/* * Copyright (C) 2009 by Sascha Hauer, Pengutronix * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301, USA. */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/list.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/clkdev.h> #include <mach/clock.h> #include <mach/hardware.h> #include <mach/common.h> #include "crmregs-imx3.h" #ifdef HAVE_SET_RATE_SUPPORT static void calc_dividers(u32 div, u32 *pre, u32 *post, u32 maxpost) { u32 min_pre, temp_pre, old_err, err; min_pre = (div - 1) / maxpost + 1; old_err = 8; for (temp_pre = 8; temp_pre >= min_pre; temp_pre--) { if (div > (temp_pre * maxpost)) break; if (div < (temp_pre * temp_pre)) continue; err = div % temp_pre; if (err == 0) { *pre = temp_pre; break; } err = temp_pre - err; if (err < old_err) { old_err = err; *pre = temp_pre; } } *post = (div + *pre - 1) / *pre; } /* get the best values for a 3-bit divider combined with a 6-bit divider */ static void calc_dividers_3_6(u32 div, u32 *pre, u32 *post) { if (div >= 512) { *pre = 8; *post = 64; } else if (div >= 64) { calc_dividers(div, pre, post, 64); } else if (div <= 8) { *pre = div; *post = 1; } else { *pre = 1; *post = div; } } /* get the best values for two cascaded 3-bit dividers */ static void calc_dividers_3_3(u32 div, u32 *pre, u32 *post) { if (div >= 64) { *pre = *post = 8; } else if (div > 8) { calc_dividers(div, pre, post, 8); } else { *pre = 1; *post = div; } } #endif static unsigned long get_rate_mpll(void) { ulong mpctl = __raw_readl(MX35_CCM_MPCTL); return mxc_decode_pll(mpctl, 24000000); } static unsigned long get_rate_ppll(void) { ulong ppctl = __raw_readl(MX35_CCM_PPCTL); return mxc_decode_pll(ppctl, 24000000); } struct arm_ahb_div { unsigned char arm, ahb, sel; }; static struct arm_ahb_div clk_consumer[] = { { .arm = 1, .ahb = 4, .sel = 0}, { .arm = 1, .ahb = 3, .sel = 1}, { .arm = 2, .ahb = 2, .sel = 0}, { .arm = 0, .ahb = 0, .sel = 0}, { .arm = 0, .ahb = 0, .sel = 0}, { .arm = 0, .ahb = 0, .sel = 0}, { .arm = 4, .ahb = 1, .sel = 0}, { .arm = 1, .ahb = 5, .sel = 0}, { .arm = 1, .ahb = 8, .sel = 0}, { .arm = 1, .ahb = 6, .sel = 1}, { .arm = 2, .ahb = 4, .sel = 0}, { .arm = 0, .ahb = 0, .sel = 0}, { .arm = 0, .ahb = 0, .sel = 0}, { .arm = 0, .ahb = 0, .sel = 0}, { .arm = 4, .ahb = 2, .sel = 0}, { .arm = 0, .ahb = 0, .sel = 0}, }; static unsigned long get_rate_arm(void) { unsigned long pdr0 = __raw_readl(MXC_CCM_PDR0); struct arm_ahb_div *aad; unsigned long fref = get_rate_mpll(); aad = &clk_consumer[(pdr0 >> 16) & 0xf]; if (aad->sel) fref = fref * 3 / 4; return fref / aad->arm; } static unsigned long get_rate_ahb(struct clk *clk) { unsigned long pdr0 = __raw_readl(MXC_CCM_PDR0); struct arm_ahb_div *aad; unsigned long fref = get_rate_arm(); aad = &clk_consumer[(pdr0 >> 16) & 0xf]; return fref / aad->ahb; } static unsigned long get_rate_ipg(struct clk *clk) { return get_rate_ahb(NULL) >> 1; } static unsigned long get_rate_uart(struct clk *clk) { unsigned long pdr3 = __raw_readl(MX35_CCM_PDR3); unsigned long pdr4 = __raw_readl(MX35_CCM_PDR4); unsigned long div = ((pdr4 >> 10) & 0x3f) + 1; if (pdr3 & (1 << 14)) return get_rate_arm() / div; else return get_rate_ppll() / div; } static unsigned long get_rate_sdhc(struct clk *clk) { unsigned long pdr3 = __raw_readl(MX35_CCM_PDR3); unsigned long div, rate; if (pdr3 & (1 << 6)) rate = get_rate_arm(); else rate = get_rate_ppll(); switch (clk->id) { default: case 0: div = pdr3 & 0x3f; break; case 1: div = (pdr3 >> 8) & 0x3f; break; case 2: div = (pdr3 >> 16) & 0x3f; break; } return rate / (div + 1); } static unsigned long get_rate_mshc(struct clk *clk) { unsigned long pdr1 = __raw_readl(MXC_CCM_PDR1); unsigned long div1, div2, rate; if (pdr1 & (1 << 7)) rate = get_rate_arm(); else rate = get_rate_ppll(); div1 = (pdr1 >> 29) & 0x7; div2 = (pdr1 >> 22) & 0x3f; return rate / ((div1 + 1) * (div2 + 1)); } static unsigned long get_rate_ssi(struct clk *clk) { unsigned long pdr2 = __raw_readl(MX35_CCM_PDR2); unsigned long div1, div2, rate; if (pdr2 & (1 << 6)) rate = get_rate_arm(); else rate = get_rate_ppll(); switch (clk->id) { default: case 0: div1 = pdr2 & 0x3f; div2 = (pdr2 >> 24) & 0x7; break; case 1: div1 = (pdr2 >> 8) & 0x3f; div2 = (pdr2 >> 27) & 0x7; break; } return rate / ((div1 + 1) * (div2 + 1)); } static unsigned long get_rate_csi(struct clk *clk) { unsigned long pdr2 = __raw_readl(MX35_CCM_PDR2); unsigned long rate; if (pdr2 & (1 << 7)) rate = get_rate_arm(); else rate = get_rate_ppll(); return rate / (((pdr2 >> 16) & 0x3f) + 1); } static unsigned long get_rate_otg(struct clk *clk) { unsigned long pdr4 = __raw_readl(MX35_CCM_PDR4); unsigned long rate; if (pdr4 & (1 << 9)) rate = get_rate_arm(); else rate = get_rate_ppll(); return rate / (((pdr4 >> 22) & 0x3f) + 1); } static unsigned long get_rate_ipg_per(struct clk *clk) { unsigned long pdr0 = __raw_readl(MXC_CCM_PDR0); unsigned long pdr4 = __raw_readl(MX35_CCM_PDR4); unsigned long div; if (pdr0 & (1 << 26)) { div = (pdr4 >> 16) & 0x3f; return get_rate_arm() / (div + 1); } else { div = (pdr0 >> 12) & 0x7; return get_rate_ahb(NULL) / (div + 1); } } static unsigned long get_rate_hsp(struct clk *clk) { unsigned long hsp_podf = (__raw_readl(MXC_CCM_PDR0) >> 20) & 0x03; unsigned long fref = get_rate_mpll(); if (fref > 400 * 1000 * 1000) { switch (hsp_podf) { case 0: return fref >> 2; case 1: return fref >> 3; case 2: return fref / 3; } } else { switch (hsp_podf) { case 0: case 2: return fref / 3; case 1: return fref / 