/* * linux/sound/soc/codecs/tlv320aic32x4.c * * Copyright 2011 Vista Silicon S.L. * * Author: Javier Martin <javier.martin@vista-silicon.com> * * Based on sound/soc/codecs/wm8974 and TI driver for kernel 2.6.27. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301, USA. */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/pm.h> #include <linux/i2c.h> #include <linux/cdev.h> #include <linux/slab.h> #include <sound/tlv320aic32x4.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-dapm.h> #include <sound/initval.h> #include <sound/tlv.h> #include "tlv320aic32x4.h" struct aic32x4_rate_divs { u32 mclk; u32 rate; u8 p_val; u8 pll_j; u16 pll_d; u16 dosr; u8 ndac; u8 mdac; u8 aosr; u8 nadc; u8 madc; u8 blck_N; }; struct aic32x4_priv { u32 sysclk; u8 page_no; void *control_data; u32 power_cfg; u32 micpga_routing; bool swapdacs; }; /* 0dB min, 1dB steps */ static DECLARE_TLV_DB_SCALE(tlv_step_1, 0, 100, 0); /* 0dB min, 0.5dB steps */ static DECLARE_TLV_DB_SCALE(tlv_step_0_5, 0, 50, 0); static const struct snd_kcontrol_new aic32x4_snd_controls[] = { SOC_DOUBLE_R_TLV("PCM Playback Volume", AIC32X4_LDACVOL, AIC32X4_RDACVOL, 0, 0x30, 0, tlv_step_0_5), SOC_DOUBLE_R_TLV("HP Driver Gain Volume", AIC32X4_HPLGAIN, AIC32X4_HPRGAIN, 0, 0x1D, 0, tlv_step_1), SOC_DOUBLE_R_TLV("LO Driver Gain Volume", AIC32X4_LOLGAIN, AIC32X4_LORGAIN, 0, 0x1D, 0, tlv_step_1), SOC_DOUBLE_R("HP DAC Playback Switch", AIC32X4_HPLGAIN, AIC32X4_HPRGAIN, 6, 0x01, 1), SOC_DOUBLE_R("LO DAC Playback Switch", AIC32X4_LOLGAIN, AIC32X4_LORGAIN, 6, 0x01, 1), SOC_DOUBLE_R("Mic PGA Switch", AIC32X4_LMICPGAVOL, AIC32X4_RMICPGAVOL, 7, 0x01, 1), SOC_SINGLE("ADCFGA Left Mute Switch", AIC32X4_ADCFGA, 7, 1, 0), SOC_SINGLE("ADCFGA Right Mute Switch", AIC32X4_ADCFGA, 3, 1, 0), SOC_DOUBLE_R_TLV("ADC Level Volume", AIC32X4_LADCVOL, AIC32X4_RADCVOL, 0, 0x28, 0, tlv_step_0_5), SOC_DOUBLE_R_TLV("PGA Level Volume", AIC32X4_LMICPGAVOL, AIC32X4_RMICPGAVOL, 0, 0x5f, 0, tlv_step_0_5), SOC_SINGLE("Auto-mute Switch", AIC32X4_DACMUTE, 4, 7, 0), SOC_SINGLE("AGC Left Switch", AIC32X4_LAGC1, 7, 1, 0), SOC_SINGLE("AGC Right Switch", AIC32X4_RAGC1, 7, 1, 0), SOC_DOUBLE_R("AGC Target Level", AIC32X4_LAGC1, AIC32X4_RAGC1, 4, 0x07, 0), SOC_DOUBLE_R("AGC Gain Hysteresis", AIC32X4_LAGC1, AIC32X4_RAGC1, 0, 0x03, 0), SOC_DOUBLE_R("AGC Hysteresis", AIC32X4_LAGC2, AIC32X4_RAGC2, 6, 0x03, 0), SOC_DOUBLE_R("AGC Noise Threshold", AIC32X4_LAGC2, AIC32X4_RAGC2, 1, 0x1F, 0), SOC_DOUBLE_R("AGC Max PGA", AIC32X4_LAGC3, AIC32X4_RAGC3, 0, 0x7F, 0), SOC_DOUBLE_R("AGC Attack Time", AIC32X4_LAGC4, AIC32X4_RAGC4, 3, 0x1F, 0), SOC_DOUBLE_R("AGC Decay Time", AIC32X4_LAGC5, AIC32X4_RAGC5, 3, 