/* * Copyright (c) 2000-2006 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include <linux/stddef.h> #include <linux/errno.h> #include <linux/gfp.h> #include <linux/pagemap.h> #include <linux/init.h> #include <linux/vmalloc.h> #include <linux/bio.h> #include <linux/sysctl.h> #include <linux/proc_fs.h> #include <linux/workqueue.h> #include <linux/percpu.h> #include <linux/blkdev.h> #include <linux/hash.h> #include <linux/kthread.h> #include <linux/migrate.h> #include <linux/backing-dev.h> #include <linux/freezer.h> #include "xfs_sb.h" #include "xfs_inum.h" #include "xfs_log.h" #include "xfs_ag.h" #include "xfs_mount.h" #include "xfs_trace.h" static kmem_zone_t *xfs_buf_zone; STATIC int xfsbufd(void *); static struct workqueue_struct *xfslogd_workqueue; struct workqueue_struct *xfsdatad_workqueue; struct workqueue_struct *xfsconvertd_workqueue; #ifdef XFS_BUF_LOCK_TRACKING # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid) # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1) # define XB_GET_OWNER(bp) ((bp)->b_last_holder) #else # define XB_SET_OWNER(bp) do { } while (0) # define XB_CLEAR_OWNER(bp) do { } while (0) # define XB_GET_OWNER(bp) do { } while (0) #endif #define xb_to_gfp(flags) \ ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \ ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN) #define xb_to_km(flags) \ (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP) static inline int xfs_buf_is_vmapped( struct xfs_buf *bp) { /* * Return true if the buffer is vmapped. * * The XBF_MAPPED flag is set if the buffer should be mapped, but the * code is clever enough to know it doesn't have to map a single page, * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1. */ return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1; } static inline int xfs_buf_vmap_len( struct xfs_buf *bp) { return (bp->b_page_count * PAGE_SIZE) - bp->b_offset; } /* * xfs_buf_lru_add - add a buffer to the LRU. * * The LRU takes a new reference to the buffer so that it will only be freed * once the shrinker takes the buffer off the LRU. */ STATIC void xfs_buf_lru_add( struct xfs_buf *bp) { struct xfs_buftarg *btp = bp->b_target; spin_lock(&btp->bt_lru_lock); if (list_empty(&bp->b_lru)) { atomic_inc(&bp->b_hold); list_add_tail(&bp->b_lru, &btp->bt_lru); btp->bt_lru_nr++; } spin_unlock(&btp->bt_lru_lock); } /* * xfs_buf_lru_del - remove a buffer from the LRU * * The unlocked check is safe here because it only occurs when there are not * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there * to optimise the shrinker removing the buffer from the LRU and calling * xfs_buf_free(). i.e. it removes an unnecessary round trip on the * bt_lru_lock. */ STATIC void xfs_buf_lru_del( struct xfs_buf *bp) { struct xfs_buftarg *btp = bp->b_target; if (list_empty(&bp->b_lru)) return; spin_lock(&btp->bt_lru_lock); if (!list_empty(&bp->b_lru)) { list_del_init(&bp->b_lru); btp->bt_lru_nr--; } spin_unlock(&btp->bt_lru_lock); } /* * When we mark a buffer stale, we remove the buffer from the LRU and clear the * b_lru_ref count so that the buffer is freed immediately when the buffer * reference count falls to zero. If the buffer is already on the LRU, we need * to remove the reference that LRU holds on the buffer. * * This prevents build-up of stale buffers on the LRU. */ void xfs_buf_stale( struct xfs_buf *bp) { bp->b_flags |= XBF_STALE; xfs_buf_delwri_dequeue(bp); atomic_set(&(bp)->b_lru_ref, 0); if (!list_empty(&bp->b_lru)) { struct xfs_buftarg *btp = bp->b_target; spin_lock(&btp->bt_lru_lock); if (!list_empty(&bp->b_lru)) { list_del_init(&bp->b_lru); btp->bt_lru_nr--; atomic_dec(&bp->b_hold); } spin_unlock(&btp->bt_lru_lock); } ASSERT(atomic_read(&bp->b_hold) >= 