6; } } return 0; } static int clk_cgr_enable(struct clk *clk) { u32 reg; reg = __raw_readl(clk->enable_reg); reg |= 3 << clk->enable_shift; __raw_writel(reg, clk->enable_reg); return 0; } static void clk_cgr_disable(struct clk *clk) { u32 reg; reg = __raw_readl(clk->enable_reg); reg &= ~(3 << clk->enable_shift); __raw_writel(reg, clk->enable_reg); } #define DEFINE_CLOCK(name, i, er, es, gr, sr) \ static struct clk name = { \ .id = i, \ .enable_reg = er, \ .enable_shift = es, \ .get_rate = gr, \ .set_rate = sr, \ .enable = clk_cgr_enable, \ .disable = clk_cgr_disable, \ } DEFINE_CLOCK(asrc_clk, 0, MX35_CCM_CGR0, 0, NULL, NULL); DEFINE_CLOCK(pata_clk, 0, MX35_CCM_CGR0, 2, get_rate_ipg, NULL); /* DEFINE_CLOCK(audmux_clk, 0, MX35_CCM_CGR0, 4, NULL, NULL); */ DEFINE_CLOCK(can1_clk, 0, MX35_CCM_CGR0, 6, get_rate_ipg, NULL); DEFINE_CLOCK(can2_clk, 1, MX35_CCM_CGR0, 8, get_rate_ipg, NULL); DEFINE_CLOCK(cspi1_clk, 0, MX35_CCM_CGR0, 10, get_rate_ipg, NULL); DEFINE_CLOCK(cspi2_clk, 1, MX35_CCM_CGR0, 12, get_rate_ipg, NULL); DEFINE_CLOCK(ect_clk, 0, MX35_CCM_CGR0, 14, get_rate_ipg, NULL); DEFINE_CLOCK(edio_clk, 0, MX35_CCM_CGR0, 16, NULL, NULL); DEFINE_CLOCK(emi_clk, 0, MX35_CCM_CGR0, 18, get_rate_ipg, NULL); DEFINE_CLOCK(epit1_clk, 0, MX35_CCM_CGR0, 20, get_rate_ipg, NULL); DEFINE_CLOCK(epit2_clk, 1, MX35_CCM_CGR0, 22, get_rate_ipg, NULL); DEFINE_CLOCK(esai_clk, 0, MX35_CCM_CGR0, 24, NULL, NULL); DEFINE_CLOCK(esdhc1_clk, 0, MX35_CCM_CGR0, 26, get_rate_sdhc, NULL); DEFINE_CLOCK(esdhc2_clk, 1, MX35_CCM_CGR0, 28, get_rate_sdhc, NULL); DEFINE_CLOCK(esdhc3_clk, 2, MX35_CCM_CGR0, 30, get_rate_sdhc, NULL); DEFINE_CLOCK(fec_clk, 0, MX35_CCM_CGR1, 0, get_rate_ipg, NULL); DEFINE_CLOCK(gpio1_clk, 0, MX35_CCM_CGR1, 2, NULL, NULL); DEFINE_CLOCK(gpio2_clk, 1, MX35_CCM_CGR1, 4, NULL, NULL); DEFINE_CLOCK(gpio3_clk, 2, MX35_CCM_CGR1, 6, NULL, NULL); DEFINE_CLOCK(gpt_clk, 0, MX35_CCM_CGR1, 8, get_rate_ipg, NULL); DEFINE_CLOCK(i2c1_clk, 0, MX35_CCM_CGR1, 10, get_rate_ipg_per, NULL); DEFINE_CLOCK(i2c2_clk, 1, MX35_CCM_CGR1, 12, get_rate_ipg_per, NULL); DEFINE_CLOCK(i2c3_clk, 2, MX35_CCM_CGR1, 14, get_rate_ipg_per, NULL); DEFINE_CLOCK(iomuxc_clk, 0, MX35_CCM_CGR1, 16, NULL, NULL); DEFINE_CLOCK(ipu_clk, 0, MX35_CCM_CGR1, 18, get_rate_hsp, NULL); DEFINE_CLOCK(kpp_clk, 0, MX35_CCM_CGR1, 20, get_rate_ipg, NULL); DEFINE_CLOCK(mlb_clk, 0, MX35_CCM_CGR1, 22, get_rate_ahb, NULL); DEFINE_CLOCK(mshc_clk, 0, MX35_CCM_CGR1, 24, get_rate_mshc, NULL); DEFINE_CLOCK(owire_clk, 0, MX35_CCM_CGR1, 26, get_rate_ipg_per, NULL); DEFINE_CLOCK(pwm_clk, 0, MX35_CCM_CGR1, 28, get_rate_ipg_per, NULL); DEFINE_CLOCK(rngc_clk, 0, MX35_CCM_CGR1, 30, get_rate_ipg, NULL); DEFINE_CLOCK(rtc_clk, 0, MX35_CCM_CGR2, 0, get_rate_ipg, NULL); DEFINE_CLOCK(rtic_clk, 