0x1F, 0), SOC_DOUBLE_R("AGC Noise Debounce", AIC32X4_LAGC6, AIC32X4_RAGC6, 0, 0x1F, 0), SOC_DOUBLE_R("AGC Signal Debounce", AIC32X4_LAGC7, AIC32X4_RAGC7, 0, 0x0F, 0), }; static const struct aic32x4_rate_divs aic32x4_divs[] = { /* 8k rate */ {AIC32X4_FREQ_12000000, 8000, 1, 7, 6800, 768, 5, 3, 128, 5, 18, 24}, {AIC32X4_FREQ_24000000, 8000, 2, 7, 6800, 768, 15, 1, 64, 45, 4, 24}, {AIC32X4_FREQ_25000000, 8000, 2, 7, 3728, 768, 15, 1, 64, 45, 4, 24}, /* 11.025k rate */ {AIC32X4_FREQ_12000000, 11025, 1, 7, 5264, 512, 8, 2, 128, 8, 8, 16}, {AIC32X4_FREQ_24000000, 11025, 2, 7, 5264, 512, 16, 1, 64, 32, 4, 16}, /* 16k rate */ {AIC32X4_FREQ_12000000, 16000, 1, 7, 6800, 384, 5, 3, 128, 5, 9, 12}, {AIC32X4_FREQ_24000000, 16000, 2, 7, 6800, 384, 15, 1, 64, 18, 5, 12}, {AIC32X4_FREQ_25000000, 16000, 2, 7, 3728, 384, 15, 1, 64, 18, 5, 12}, /* 22.05k rate */ {AIC32X4_FREQ_12000000, 22050, 1, 7, 5264, 256, 4, 4, 128, 4, 8, 8}, {AIC32X4_FREQ_24000000, 22050, 2, 7, 5264, 256, 16, 1, 64, 16, 4, 8}, {AIC32X4_FREQ_25000000, 22050, 2, 7, 2253, 256, 16, 1, 64, 16, 4, 8}, /* 32k rate */ {AIC32X4_FREQ_12000000, 32000, 1, 7, 1680, 192, 2, 7, 64, 2, 21, 6}, {AIC32X4_FREQ_24000000, 32000, 2, 7, 1680, 192, 7, 2, 64, 7, 6, 6}, /* 44.1k rate */ {AIC32X4_FREQ_12000000, 44100, 1, 7, 5264, 128, 2, 8, 128, 2, 8, 4}, {AIC32X4_FREQ_24000000, 44100, 2, 7, 5264, 128, 8, 2, 64, 8, 4, 4}, {AIC32X4_FREQ_25000000, 44100, 2, 7, 2253, 128, 8, 2, 64, 8, 4, 4}, /* 48k rate */ {AIC32X4_FREQ_12000000, 48000, 1, 8, 1920, 128, 2, 8, 128, 2, 8, 4}, {AIC32X4_FREQ_24000000, 48000, 2, 8, 1920, 128, 8, 2, 64, 8, 4, 4}, {AIC32X4_FREQ_25000000, 48000, 2, 7, 8643, 128, 8, 2, 64, 8, 4, 4} }; static const struct snd_kcontrol_new hpl_output_mixer_controls[] = { SOC_DAPM_SINGLE("L_DAC Switch", AIC32X4_HPLROUTE, 3, 1, 0), SOC_DAPM_SINGLE("IN1_L Switch", AIC32X4_HPLROUTE, 2, 1, 0), }; static const struct snd_kcontrol_new hpr_output_mixer_controls[] = { SOC_DAPM_SINGLE("R_DAC Switch", AIC32X4_HPRROUTE, 3, 1, 0), SOC_DAPM_SINGLE("IN1_R Switch", AIC32X4_HPRROUTE, 2, 1, 0), }; static const struct snd_kcontrol_new lol_output_mixer_controls[] = { SOC_DAPM_SINGLE("L_DAC Switch", AIC32X4_LOLROUTE, 3, 1, 0), }; static const struct snd_kcontrol_new lor_output_mixer_controls[] = { SOC_DAPM_SINGLE("R_DAC Switch", AIC32X4_LORROUTE, 3, 1, 0), }; static const struct snd_kcontrol_new left_input_mixer_controls[] = { SOC_DAPM_SINGLE("IN1_L P Switch", AIC32X4_LMICPGAPIN, 6, 1, 0), SOC_DAPM_SINGLE("IN2_L P Switch", AIC32X4_LMICPGAPIN, 4, 1, 0), SOC_DAPM_SINGLE("IN3_L P Switch", AIC32X4_LMICPGAPIN, 2, 1, 0), }; static const struct snd_kcontrol_new right_input_mixer_controls[] = { SOC_DAPM_SINGLE("IN1_R