1); } struct xfs_buf * xfs_buf_alloc( struct xfs_buftarg *target, xfs_off_t range_base, size_t range_length, xfs_buf_flags_t flags) { struct xfs_buf *bp; bp = kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags)); if (unlikely(!bp)) return NULL; /* * We don't want certain flags to appear in b_flags. */ flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD); memset(bp, 0, sizeof(xfs_buf_t)); atomic_set(&bp->b_hold, 1); atomic_set(&bp->b_lru_ref, 1); init_completion(&bp->b_iowait); INIT_LIST_HEAD(&bp->b_lru); INIT_LIST_HEAD(&bp->b_list); RB_CLEAR_NODE(&bp->b_rbnode); sema_init(&bp->b_sema, 0); /* held, no waiters */ XB_SET_OWNER(bp); bp->b_target = target; bp->b_file_offset = range_base; /* * Set buffer_length and count_desired to the same value initially. * I/O routines should use count_desired, which will be the same in * most cases but may be reset (e.g. XFS recovery). */ bp->b_buffer_length = bp->b_count_desired = range_length; bp->b_flags = flags; bp->b_bn = XFS_BUF_DADDR_NULL; atomic_set(&bp->b_pin_count, 0); init_waitqueue_head(&bp->b_waiters); XFS_STATS_INC(xb_create); trace_xfs_buf_init(bp, _RET_IP_); return bp; } /* * Allocate a page array capable of holding a specified number * of pages, and point the page buf at it. */ STATIC int _xfs_buf_get_pages( xfs_buf_t *bp, int page_count, xfs_buf_flags_t flags) { /* Make sure that we have a page list */ if (bp->b_pages == NULL) { bp->b_offset = xfs_buf_poff(bp->b_file_offset); bp->b_page_count = page_count; if (page_count <= XB_PAGES) { bp->b_pages = bp->b_page_array; } else { bp->b_pages = kmem_alloc(sizeof(struct page *) * page_count, xb_to_km(flags)); if (bp->b_pages == NULL) return -ENOMEM; } memset(bp->b_pages, 0, sizeof(struct page *) * page_count); } return 0; } /* * Frees b_pages if it was allocated. */ STATIC void _xfs_buf_free_pages( xfs_buf_t *bp) { if (bp->b_pages != bp->b_page_array) { kmem_free(bp->b_pages); bp->b_pages = NULL; } } /* * Releases the specified buffer. * * The modification state of any associated pages is left unchanged. * The buffer most not be on any hash - use xfs_buf_rele instead for * hashed and refcounted buffers */ void xfs_buf_free( xfs_buf_t *bp) { trace_xfs_buf_free(bp, _RET_IP_); ASSERT(list_empty(&bp->b_lru)); if (bp->b_flags & _XBF_PAGES) { uint i; if (xfs_buf_is_vmapped(bp)) vm_unmap_ram(bp->b_addr - bp->b_offset, bp->b_page_count); for (i = 0; i < bp->b_page_count; i++) { struct page *page = bp->b_pages[i]; __free_page(page); } } else if (bp->b_flags & _XBF_KMEM) kmem_free(bp->b_addr); _xfs_buf_free_pages(bp); kmem_zone_free(xfs_buf_zone, bp); } /* * Allocates all the pages for buffer in question and builds it's page list. */ STATIC int xfs_buf_allocate_memory( xfs_buf_t *bp, uint flags) { size_t size = bp->b_count_desired; size_t nbytes, offset; gfp_t gfp_mask = xb_to_gfp(flags); unsigned short page_count, i; xfs_off_t end; int error; /* * for buffers that are contained within a single page, just allocate * the memory from the heap - there's no need for the complexity of * page arrays to keep allocation down to order 0. */ if (bp->b_buffer_length < PAGE_SIZE) { bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags)); if (!bp->b_addr) { /* low memory - use alloc_page loop instead */ goto use_alloc_page; } if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) & PAGE_MASK) != ((unsigned long)bp->b_addr & PAGE_MASK)) { /* b_addr spans two pages - use alloc_page instead */ kmem_free(bp->b_addr); bp->b_addr = NULL; goto use_alloc_page; } bp->b_offset = offset_in_page(bp->b_addr); bp->b_pages = bp->b_page_array; bp->b_pages[0] = virt_to_page(bp->b_addr); bp->b_page_count = 1; bp->b_flags |= XBF_MAPPED | _XBF_KMEM; return 0; } use_alloc_page: end = bp->b_file_offset + bp->b_buffer_length; page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset); error = _xfs_buf_get_pages(bp, page_count, flags); if (unlikely(error)) return error; offset = bp->b_offset; bp->b_flags |= _XBF_PAGES; for (i = 0; i < bp->b_page_count; i++) { struct page *page; uint retries = 0; retry: page = alloc_page(gfp_mask); if (unlikely(page == NULL)) { if (flags & XBF_READ_AHEAD) { bp->b_page_count = i; error = ENOMEM; goto out_free_pages; } /* * This could deadlock. * * But until all the XFS lowlevel code is revamped to * handle buffer allocation failures we can't do much. */ if (!(++retries % 100)) xfs_err(NULL, "possible memory allocation deadlock in %s (mode:0x%x)", __func__, gfp_mask); XFS_STATS_INC(xb_page_retries); congestion_wait(BLK_RW_ASYNC, HZ/50); goto retry; } XFS_STATS_INC(xb_page_found); nbytes = min_t(size_t, size, PAGE_SIZE - offset); size -= nbytes; bp->b_pages[i] = page; offset = 0; } return 0; out_free_pages: for (i = 0; i < bp->b_page_count; i++) __free_page(bp->b_pages[i]); return error; } /* * Map buffer into kernel address-space if necessary. */ STATIC int _xfs_buf_map_pages( xfs_buf_t *bp, uint flags) { ASSERT(bp->b_flags & _XBF_PAGES); if (bp->b_page_count == 1) { /* A single page buffer is always mappable */ bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset; bp->b_flags |= XBF_MAPPED; } else if (flags & XBF_MAPPED) { int retried = 0; do { bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, -1, PAGE_KERNEL); if (bp->b_addr) break; vm_unmap_aliases(); } while (retried++ <= 1); if (!bp->b_addr) return -ENOMEM; bp->b_addr += bp->b_offset; bp->b_flags |= XBF_MAPPED; } return 0; } /* * Finding and Reading Buffers */ /* * Look up, and creates if absent, a lockable buffer for * a given range of an inode. The buffer is returned * locked. No I/O is implied by this call. */ xfs_buf_t * _xfs_buf_find( xfs_buftarg_t *btp, /* block device target */ xfs_off_t ioff, /* starting offset of range */ size_t isize, /* length of range */ xfs_buf_flags_t flags, xfs_buf_t *new_bp) { xfs_off_t range_base; size_t range_length; struct xfs_perag *pag; struct rb_node **rbp; struct rb_node *parent; xfs_buf_t *bp; range_base = (ioff << BBSHIFT); range_length = (isize << BBSHIFT); /* Check for IOs smaller than the sector size / not sector aligned */ ASSERT(!(range_length < (1 << btp->bt_sshift))); ASSERT(!(range_base & (xfs_off_t)btp->bt_smask)); /* get tree root */ pag = xfs_perag_get(btp->bt_mount, xfs_daddr_to_agno(btp->bt_mount, ioff)); /* walk tree */ spin_lock(&pag->pag_buf_lock); rbp = &pag->pag_buf_tree.rb_node; parent = NULL; bp = NULL; while (*rbp) { parent = *rbp; bp = rb_entry(parent, struct xfs_buf, b_rbnode); if (range_base < bp->b_file_offset) rbp = &(*rbp)->rb_left; else if (range_base > bp->b_file_offset) rbp = &(*rbp)->rb_right; else { /* * found a block offset match. If the range doesn't * match, the only way this is allowed is if the buffer * in the cache is stale and the transaction that made * it stale has not yet committed. i.e. we are * reallocating a busy extent. Skip this buffer and * continue searching to the right for an exact match. */ if (bp->b_buffer_length != range_length) { ASSERT(bp->b_flags & XBF_STALE); rbp = &(*rbp)->rb_right; continue; } atomic_inc(&bp->b_hold); goto found; } } /* No match found */ if (new_bp) { rb_link_node(&new_bp->b_rbnode, parent, rbp); rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree); /* the