/* * arch/ia64/kernel/cpufreq/acpi-cpufreq.c * This file provides the ACPI based P-state support. This * module works with generic cpufreq infrastructure. Most of * the code is based on i386 version * (arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c) * * Copyright (C) 2005 Intel Corp * Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/init.h> #include <linux/cpufreq.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <asm/io.h> #include <asm/uaccess.h> #include <asm/pal.h> #include <linux/acpi.h> #include <acpi/processor.h> MODULE_AUTHOR("Venkatesh Pallipadi"); MODULE_DESCRIPTION("ACPI Processor P-States Driver"); MODULE_LICENSE("GPL"); struct cpufreq_acpi_io { struct acpi_processor_performance acpi_data; struct cpufreq_frequency_table *freq_table; unsigned int resume; }; static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS]; static struct cpufreq_driver acpi_cpufreq_driver; static int processor_set_pstate ( u32 value) { s64 retval; pr_debug("processor_set_pstate\n"); retval = ia64_pal_set_pstate((u64)value); if (retval) { pr_debug("Failed to set freq to 0x%x, with error 0x%lx\n", value, retval); return -ENODEV; } return (int)retval; } static int processor_get_pstate ( u32 *value) { u64 pstate_index = 0; s64 retval; pr_debug("processor_get_pstate\n"); retval = ia64_pal_get_pstate(&pstate_index, PAL_GET_PSTATE_TYPE_INSTANT); *value = (u32) pstate_index; if (retval) pr_debug("Failed to get current freq with " "error 0x%lx, idx 0x%x\n", retval, *value); return (int)retval; } /* To be used only after data->acpi_data is initialized */ static unsigned extract_clock ( struct cpufreq_acpi_io *data, unsigned value, unsigned int cpu) { unsigned long i; pr_debug("extract_clock\n"); for (i = 0; i < data->acpi_data.state_count; i++) { if (value == data->acpi_data.states[i].status) return data->acpi_data.states[i].core_frequency; } return data->acpi_data.states[i-1].core_frequency; } static unsigned int processor_get_freq ( struct cpufreq_acpi_io *data, unsigned int cpu) { int ret = 0; u32 value = 0; cpumask_t saved_mask; unsigned long clock_freq; pr_debug("processor_get_freq\n"); saved_mask = current->cpus_allowed; set_cpus_allowed_ptr(current, cpumask_of(cpu)); if (smp_processor_id() != cpu) goto migrate_end; /* processor_get_pstate gets the instantaneous frequency */ ret = processor_get_pstate(&value); if (ret) { set_cpus_allowed_ptr(current, &saved_mask); printk(KERN_WARNING "get performance failed with error %d\n", ret); ret = 0; goto migrate_end; } clock_freq = extract_clock(data, value, cpu); ret = (clock_freq*1000); migrate_end: set_cpus_allowed_ptr(current, &saved_mask); return ret; } static int processor_set_freq ( struct cpufreq_acpi_io *data, unsigned int cpu, int state) { int ret = 0; u32 value = 0; struct cpufreq_freqs cpufreq_freqs; cpumask_t saved_mask; int retval; pr_debug("processor_set_freq\n"); saved_mask = current->cpus_allowed; set_cpus_allowed_ptr(current, cpumask_of(cpu)); if (smp_processor_id() != cpu) { retval = -EAGAIN; goto migrate_end; } if (state == data->acpi_data.state) { if (unlikely(data->resume)) { pr_debug("Called after resume, resetting to P%d\n", state); data->resume = 0; } else { pr_debug("Already at target state (P%d)\n", state); retval = 0; goto migrate_end; } } pr_debug("Transitioning from P%d to P%d\n", data->acpi_data.state, state); /* cpufreq frequency struct */ cpufreq_freqs.cpu = cpu; cpufreq_freqs.old = data->freq_table[data->acpi_data.state].frequency; cpufreq_freqs.new = data->freq_table[state].frequency; /* notify cpufreq */ cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE); /* * First we write the target state's 'control' value to the * control_register. */ value = (u32) data->acpi_data.states[state].control; pr_debug("Transitioning to state: 0x%08x\n", value); ret = processor_set_pstate(value); if (ret) { unsigned int tmp = cpufreq_freqs.new; cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE); cpufreq_freqs.new = cpufreq_freqs.old; cpufreq_freqs.old = tmp; cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE); cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE); printk(KERN_WARNING "Transition failed with error %d\n", ret); retval = -ENODEV; goto migrate_end; } cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE); data->acpi_data.state = state; retval = 0; migrate_end: set_cpus_allowed_ptr(current, &saved_mask); return (retval); } static unsigned int acpi_cpufreq_get ( unsigned int cpu) { struct cpufreq_acpi_io *data = acpi_io_data[cpu]; pr_debug("acpi_cpufreq_get\n"); return processor_get_freq(data, cpu); } static