0, MX35_CCM_CGR2, 2, get_rate_ahb, NULL); DEFINE_CLOCK(scc_clk, 0, MX35_CCM_CGR2, 4, get_rate_ipg, NULL); DEFINE_CLOCK(sdma_clk, 0, MX35_CCM_CGR2, 6, NULL, NULL); DEFINE_CLOCK(spba_clk, 0, MX35_CCM_CGR2, 8, get_rate_ipg, NULL); DEFINE_CLOCK(spdif_clk, 0, MX35_CCM_CGR2, 10, NULL, NULL); DEFINE_CLOCK(ssi1_clk, 0, MX35_CCM_CGR2, 12, get_rate_ssi, NULL); DEFINE_CLOCK(ssi2_clk, 1, MX35_CCM_CGR2, 14, get_rate_ssi, NULL); DEFINE_CLOCK(uart1_clk, 0, MX35_CCM_CGR2, 16, get_rate_uart, NULL); DEFINE_CLOCK(uart2_clk, 1, MX35_CCM_CGR2, 18, get_rate_uart, NULL); DEFINE_CLOCK(uart3_clk, 2, MX35_CCM_CGR2, 20, get_rate_uart, NULL); DEFINE_CLOCK(usbotg_clk, 0, MX35_CCM_CGR2, 22, get_rate_otg, NULL); DEFINE_CLOCK(wdog_clk, 0, MX35_CCM_CGR2, 24, NULL, NULL); DEFINE_CLOCK(max_clk, 0, MX35_CCM_CGR2, 26, NULL, NULL); DEFINE_CLOCK(audmux_clk, 0, MX35_CCM_CGR2, 30, NULL, NULL); DEFINE_CLOCK(csi_clk, 0, MX35_CCM_CGR3, 0, get_rate_csi, NULL); DEFINE_CLOCK(iim_clk, 0, MX35_CCM_CGR3, 2, NULL, NULL); DEFINE_CLOCK(gpu2d_clk, 0, MX35_CCM_CGR3, 4, NULL, NULL); DEFINE_CLOCK(usbahb_clk, 0, 0, 0, get_rate_ahb, NULL); static int clk_dummy_enable(struct clk *clk) { return 0; } static void clk_dummy_disable(struct clk *clk) { } static unsigned long get_rate_nfc(struct clk *clk) { unsigned long div1; div1 = (__raw_readl(MX35_CCM_PDR4) >> 28) + 1; return get_rate_ahb(NULL) / div1; } /* NAND Controller: It seems it can't be disabled */ static struct clk nfc_clk = { .id = 0, .enable_reg = 0, .enable_shift = 0, .get_rate = get_rate_nfc, .set_rate = NULL, /* set_rate_nfc, */ .enable = clk_dummy_enable, .disable = clk_dummy_disable }; #define _REGISTER_CLOCK(d, n, c) \ { \ .dev_id = d, \ .con_id = n, \ .clk = &c, \ }, static struct clk_lookup lookups[] = { _REGISTER_CLOCK(NULL, "asrc", asrc_clk) _REGISTER_CLOCK("pata_imx", NULL, pata_clk) _REGISTER_CLOCK("flexcan.0", NULL, can1_clk) _REGISTER_CLOCK("flexcan.1", NULL, can2_clk) _REGISTER_CLOCK("imx35-cspi.0", NULL, cspi1_clk) _REGISTER_CLOCK("imx35-cspi.1", NULL, cspi2_clk) _REGISTER_CLOCK(NULL, "ect", ect_clk) _REGISTER_CLOCK(NULL, "edio", edio_clk) _REGISTER_CLOCK(NULL, "emi", emi_clk) _REGISTER_CLOCK("imx-epit.0", NULL, epit1_clk) _REGISTER_CLOCK("imx-epit.1", NULL, epit2_clk) _REGISTER_CLOCK(NULL, "esai", esai_clk) _REGISTER_CLOCK("sdhci-esdhc-imx35.0", NULL, esdhc1_clk) _REGISTER_CLOCK("sdhci-esdhc-imx35.1", NULL, esdhc2_clk) _REGISTER_CLOCK("sdhci-esdhc-imx35.2", NULL, esdhc3_clk) /* i.mx35 has the i.mx27 type fec */ _REGISTER_CLOCK("imx27-fec.0", NULL, fec_clk) _REGISTER_CLOCK(NULL, "gpio", gpio1_clk) _REGISTER_CLOCK(NULL, "gpio", gpio2_clk) _REGISTER_CLOCK(NULL, "gpio", gpio3_clk) _REGISTER_CLOCK("gpt.0", NULL, gpt_clk) _REGISTER_CLOCK("imx-i2c.0", NULL, i2c1_clk) _REGISTER_CLOCK("imx-i2c.1", NULL, i2c2_clk) _REGISTER_CLOCK("imx-i2c.2", NULL, i2c3_clk) _REGISTER_CLOCK(NULL, "iomuxc", iomuxc_clk) _REGISTER_CLOCK("ipu-core", NULL, ipu_clk) _REGISTER_CLOCK("mx3_sdc_fb", NULL, ipu_clk) _REGISTER_CLOCK(NULL, "kpp", kpp_clk) _REGISTER_CLOCK(NULL, "mlb", mlb_clk) _REGISTER_CLOCK(NULL, "mshc", mshc_clk) _REGISTER_CLOCK("mxc_w1", NULL, owire_clk) _REGISTER_CLOCK(NULL, "pwm", pwm_clk) _REGISTER_CLOCK(NULL, "rngc", rngc_clk) _REGISTER_CLOCK(NULL, "rtc", rtc_clk) _REGISTER_CLOCK(NULL, "rtic", rtic_clk) _REGISTER_CLOCK(NULL, "scc", scc_clk) _REGISTER_CLOCK("imx35-sdma", NULL, sdma_clk) _REGISTER_CLOCK(NULL, "spba", spba_clk) _REGISTER_CLOCK(NULL, "spdif", spdif_clk) _REGISTER_CLOCK("imx-ssi.0", NULL, ssi1_clk) _REGISTER_CLOCK("imx-ssi.1", NULL, ssi2_clk) /* i.mx35 has the i.mx21 type uart */ _REGISTER_CLOCK("imx21-uart.0", NULL, uart1_clk) _REGISTER_CLOCK("imx21-uart.1", NULL, uart2_clk) _REGISTER_CLOCK("imx21-uart.2", NULL, uart3_clk) _REGISTER_CLOCK("mxc-ehci.0", "usb", usbotg_clk) _REGISTER_CLOCK("mxc-ehci.1", "usb", usbotg_clk) _REGISTER_CLOCK("mxc-ehci.2", "usb", usbotg_clk) _REGISTER_CLOCK("fsl-usb2-udc", "usb", usbotg_clk) _REGISTER_CLOCK("fsl-usb2-udc", "usb_ahb", usbahb_clk) _REGISTER_CLOCK("imx2-wdt.0", NULL, wdog_clk) _REGISTER_CLOCK(NULL, "max", max_clk) _REGISTER_CLOCK(NULL, "audmux", audmux_clk) _REGISTER_CLOCK("mx3-camera.0", NULL, csi_clk) _REGISTER_CLOCK(NULL, "iim", iim_clk) _REGISTER_CLOCK(NULL, "gpu2d", gpu2d_clk) _REGISTER_CLOCK("mxc_nand.0", NULL, nfc_clk) }; int __init mx35_clocks_init() { unsigned int cgr2 = 3 << 26; #if defined(CONFIG_DEBUG_LL) && !defined(CONFIG_DEBUG_ICEDCC) cgr2 |= 3 << 16; #endif clkdev_add_table(lookups, ARRAY_SIZE(lookups)); /* Turn off all clocks except the ones we need to survive, namely: * EMI, GPIO1/2/3, GPT, IOMUX, MAX and eventually uart */ __raw_writel((3 << 18), MX35_CCM_CGR0); __raw_writel((3 << 2) | (3 << 4) | (3 << 6) | (3 << 8) | (3 << 16), MX35_CCM_CGR1); __raw_writel(cgr2, MX35_CCM_CGR2); __raw_writel(0, MX35_CCM_CGR3); clk_enable(&iim_clk); imx_print_silicon_rev("i.MX35", mx35_revision()); clk_disable(&iim_clk); /* * Check if we came up in internal boot mode. If yes, we need some * extra clocks turned on, otherwise the MX35 boot ROM code will * hang after a watchdog reset. */ if (!(__raw_readl(MX35_CCM_RCSR) & (3 << 10))) { /* Additionally turn on UART1, SCC, and IIM clocks */ clk_enable(&iim_clk); clk_enable(&uart1_clk); clk_enable(&scc_clk); } #ifdef CONFIG_MXC_USE_EPIT epit_timer_init(&epit1_clk, MX35_IO_ADDRESS(MX35_EPIT1_BASE_ADDR), MX35_INT_EPIT1); #else mxc_timer_init(&gpt_clk, MX35_IO_ADDRESS(MX35_GPT1_BASE_ADDR), MX35_INT_GPT); #endif return 0; }