P Switch", AIC32X4_RMICPGAPIN, 6, 1, 0), SOC_DAPM_SINGLE("IN2_R P Switch", AIC32X4_RMICPGAPIN, 4, 1, 0), SOC_DAPM_SINGLE("IN3_R P Switch", AIC32X4_RMICPGAPIN, 2, 1, 0), }; static const struct snd_soc_dapm_widget aic32x4_dapm_widgets[] = { SND_SOC_DAPM_DAC("Left DAC", "Left Playback", AIC32X4_DACSETUP, 7, 0), SND_SOC_DAPM_MIXER("HPL Output Mixer", SND_SOC_NOPM, 0, 0, &hpl_output_mixer_controls[0], ARRAY_SIZE(hpl_output_mixer_controls)), SND_SOC_DAPM_PGA("HPL Power", AIC32X4_OUTPWRCTL, 5, 0, NULL, 0), SND_SOC_DAPM_MIXER("LOL Output Mixer", SND_SOC_NOPM, 0, 0, &lol_output_mixer_controls[0], ARRAY_SIZE(lol_output_mixer_controls)), SND_SOC_DAPM_PGA("LOL Power", AIC32X4_OUTPWRCTL, 3, 0, NULL, 0), SND_SOC_DAPM_DAC("Right DAC", "Right Playback", AIC32X4_DACSETUP, 6, 0), SND_SOC_DAPM_MIXER("HPR Output Mixer", SND_SOC_NOPM, 0, 0, &hpr_output_mixer_controls[0], ARRAY_SIZE(hpr_output_mixer_controls)), SND_SOC_DAPM_PGA("HPR Power", AIC32X4_OUTPWRCTL, 4, 0, NULL, 0), SND_SOC_DAPM_MIXER("LOR Output Mixer", SND_SOC_NOPM, 0, 0, &lor_output_mixer_controls[0], ARRAY_SIZE(lor_output_mixer_controls)), SND_SOC_DAPM_PGA("LOR Power", AIC32X4_OUTPWRCTL, 2, 0, NULL, 0), SND_SOC_DAPM_MIXER("Left Input Mixer", SND_SOC_NOPM, 0, 0, &left_input_mixer_controls[0], ARRAY_SIZE(left_input_mixer_controls)), SND_SOC_DAPM_MIXER("Right Input Mixer", SND_SOC_NOPM, 0, 0, &right_input_mixer_controls[0], ARRAY_SIZE(right_input_mixer_controls)), SND_SOC_DAPM_ADC("Left ADC", "Left Capture", AIC32X4_ADCSETUP, 7, 0), SND_SOC_DAPM_ADC("Right ADC", "Right Capture", AIC32X4_ADCSETUP, 6, 0), SND_SOC_DAPM_MICBIAS("Mic Bias", AIC32X4_MICBIAS, 6, 0), SND_SOC_DAPM_OUTPUT("HPL"), SND_SOC_DAPM_OUTPUT("HPR"), SND_SOC_DAPM_OUTPUT("LOL"), SND_SOC_DAPM_OUTPUT("LOR"), SND_SOC_DAPM_INPUT("IN1_L"), SND_SOC_DAPM_INPUT("IN1_R"), SND_SOC_DAPM_INPUT("IN2_L"), SND_SOC_DAPM_INPUT("IN2_R"), SND_SOC_DAPM_INPUT("IN3_L"), SND_SOC_DAPM_INPUT("IN3_R"), }; static const struct snd_soc_dapm_route aic32x4_dapm_routes[] = { /* Left Output */ {"HPL Output Mixer", "L_DAC Switch", "Left DAC"}, {"HPL Output Mixer", "IN1_L Switch", "IN1_L"}, {"HPL Power", NULL, "HPL Output Mixer"}, {"HPL", NULL, "HPL Power"}, {"LOL Output Mixer", "L_DAC Switch", "Left DAC"}, {"LOL Power", NULL, "LOL Output Mixer"}, {"LOL", NULL, "LOL Power"}, /* Right Output */ {"HPR Output Mixer", "R_DAC Switch", "Right DAC"}, {"HPR Output Mixer", "IN1_R Switch", "IN1_R"}, {"HPR Power", NULL, "HPR Output Mixer"}, {"HPR", NULL, "HPR Power"}, {"LOR Output Mixer", "R_DAC Switch", "Right DAC"}, {"LOR Power", NULL, "LOR Output Mixer"}, {"LOR", NULL, "LOR Power"}, /* Left input */ {"Left Input