/* * linux/arch/arm/kernel/smp_twd.c * * Copyright (C) 2002 ARM Ltd. * All Rights Reserved * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/clk.h> #include <linux/cpufreq.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/err.h> #include <linux/smp.h> #include <linux/jiffies.h> #include <linux/clockchips.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/of_irq.h> #include <linux/of_address.h> #include <asm/smp_twd.h> #include <asm/localtimer.h> #include <asm/hardware/gic.h> /* set up by the platform code */ static void __iomem *twd_base; static struct clk *twd_clk; static unsigned long twd_timer_rate; static struct clock_event_device __percpu **twd_evt; static int twd_ppi; static void twd_set_mode(enum clock_event_mode mode, struct clock_event_device *clk) { unsigned long ctrl; switch (mode) { case CLOCK_EVT_MODE_PERIODIC: /* timer load already set up */ ctrl = TWD_TIMER_CONTROL_ENABLE | TWD_TIMER_CONTROL_IT_ENABLE | TWD_TIMER_CONTROL_PERIODIC; __raw_writel(twd_timer_rate / HZ, twd_base + TWD_TIMER_LOAD); break; case CLOCK_EVT_MODE_ONESHOT: /* period set, and timer enabled in 'next_event' hook */ ctrl = TWD_TIMER_CONTROL_IT_ENABLE | TWD_TIMER_CONTROL_ONESHOT; break; case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_SHUTDOWN: default: ctrl = 0; } __raw_writel(ctrl, twd_base + TWD_TIMER_CONTROL); } static int twd_set_next_event(unsigned long evt, struct clock_event_device *unused) { unsigned long ctrl = __raw_readl(twd_base + TWD_TIMER_CONTROL); ctrl |= TWD_TIMER_CONTROL_ENABLE; __raw_writel(evt, twd_base + TWD_TIMER_COUNTER); __raw_writel(ctrl, twd_base + TWD_TIMER_CONTROL); return 0; } /* * local_timer_ack: checks for a local timer interrupt. * * If a local timer interrupt has occurred, acknowledge and return 1. * Otherwise, return 0. */ static int twd_timer_ack(void) { if (__raw_readl(twd_base + TWD_TIMER_INTSTAT)) { __raw_writel(1, twd_base + TWD_TIMER_INTSTAT); return 1; } return 0; } static void twd_timer_stop(struct clock_event_device *clk) { twd_set_mode(CLOCK_EVT_MODE_UNUSED, clk); disable_percpu_irq(clk->irq); } #ifdef CONFIG_CPU_FREQ /* * Updates clockevent frequency when the cpu frequency changes. * Called on the cpu that is changing frequency with interrupts disabled. */ static void twd_update_frequency(void *data) { twd_timer_rate = clk_get_rate(twd_clk); clockevents_update_freq(*__this_cpu_ptr(twd_evt), twd_timer_rate); } static int twd_cpufreq_transition(struct notifier_block *nb, unsigned long state, void *data) { struct cpufreq_freqs *freqs = data; /* * The twd clock events must be reprogrammed to account for the new * frequency. The timer is local to a cpu, so cross-call to the * changing cpu. */ if (state == CPUFREQ_POSTCHANGE || state == CPUFREQ_RESUMECHANGE) smp_call_function_single(freqs->cpu, twd_update_frequency, NULL, 1); return NOTIFY_OK; } static struct notifier_block twd_cpufreq_nb = { .notifier_call = twd_cpufreq_transition, }; static int twd_cpufreq_init(void) { if (twd_evt && *__this_cpu_ptr(twd_evt) && !IS_ERR(twd_clk)) return cpufreq_register_notifier(&twd_cpufreq_nb, CPUFREQ_TRANSITION_NOTIFIER); return 0; } core_initcall(twd_cpufreq_init); #endif static void __cpuinit twd_calibrate_rate(void) { unsigned long count; u64 waitjiffies; /* * If this is the first time round, we need to work out how fast * the timer ticks */ if (twd_timer_rate == 0) { printk(KERN_INFO "Calibrating local timer... "); /* Wait for a tick to start */ waitjiffies = get_jiffies_64() + 1; while (get_jiffies_64() < waitjiffies) udelay(10); /* OK, now the tick has started, let's get the timer going */ waitjiffies += 5; /* enable, no interrupt or reload */ __raw_writel(0x1, twd_base + TWD_TIMER_CONTROL); /* maximum value */ __raw_writel(0xFFFFFFFFU, twd_base + TWD_TIMER_COUNTER); while (get_jiffies_64() < waitjiffies) udelay(10); count = __raw_readl(twd_base + TWD_TIMER_COUNTER); twd_timer_rate = (0xFFFFFFFFU - count) * (HZ / 5); printk("%lu.