_areas - setup percpu areas * * Arch code has already allocated and initialized percpu areas. All * this function has to do is to teach the determined layout to the * dynamic percpu allocator, which happens to be more complex than * creating whole new ones using helpers. */ void __init setup_per_cpu_areas(void) { struct pcpu_alloc_info *ai; struct pcpu_group_info *gi; unsigned int cpu; ssize_t static_size, reserved_size, dyn_size; int rc; ai = pcpu_alloc_alloc_info(1, num_possible_cpus()); if (!ai) panic("failed to allocate pcpu_alloc_info"); gi = &ai->groups[0]; /* units are assigned consecutively to possible cpus */ for_each_possible_cpu(cpu) gi->cpu_map[gi->nr_units++] = cpu; /* set parameters */ static_size = __per_cpu_end - __per_cpu_start; reserved_size = PERCPU_MODULE_RESERVE; dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size; if (dyn_size < 0) panic("percpu area overflow static=%zd reserved=%zd\n", static_size, reserved_size); ai->static_size = static_size; ai->reserved_size = reserved_size; ai->dyn_size = dyn_size; ai->unit_size = PERCPU_PAGE_SIZE; ai->atom_size = PAGE_SIZE; ai->alloc_size = PERCPU_PAGE_SIZE; rc = pcpu_setup_first_chunk(ai, __per_cpu_start + __per_cpu_offset[0]); if (rc) panic("failed to setup percpu area (err=%d)", rc); pcpu_free_alloc_info(ai); } #else #define alloc_per_cpu_data() do { } while (0) #endif /* CONFIG_SMP */ /** * find_memory - setup memory map * * Walk the EFI memory map and find usable memory for the system, taking * into account reserved areas. */ void __init find_memory (void) { unsigned long bootmap_size; reserve_memory(); /* first find highest page frame number */ min_low_pfn = ~0UL; max_low_pfn = 0; efi_memmap_walk(find_max_min_low_pfn, NULL); max_pfn = max_low_pfn; /* how many bytes to cover all the pages */ bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT; /* look for a location to hold the bootmap */ bootmap_start = ~0UL; efi_memmap_walk(find_bootmap_location, &bootmap_size); if (bootmap_start == ~0UL) panic("Cannot find %ld bytes for bootmap\n", bootmap_size); bootmap_size = init_bootmem_node(NODE_DATA(0), (bootmap_start >> PAGE_SHIFT), 0, max_pfn); /* Free all available memory, then mark bootmem-map as being in use. */ efi_memmap_walk(filter_rsvd_memory, free_bootmem); reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT); find_initrd(); alloc_per_cpu_data(); } static int count_pages(u64 start, u64 end, void *arg) { unsigned long *count = arg; *count += (end - start) >> PAGE_SHIFT; return 0; } /* * Set up the page tables. */ void __init paging_init (void) { unsigned long max_dma; unsigned long max_zone_pfns[MAX_NR_ZONES]; num_physpages = 0; efi_memmap_walk(count_pages, &num_physpages); memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); #ifdef CONFIG_ZONE_DMA max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; max_zone_pfns[ZONE_DMA] = max_dma; #endif max_zone_pfns[ZONE_NORMAL] = max_low_pfn; #ifdef CONFIG_VIRTUAL_MEM_MAP efi_memmap_walk(filter_memory, register_active_ranges); efi_memmap_walk(find_largest_hole, (u64 *)&max_gap); if (max_gap < LARGE_GAP) { vmem_map = (struct page *) 0; free_area_init_nodes(max_zone_pfns); } else { unsigned long map_size; /* allocate virtual_mem_map */ map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) * sizeof(struct page)); VMALLOC_END -= map_size; vmem_map = (struct page *) VMALLOC_END; efi_memmap_walk(create_mem_map_page_table, NULL); /* * alloc_node_mem_map makes an adjustment for mem_map * which isn't compatible with vmem_map. */ NODE_DATA(0)->node_mem_map = vmem_map + find_min_pfn_with_active_regions(); free_area_init_nodes(max_zone_pfns); printk("Virtual mem_map starts at 0x%p\n", mem_map); } #else /* !CONFIG_VIRTUAL_MEM_MAP */ memblock_add_node(0, PFN_PHYS(max_low_pfn), 0); free_area_init_nodes(max_zone_pfns); #endif /* !CONFIG_VIRTUAL_MEM_MAP */ zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page)); }