int acpi_cpufreq_target ( struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation) { struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; unsigned int next_state = 0; unsigned int result = 0; pr_debug("acpi_cpufreq_setpolicy\n"); result = cpufreq_frequency_table_target(policy, data->freq_table, target_freq, relation, &next_state); if (result) return (result); result = processor_set_freq(data, policy->cpu, next_state); return (result); } static int acpi_cpufreq_verify ( struct cpufreq_policy *policy) { unsigned int result = 0; struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; pr_debug("acpi_cpufreq_verify\n"); result = cpufreq_frequency_table_verify(policy, data->freq_table); return (result); } static int acpi_cpufreq_cpu_init ( struct cpufreq_policy *policy) { unsigned int i; unsigned int cpu = policy->cpu; struct cpufreq_acpi_io *data; unsigned int result = 0; pr_debug("acpi_cpufreq_cpu_init\n"); data = kzalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL); if (!data) return (-ENOMEM); acpi_io_data[cpu] = data; result = acpi_processor_register_performance(&data->acpi_data, cpu); if (result) goto err_free; /* capability check */ if (data->acpi_data.state_count <= 1) { pr_debug("No P-States\n"); result = -ENODEV; goto err_unreg; } if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) || (data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) { pr_debug("Unsupported address space [%d, %d]\n", (u32) (data->acpi_data.control_register.space_id), (u32) (data->acpi_data.status_register.space_id)); result = -ENODEV; goto err_unreg; } /* alloc freq_table */ data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * (data->acpi_data.state_count + 1), GFP_KERNEL); if (!data->freq_table) { result = -ENOMEM; goto err_unreg; } /* detect transition latency */ policy->cpuinfo.transition_latency = 0; for (i=0; i<data->acpi_data.state_count; i++) { if ((data->acpi_data.states[i].transition_latency * 1000) > policy->cpuinfo.transition_latency) { policy->cpuinfo.transition_latency = data->acpi_data.states[i].transition_latency * 1000; } } policy->cur = processor_get_freq(data, policy->cpu); /* table init */ for (i = 0; i <= data->acpi_data.state_count; i++) { data->freq_table[i].index = i; if (i < data->acpi_data.state_count) { data->freq_table[i].frequency = data->acpi_data.states[i].core_frequency * 1000; } else { data->freq_table[i].frequency = CPUFREQ_TABLE_END; } } result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table); if (result) { goto err_freqfree; } /* notify BIOS that we exist */ acpi_processor_notify_smm(THIS_MODULE); printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management " "activated.\n", cpu); for (i = 0; i < data->acpi_data.state_count; i++) pr_debug(" %cP%d: %d MHz, %d mW, %d uS, %d uS, 0x%x 0x%x\n", (i == data->acpi_data.state?'*':' '), i, (u32) data->acpi_data.states[i].core_frequency, (u32) data->acpi_data.states[i].power, (u32) data->acpi_data.states[i].transition_latency, (u32) data->acpi_data.states[i].bus_master_latency, (u32) data->acpi_data.states[i].status, (u32) data->acpi_data.states[i].control); cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu); /* the first call to ->target() should result in us actually * writing something to the appropriate registers. */ data->resume = 1; return (result); err_freqfree: kfree(data->freq_table); err_unreg: acpi_processor_unregister_performance(&data->acpi_data, cpu); err_free: kfree(data); acpi_io_data[cpu] = NULL; return (result); } static int acpi_cpufreq_cpu_exit ( struct cpufreq_policy *policy) { struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; pr_debug("acpi_cpufreq_cpu_exit\n"); if (data) { cpufreq_frequency_table_put_attr(policy->cpu); acpi_io_data[policy->cpu] = NULL; acpi_processor_unregister_performance(&data->acpi_data, policy->cpu); kfree(data); } return (0); } static struct freq_attr* acpi_cpufreq_attr[] = { &cpufreq_freq_attr_scaling_available_freqs, NULL, }; static struct cpufreq_driver acpi_cpufreq_driver = { .verify = acpi_cpufreq_verify, .target = acpi_cpufreq_target, .get = acpi_cpufreq_get, .init = acpi_cpufreq_cpu_init, .exit = acpi_cpufreq_cpu_exit, .name = "acpi-cpufreq", .owner = THIS_MODULE, .attr = acpi_cpufreq_attr, }; static int __init acpi_cpufreq_init (void) { pr_debug("acpi_cpufreq_init\n"); return cpufreq_register_driver(&acpi_cpufreq_driver); } static void __exit acpi_cpufreq_exit (void) { pr_debug("acpi_cpufreq_exit\n"); cpufreq_unregister_driver(&acpi_cpufreq_driver); return; } late_initcall(acpi_cpufreq_init); module_exit(acpi_cpufreq_exit);