%02luMHz.\n", twd_timer_rate / 1000000, (twd_timer_rate / 10000) % 100); } } static irqreturn_t twd_handler(int irq, void *dev_id) { struct clock_event_device *evt = *(struct clock_event_device **)dev_id; if (twd_timer_ack()) { evt->event_handler(evt); return IRQ_HANDLED; } return IRQ_NONE; } static struct clk *twd_get_clock(void) { struct clk *clk; int err; clk = clk_get_sys("smp_twd", NULL); if (IS_ERR(clk)) { pr_err("smp_twd: clock not found: %d\n", (int)PTR_ERR(clk)); return clk; } err = clk_prepare(clk); if (err) { pr_err("smp_twd: clock failed to prepare: %d\n", err); clk_put(clk); return ERR_PTR(err); } err = clk_enable(clk); if (err) { pr_err("smp_twd: clock failed to enable: %d\n", err); clk_unprepare(clk); clk_put(clk); return ERR_PTR(err); } return clk; } /* * Setup the local clock events for a CPU. */ static int __cpuinit twd_timer_setup(struct clock_event_device *clk) { struct clock_event_device **this_cpu_clk; if (!twd_clk) twd_clk = twd_get_clock(); if (!IS_ERR_OR_NULL(twd_clk)) twd_timer_rate = clk_get_rate(twd_clk); else twd_calibrate_rate(); __raw_writel(0, twd_base + TWD_TIMER_CONTROL); clk->name = "local_timer"; clk->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP; clk->rating = 350; clk->set_mode = twd_set_mode; clk->set_next_event = twd_set_next_event; clk->irq = twd_ppi; this_cpu_clk = __this_cpu_ptr(twd_evt); *this_cpu_clk = clk; clockevents_config_and_register(clk, twd_timer_rate, 0xf, 0xffffffff); enable_percpu_irq(clk->irq, 0); return 0; } static struct local_timer_ops twd_lt_ops __cpuinitdata = { .setup = twd_timer_setup, .stop = twd_timer_stop, }; static int __init twd_local_timer_common_register(void) { int err; twd_evt = alloc_percpu(struct clock_event_device *); if (!twd_evt) { err = -ENOMEM; goto out_free; } err = request_percpu_irq(twd_ppi, twd_handler, "twd", twd_evt); if (err) { pr_err("twd: can't register interrupt %d (%d)\n", twd_ppi, err); goto out_free; } err = local_timer_register(&twd_lt_ops); if (err) goto out_irq; return 0; out_irq: free_percpu_irq(twd_ppi, twd_evt); out_free: iounmap(twd_base); twd_base = NULL; free_percpu(twd_evt); return err; } int __init twd_local_timer_register(struct twd_local_timer *tlt) { if (twd_base || twd_evt) return -EBUSY; twd_ppi = tlt->res[1].start; twd_base = ioremap(tlt->res[0].start, resource_size(&tlt->res[0])); if (!twd_base) return -ENOMEM; return twd_local_timer_common_register(); } #ifdef CONFIG_OF const static struct of_device_id twd_of_match[] __initconst = { { .compatible = "arm,cortex-a9-twd-timer", }, { .compatible = "arm,cortex-a5-twd-timer", }, { .compatible = "arm,arm11mp-twd-timer", }, { }, }; void __init twd_local_timer_of_register(void) { struct device_node *np; int err; np = of_find_matching_node(NULL, twd_of_match); if (!np) { err = -ENODEV; goto out; } twd_ppi = irq_of_parse_and_map(np, 0); if (!twd_ppi) { err = -EINVAL; goto out; } twd_base = of_iomap(np, 0); if (!twd_base) { err = -ENOMEM; goto out; } err = twd_local_timer_common_register(); out: WARN(err, "twd_local_timer_of_register failed (%d)\n", err); } #endif