Mixer", "IN1_L P Switch", "IN1_L"}, {"Left Input Mixer", "IN2_L P Switch", "IN2_L"}, {"Left Input Mixer", "IN3_L P Switch", "IN3_L"}, {"Left ADC", NULL, "Left Input Mixer"}, /* Right Input */ {"Right Input Mixer", "IN1_R P Switch", "IN1_R"}, {"Right Input Mixer", "IN2_R P Switch", "IN2_R"}, {"Right Input Mixer", "IN3_R P Switch", "IN3_R"}, {"Right ADC", NULL, "Right Input Mixer"}, }; static inline int aic32x4_change_page(struct snd_soc_codec *codec, unsigned int new_page) { struct aic32x4_priv *aic32x4 = snd_soc_codec_get_drvdata(codec); u8 data[2]; int ret; data[0] = 0x00; data[1] = new_page & 0xff; ret = codec->hw_write(codec->control_data, data, 2); if (ret == 2) { aic32x4->page_no = new_page; return 0; } else { return ret; } } static int aic32x4_write(struct snd_soc_codec *codec, unsigned int reg, unsigned int val) { struct aic32x4_priv *aic32x4 = snd_soc_codec_get_drvdata(codec); unsigned int page = reg / 128; unsigned int fixed_reg = reg % 128; u8 data[2]; int ret; /* A write to AIC32X4_PSEL is really a non-explicit page change */ if (reg == AIC32X4_PSEL) return aic32x4_change_page(codec, val); if (aic32x4->page_no != page) { ret = aic32x4_change_page(codec, page); if (ret != 0) return ret; } data[0] = fixed_reg & 0xff; data[1] = val & 0xff; if (codec->hw_write(codec->control_data, data, 2) == 2) return 0; else return -EIO; } static unsigned int aic32x4_read(struct snd_soc_codec *codec, unsigned int reg) { struct aic32x4_priv *aic32x4 = snd_soc_codec_get_drvdata(codec); unsigned int page = reg / 128; unsigned int fixed_reg = reg % 128; int ret; if (aic32x4->page_no != page) { ret = aic32x4_change_page(codec, page); if (ret != 0) return ret; } return i2c_smbus_read_byte_data(codec->control_data, fixed_reg & 0xff); } static inline int aic32x4_get_divs(int mclk, int rate) { int i; for (i = 0; i < ARRAY_SIZE(aic32x4_divs); i++) { if ((aic32x4_divs[i].rate == rate) && (aic32x4_divs[i].mclk == mclk)) { return i; } } printk(KERN_ERR "aic32x4: master clock and sample rate is not supported\n"); return -EINVAL; } static int aic32x4_add_widgets(struct snd_soc_codec *codec) { snd_soc_dapm_new_controls(&codec->dapm, aic32x4_dapm_widgets, ARRAY_SIZE(aic32x4_dapm_widgets)); snd_soc_dapm_add_routes(&codec->dapm, aic32x4_dapm_routes, ARRAY_SIZE(aic32x4_dapm_routes)); snd_soc_dapm_new_widgets(&codec->dapm); return 0; } static int aic32x4_set_dai_sysclk(struct snd_soc_dai *codec_dai, int clk_id, unsigned int freq, int dir) { struct snd_soc_codec *codec = codec_dai->codec; struct aic32x4_priv *aic32x4 = snd_soc_codec_get_drvdata(codec); switch (freq) { case AIC32X4_FREQ_12000000: case AIC32X4_FREQ_24000000: case