buffer keeps the perag reference until it is freed */ new_bp->b_pag = pag; spin_unlock(&pag->pag_buf_lock); } else { XFS_STATS_INC(xb_miss_locked); spin_unlock(&pag->pag_buf_lock); xfs_perag_put(pag); } return new_bp; found: spin_unlock(&pag->pag_buf_lock); xfs_perag_put(pag); if (!xfs_buf_trylock(bp)) { if (flags & XBF_TRYLOCK) { xfs_buf_rele(bp); XFS_STATS_INC(xb_busy_locked); return NULL; } xfs_buf_lock(bp); XFS_STATS_INC(xb_get_locked_waited); } /* * if the buffer is stale, clear all the external state associated with * it. We need to keep flags such as how we allocated the buffer memory * intact here. */ if (bp->b_flags & XBF_STALE) { ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES; } trace_xfs_buf_find(bp, flags, _RET_IP_); XFS_STATS_INC(xb_get_locked); return bp; } /* * Assembles a buffer covering the specified range. The code is optimised for * cache hits, as metadata intensive workloads will see 3 orders of magnitude * more hits than misses. */ struct xfs_buf * xfs_buf_get( xfs_buftarg_t *target,/* target for buffer */ xfs_off_t ioff, /* starting offset of range */ size_t isize, /* length of range */ xfs_buf_flags_t flags) { struct xfs_buf *bp; struct xfs_buf *new_bp; int error = 0; bp = _xfs_buf_find(target, ioff, isize, flags, NULL); if (likely(bp)) goto found; new_bp = xfs_buf_alloc(target, ioff << BBSHIFT, isize << BBSHIFT, flags); if (unlikely(!new_bp)) return NULL; bp = _xfs_buf_find(target, ioff, isize, flags, new_bp); if (!bp) { kmem_zone_free(xfs_buf_zone, new_bp); return NULL; } if (bp == new_bp) { error = xfs_buf_allocate_memory(bp, flags); if (error) goto no_buffer; } else kmem_zone_free(xfs_buf_zone, new_bp); /* * Now we have a workable buffer, fill in the block number so * that we can do IO on it. */ bp->b_bn = ioff; bp->b_count_desired = bp->b_buffer_length; found: if (!(bp->b_flags & XBF_MAPPED)) { error = _xfs_buf_map_pages(bp, flags); if (unlikely(error)) { xfs_warn(target->bt_mount, "%s: failed to map pages\n", __func__); goto no_buffer; } } XFS_STATS_INC(xb_get); trace_xfs_buf_get(bp, flags, _RET_IP_); return bp; no_buffer: if (flags & (XBF_LOCK | XBF_TRYLOCK)) xfs_buf_unlock(bp); xfs_buf_rele(bp); return NULL; } STATIC int _xfs_buf_read( xfs_buf_t *bp, xfs_buf_flags_t flags) { int status; ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE))); ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL); bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | XBF_READ_AHEAD); bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); status = xfs_buf_iorequest(bp); if (status || bp->b_error || (flags & XBF_ASYNC)) return status; return xfs_buf_iowait(bp); } xfs_buf_t * xfs_buf_read( xfs_buftarg_t *target, xfs_off_t ioff, size_t isize, xfs_buf_flags_t flags) { xfs_buf_t *bp; flags |= XBF_READ; bp = xfs_buf_get(target, ioff, isize, flags); if (bp) { trace_xfs_buf_read(bp, flags, _RET_IP_); if (!XFS_BUF_ISDONE(bp)) { XFS_STATS_INC(xb_get_read); _xfs_buf_read(bp, flags); } else if (flags & XBF_ASYNC) { /* * Read ahead call which is already satisfied, * drop the buffer */ goto no_buffer; } else { /* We do not want read in the flags */ bp->b_flags &= ~XBF_READ; } } return bp; no_buffer: if (flags & (XBF_LOCK | XBF_TRYLOCK)) xfs_buf_unlock(bp); xfs_buf_rele(bp); return NULL; } /* * If we are not low on memory then do the readahead in a deadlock * safe manner. */ void xfs_buf_readahead( xfs_buftarg_t *target, xfs_off_t ioff, size_t isize) { if (bdi_read_congested(target->bt_bdi)) return; xfs_buf_read(target, ioff, isize, XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK); } /* * Read an uncached buffer from disk. Allocates and returns a