AIC32X4_FREQ_25000000: aic32x4->sysclk = freq; return 0; } printk(KERN_ERR "aic32x4: invalid frequency to set DAI system clock\n"); return -EINVAL; } static int aic32x4_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt) { struct snd_soc_codec *codec = codec_dai->codec; u8 iface_reg_1; u8 iface_reg_2; u8 iface_reg_3; iface_reg_1 = snd_soc_read(codec, AIC32X4_IFACE1); iface_reg_1 = iface_reg_1 & ~(3 << 6 | 3 << 2); iface_reg_2 = snd_soc_read(codec, AIC32X4_IFACE2); iface_reg_2 = 0; iface_reg_3 = snd_soc_read(codec, AIC32X4_IFACE3); iface_reg_3 = iface_reg_3 & ~(1 << 3); /* set master/slave audio interface */ switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBM_CFM: iface_reg_1 |= AIC32X4_BCLKMASTER | AIC32X4_WCLKMASTER; break; case SND_SOC_DAIFMT_CBS_CFS: break; default: printk(KERN_ERR "aic32x4: invalid DAI master/slave interface\n"); return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: break; case SND_SOC_DAIFMT_DSP_A: iface_reg_1 |= (AIC32X4_DSP_MODE << AIC32X4_PLLJ_SHIFT); iface_reg_3 |= (1 << 3); /* invert bit clock */ iface_reg_2 = 0x01; /* add offset 1 */ break; case SND_SOC_DAIFMT_DSP_B: iface_reg_1 |= (AIC32X4_DSP_MODE << AIC32X4_PLLJ_SHIFT); iface_reg_3 |= (1 << 3); /* invert bit clock */ break; case SND_SOC_DAIFMT_RIGHT_J: iface_reg_1 |= (AIC32X4_RIGHT_JUSTIFIED_MODE << AIC32X4_PLLJ_SHIFT); break; case SND_SOC_DAIFMT_LEFT_J: iface_reg_1 |= (AIC32X4_LEFT_JUSTIFIED_MODE << AIC32X4_PLLJ_SHIFT); break; default: printk(KERN_ERR "aic32x4: invalid DAI interface format\n"); return -EINVAL; } snd_soc_write(codec, AIC32X4_IFACE1, iface_reg_1); snd_soc_write(codec, AIC32X4_IFACE2, iface_reg_2); snd_soc_write(codec, AIC32X4_IFACE3, iface_reg_3); return 0; } static int aic32x4_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_codec *codec = dai->codec; struct aic32x4_priv *aic32x4 = snd_soc_codec_get_drvdata(codec); u8 data; int i; i = aic32x4_get_divs(aic32x4->sysclk, params_rate(params)); if (i < 0) { printk(KERN_ERR "aic32x4: sampling rate not supported\n"); return i; } /* Use PLL as CODEC_CLKIN and DAC_MOD_CLK as BDIV_CLKIN */ snd_soc_write(codec, AIC32X4_CLKMUX, AIC32X4_PLLCLKIN); snd_soc_write(codec, AIC32X4_IFACE3, AIC32X4_DACMOD2BCLK); /* We will fix R value to 1 and will make P & J=K.D as varialble */ data = snd_soc_read(codec, AIC32X4_PLLPR); data &= ~(7 << 4); snd_soc_write(codec, AIC32X4_PLLPR, (data | (aic32x4_divs[i].p_val << 4) | 0x01)); snd_soc_write(codec, AIC32X4_PLLJ, aic32x4_divs[i].pll_j); snd_soc_write(codec, AIC32X4_PLLDMSB, (aic32x4_divs[i].pll_d >> 8)); snd_soc_write(codec, AIC32X4_PLLDLSB, (aic32x4_divs[i].pll_d & 0xff)); /* NDAC divider value */ data = snd_soc_read(codec, AIC32X4_NDAC); data &= ~(0x7f); snd_soc_write(codec, AIC32X4_NDAC, data | aic32x4_divs[i].ndac); /* MDAC divider value */ data = snd_soc_read(codec, AIC32X4_MDAC); data &= ~(0x7f); snd_soc_write(codec, AIC32X4_MDAC, data | aic32x4_divs[i].mdac); /* DOSR MSB & LSB values */ snd_soc_write(codec, AIC32X4_DOSRMSB, aic32x4_divs[i].dosr >> 8); snd_soc_write(codec, AIC32X4_DOSRLSB, (aic32x4_divs[i].dosr & 0xff)); /* NADC divider value */ data = snd_soc_read(codec, AIC32X4_NADC); data &= ~(0x7f); snd_soc_write(codec, AIC32X4_NADC, data | aic32x4_divs[i].nadc); /* MADC divider value */ data = snd_soc_read(codec, AIC32X4_MADC); data &= ~(0x7f); snd_soc_write(codec, AIC32X4_MADC, data | aic32x4_divs[i].madc); /* AOSR value */ snd_soc_write(codec, AIC32X4_AOSR, aic32x4_divs[i].aosr); /* BCLK N divider */ data = snd_soc_read(codec, AIC32X4_BCLKN); data &= ~(0x7f); snd_soc_write(codec, AIC32X4_BCLKN, data | aic32x4_divs[i].blck_N); data = snd_soc_read(codec, AIC32X4_IFACE1); data = data & ~(3 << 4); switch (params_format(params)) { case SNDRV_PCM_FORMAT_S16_LE: break; case SNDRV_PCM_FORMAT_S20_3LE: data |= (AIC32X4_WORD_LEN_20BITS << AIC32X4_DOSRMSB_SHIFT); break; case SNDRV_PCM_FORMAT_S24_LE: data |= (AIC32X4_WORD_LEN_24BITS << AIC32X4_DOSRMSB_SHIFT); break; case SNDRV_PCM_FORMAT_S32_LE: data |= (AIC32X4_WORD_LEN_32BITS << AIC32X4_DOSRMSB_SHIFT); break; } snd_soc_write(codec, AIC32X4_IFACE1, data); return 0; } static int aic32x4_mute(struct snd_soc_dai *dai, int mute) { struct snd_soc_codec *codec = dai->codec; u8 dac_reg; dac_reg = snd_soc_read(codec, AIC32X4_DACMUTE) & ~AIC32X4_MUTEON; if (mute) snd_soc_write(codec, AIC32X4_DACMUTE, dac_reg | AIC32X4_MUTEON); else snd_soc_write(codec, AIC32X4_DACMUTE, dac_reg); return 0; } static int aic32x4_set_bias_level(struct snd_soc_codec *codec, enum snd_soc_bias_level level) { switch (level) { case SND_SOC_BIAS_ON: /* Switch on PLL */ snd_soc_update_bits(codec, AIC32X4_PLLPR, AIC32X4_PLLEN, AIC32X4_PLLEN); /* Switch on NDAC Divider */ snd_soc_update_bits(codec, AIC32X4_NDAC, AIC32X4_NDACEN, AIC32X4_NDACEN); /* Switch on MDAC Divider */ snd_soc_update_bits(codec, AIC32X4_MDAC, AIC32X4_MDACEN, AIC32X4_MDACEN); /* Switch on NADC Divider */ snd_soc_update_bits(codec, AIC32X4_NADC, AIC32X4_NADCEN, AIC32X4_NADCEN); /* Switch on MADC Divider */ snd_soc_update_bits(codec, AIC32X4_MADC, AIC32X4_MADCEN, AIC32X4_MADCEN); /* Switch on BCLK_N Divider */ snd_soc_update_bits(codec, AIC32X4_BCLKN, AIC32X4_BCLKEN, AIC32X4_BCLKEN); break; case SND_SOC_BIAS_PREPARE: break; case SND_SOC_BIAS_STANDBY: /* Switch off PLL */ snd_soc_update_bits(codec, AIC32X4_PLLPR, AIC32X4_PLLEN, 0); /* Switch off NDAC Divider */ snd_soc_update_bits(codec, AIC32X4_NDAC, AIC32X4_NDACEN, 0); /* Switch off MDAC Divider */ snd_soc_update_bits(codec, AIC32X4_MDAC, AIC32X4_MDACEN, 0); /* Switch off NADC Divider */ snd_soc_update_bits(codec, AIC32X4_NADC, AIC32X4_NADCEN, 0); /* Switch off MADC Divider */ snd_soc_update_bits(codec, AIC32X4_MADC, AIC32X4_MADCEN, 0); /* Switch off BCLK_N Divider */ snd_soc_update_bits(codec, AIC32X4_BCLKN, AIC32X4_BCLKEN, 0); break; case SND_SOC_BIAS_OFF: break; } codec->dapm.bias_level = level; return 0; } #define AIC32X4_RATES SNDRV_PCM_RATE_8000_48000 #define AIC32X4_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \ | SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE) static const struct snd_soc_dai_ops aic32x4_ops = { .hw_params = aic32x4_hw_params, .digital_mute = aic32x4_mute, .set_fmt = aic32x4_set_dai_fmt, .set_sysclk = aic32x4_set_dai_sysclk, }; static struct snd_soc_dai_driver aic32x4_dai = { .name = "tlv320aic32x4-hifi", .playback = { .stream_name = "Playback", .channels_min = 1, .channels_max = 2, .rates = AIC32X4_RATES, .formats = AIC32X4_FORMATS,}, .capture = { .stream_name = "Capture", .channels_min = 1, .channels_max = 2, .rates = AIC32X4_RATES, .formats = AIC32X4_FORMATS,}, .ops = &aic32x4_ops, .symmetric_rates = 1, }; static int aic32x4_suspend(struct snd_soc_codec *codec) { aic32x4_set_bias_level(codec, SND_SOC_BIAS_OFF); return 0; } static int aic32x4_resume(struct snd_soc_codec *codec) { aic32x4_set_bias_level(codec, SND_SOC_BIAS_STANDBY); return 0; } static int aic32x4_probe(struct snd_soc_codec *codec) { struct aic32x4_priv *aic32x4 = snd_soc_codec_get_drvdata(codec); u32 tmp_reg; codec->hw_write = (hw_write_t) i2c_master_send; codec->control_data = aic32x4->control_data; snd_soc_write(codec, AIC32X4_RESET, 0x01); /* Power platform configuration */ if (aic32x4->power_cfg & AIC32X4_PWR_MICBIAS_2075_LDOIN) { snd_soc_write(codec, AIC32X4_MICBIAS, AIC32X4_MICBIAS_LDOIN | AIC32X4_MICBIAS_2075V); } if (aic32x4->power_cfg & AIC32X4_PWR_AVDD_DVDD_WEAK_DISABLE) { snd_soc_write(codec, AIC32X4_PWRCFG, AIC32X4_AVDDWEAKDISABLE); } tmp_reg = (aic32x4->power_cfg & AIC32X4_PWR_AIC32X4_LDO_ENABLE) ? AIC32X4_LDOCTLEN : 0; snd_soc_write(codec, AIC32X4_LDOCTL, tmp_reg); tmp_reg = snd_soc_read(codec, AIC32X4_CMMODE); if (aic32x4->power_cfg & AIC32X4_PWR_CMMODE_LDOIN_RANGE_18_36) { tmp_reg |= AIC32X4_LDOIN_18_36; } if (aic32x4->power_cfg & AIC32X4_PWR_CMMODE_HP_LDOIN_POWERED) { tmp_reg |= AIC32X4_LDOIN2HP; } snd_soc_write(codec, AIC32X4_CMMODE, tmp_reg); /* Do DACs need to be swapped? */ if (aic32x4->swapdacs) { snd_soc_write(codec, AIC32X4_DACSETUP, AIC32X4_LDAC2RCHN | AIC32X4_RDAC2LCHN); } else { snd_soc_write(codec, AIC32X4_DACSETUP, AIC32X4_LDAC2LCHN | AIC32X4_RDAC2RCHN); } /* Mic PGA routing */ if (aic32x4->micpga_routing & AIC32X4_MICPGA_ROUTE_LMIC_IN2R_10K) { snd_soc_write(codec, AIC32X4_LMICPGANIN, AIC32X4_LMICPGANIN_IN2R_10K); } if (aic32x4->micpga_routing & AIC32X4_MICPGA_ROUTE_RMIC_IN1L_10K) { snd_soc_write(codec, AIC32X4_RMICPGANIN, AIC32X4_RMICPGANIN_IN1L_10K); } aic32x4_set_bias_level(codec, SND_SOC_BIAS_STANDBY); snd_soc_add_controls(codec, aic32x4_snd_controls, ARRAY_SIZE(aic32x4_snd_controls)); aic32x4_add_widgets(codec); return 0; } static int aic32x4_remove(struct snd_soc_codec *codec) { aic32x4_set_bias_level(codec, SND_SOC_BIAS_OFF); return 0; } static struct snd_soc_codec_driver soc_codec_dev_aic32x4 = { .read = aic32x4_read, .write = aic32x4_write, .probe = aic32x4_probe, .remove = aic32x4_remove, .suspend = aic32x4_suspend, .resume = aic32x4_resume, .set_bias_level = aic32x4_set_bias_level, }; static __devinit int aic32x4_i2c_probe(struct i2c_client *i2c, const struct i2c_device_id *id) { struct aic32x4_pdata *pdata = i2c->dev.platform_data; struct aic32x4_priv *aic32x4; int ret; aic32x4 = devm_kzalloc(&i2c->dev, sizeof(struct aic32x4_priv), GFP_KERNEL); if (aic32x4 == NULL) return -ENOMEM; aic32x4->control_data = i2c; i2c_set_clientdata(i2c, aic32x4); if (pdata) { aic32x4->power_cfg = pdata->power_cfg; aic32x4->swapdacs = pdata->swapdacs; aic32x4->micpga_routing = pdata->micpga_routing; } else { aic32x4->power_cfg = 0; aic32x4->swapdacs = false; aic32x4->micpga_routing = 0; } ret = snd_soc_register_codec(&i2c->dev, &soc_codec_dev_aic32x4, &aic32x4_dai, 1); return ret; } static __devexit int aic32x4_i2c_remove(struct i2c_client *client) { snd_soc_unregister_codec(&client->dev); return 0; } static const struct i2c_device_id aic32x4_i2c_id[] = { { "tlv320aic32x4", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, aic32x4_i2c_id); static struct i2c_driver aic32x4_i2c_driver = { .driver = { .name = "tlv320aic32x4", .owner = THIS_MODULE, }, .probe = aic32x4_i2c_probe, .remove = __devexit_p(aic32x4_i2c_remove), .id_table = aic32x4_i2c_id, }; static int __init aic32x4_modinit(void) { int ret = 0; ret = i2c_add_driver(&aic32x4_i2c_driver); if (ret != 0) { printk(KERN_ERR "Failed to register aic32x4 I2C driver: %d\n", ret); } return ret; } module_init(aic32x4_modinit); static void __exit aic32x4_exit(void) { i2c_del_driver(&aic32x4_i2c_driver); } module_exit(aic32x4_exit); MODULE_DESCRIPTION("ASoC tlv320aic32x4 codec driver"); MODULE_AUTHOR("Javier Martin <javier.martin@vista-silicon.com>"); MODULE_LICENSE("GPL");