locked * buffer containing the disk contents or nothing. */ struct xfs_buf * xfs_buf_read_uncached( struct xfs_mount *mp, struct xfs_buftarg *target, xfs_daddr_t daddr, size_t length, int flags) { xfs_buf_t *bp; int error; bp = xfs_buf_get_uncached(target, length, flags); if (!bp) return NULL; /* set up the buffer for a read IO */ XFS_BUF_SET_ADDR(bp, daddr); XFS_BUF_READ(bp); xfsbdstrat(mp, bp); error = xfs_buf_iowait(bp); if (error || bp->b_error) { xfs_buf_relse(bp); return NULL; } return bp; } /* * Return a buffer allocated as an empty buffer and associated to external * memory via xfs_buf_associate_memory() back to it's empty state. */ void xfs_buf_set_empty( struct xfs_buf *bp, size_t len) { if (bp->b_pages) _xfs_buf_free_pages(bp); bp->b_pages = NULL; bp->b_page_count = 0; bp->b_addr = NULL; bp->b_file_offset = 0; bp->b_buffer_length = bp->b_count_desired = len; bp->b_bn = XFS_BUF_DADDR_NULL; bp->b_flags &= ~XBF_MAPPED; } static inline struct page * mem_to_page( void *addr) { if ((!is_vmalloc_addr(addr))) { return virt_to_page(addr); } else { return vmalloc_to_page(addr); } } int xfs_buf_associate_memory( xfs_buf_t *bp, void *mem, size_t len) { int rval; int i = 0; unsigned long pageaddr; unsigned long offset; size_t buflen; int page_count; pageaddr = (unsigned long)mem & PAGE_MASK; offset = (unsigned long)mem - pageaddr; buflen = PAGE_ALIGN(len + offset); page_count = buflen >> PAGE_SHIFT; /* Free any previous set of page pointers */ if (bp->b_pages) _xfs_buf_free_pages(bp); bp->b_pages = NULL; bp->b_addr = mem; rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK); if (rval) return rval; bp->b_offset = offset; for (i = 0; i < bp->b_page_count; i++) { bp->b_pages[i] = mem_to_page((void *)pageaddr); pageaddr += PAGE_SIZE; } bp->b_count_desired = len; bp->b_buffer_length = buflen; bp->b_flags |= XBF_MAPPED; return 0; } xfs_buf_t * xfs_buf_get_uncached( struct xfs_buftarg *target, size_t len, int flags) { unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT; int error, i; xfs_buf_t *bp; bp = xfs_buf_alloc(target, 0, len, 0); if (unlikely(bp == NULL)) goto fail; error = _xfs_buf_get_pages(bp, page_count, 0); if (error) goto fail_free_buf; for (i = 0; i < page_count; i++) { bp->b_pages[i] = alloc_page(xb_to_gfp(flags)); if (!bp->b_pages[i]) goto fail_free_mem; } bp->b_flags |= _XBF_PAGES; error = _xfs_buf_map_pages(bp, XBF_MAPPED); if (unlikely(error)) { xfs_warn(target->bt_mount, "%s: failed to map pages\n", __func__); goto fail_free_mem; } trace_xfs_buf_get_uncached(bp, _RET_IP_); return bp; fail_free_mem: while (--i >= 0) __free_page(bp->b_pages[i]); _xfs_buf_free_pages(bp); fail_free_buf: kmem_zone_free(xfs_buf_zone, bp); fail: return NULL; } /* * Increment reference count on buffer, to hold the buffer concurrently * with another thread which may release (free) the buffer asynchronously. * Must hold the buffer already to call this function. */ void xfs_buf_hold( xfs_buf_t *bp) { trace_xfs_buf_hold(bp, _RET_IP_); atomic_inc(&bp->b_hold); } /* * Releases a hold on the specified buffer. If the * the hold count is 1, calls xfs_buf_free. */ void xfs_buf_rele( xfs_buf_t *bp) { struct xfs_perag *pag = bp->b_pag; trace_xfs_buf_rele(bp, _RET_IP_); if (!pag) { ASSERT(list_empty(&bp->b_lru)); ASSERT(RB_EMPTY_NODE(&bp->b_rbnode)); if (atomic_dec_and_test(&bp->b_hold)) xfs_buf_free(bp); return; } ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode)); ASSERT(atomic_read(&bp->b_hold) > 0); if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) { if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) { xfs_buf_lru_add(bp); spin_unlock(&pag->pag_buf_lock); } else { xfs_buf_lru_del(bp); ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q))); rb_erase(&bp->b_rbnode, &pag->pag_buf_tree); spin_unlock(&pag->pag_buf_lock); xfs_perag_put(pag); xfs_buf_free(bp); } } } /* * Lock a buffer object, if it is not already locked. * * If we come across a stale, pinned, locked buffer, we know that we are * being asked to lock a buffer that has been reallocated. Because it is * pinned, we know that the log has not been pushed to disk and hence it * will still be locked. Rather than continuing to have trylock attempts * fail until someone else pushes the log, push it ourselves before * returning. This means that the xfsaild will not get stuck trying * to push on stale inode buffers. */ int xfs_buf_trylock( struct xfs_buf *bp) { int locked; locked = down_trylock(&bp->b_sema) == 0; if (locked) XB_SET_OWNER(bp); else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) xfs_log_force(bp->b_target->bt_mount, 0); trace_xfs_buf_trylock(bp, _RET_IP_); return locked; } /* * Lock a buffer object. * * If we come across a stale, pinned, locked buffer, we know that we * are being asked to lock a buffer that has been reallocated. Because * it is pinned, we know that the log has not been pushed to disk and * hence it will still be locked. Rather than sleeping until someone * else pushes the log, push it ourselves before trying to get the lock. */ void xfs_buf_lock( struct xfs_buf *bp) { trace_xfs_buf_lock(bp, _RET_IP_); if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) xfs_log_force(bp->b_target->bt_mount, 0); down(&bp->b_sema); XB_SET_OWNER(bp); trace_xfs_buf_lock_done(bp, _RET_IP_); } /* * Releases the lock on the buffer object. * If the buffer is marked delwri but is not queued, do so before we * unlock the buffer as we need to set flags correctly. We also need to * take a reference for the delwri queue because the unlocker is going to * drop their's and they don't know we just queued it. */ void xfs_buf_unlock( struct xfs_buf *bp) { XB_CLEAR_OWNER(bp); up(&bp->b_sema); trace_xfs_buf_unlock(bp, _RET_IP_); } STATIC void xfs_buf_wait_unpin( xfs_buf_t *bp) { DECLARE_WAITQUEUE (wait, current); if (atomic_read(&bp->b_pin_count) == 0) return; add_wait_queue(&bp->b_waiters, &wait); for (;;) { set_current_state(TASK_UNINTERRUPTIBLE); if (atomic_read(&bp->b_pin_count) == 0) break; io_schedule(); } remove_wait_queue(&bp->b_waiters, &wait); set_current_state(TASK_RUNNING); } /* * Buffer Utility Routines */ STATIC void xfs_buf_iodone_work( struct work_struct *work) { xfs_buf_t *bp = container_of(work, xfs_buf_t, b_iodone_work); if (bp->b_iodone) (*(bp->b_iodone))(bp); else if (bp->b_flags & XBF_ASYNC) xfs_buf_relse(bp); } void xfs_buf_ioend( xfs_buf_t *bp, int schedule) { trace_xfs_buf_iodone(bp, _RET_IP_); bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); if (bp->b_error == 0) bp->b_flags |= XBF_DONE; if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) { if (schedule) { INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work); queue_work(xfslogd_workqueue, &bp->b_iodone_work); } else { xfs_buf_iodone_work(&bp->b_iodone_work); } } else { complete(&bp->b_iowait); } } void xfs_buf_ioerror( xfs_buf_t *bp, int error) { ASSERT(error >= 0 && error <= 0xffff); bp->b_error = (unsigned short)error; trace_xfs_buf_ioerror(bp, error, _RET_IP_); } void xfs_buf_ioerror_alert( struct xfs_buf *bp, const char *func) { xfs_alert(bp->b_target->bt_mount, "metadata I/O error: block 0x%llx (\"%s\") error %d buf count %zd", (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, XFS_BUF_COUNT(bp)); } int xfs_bwrite( struct xfs_buf *bp) { int error; bp->b_flags |= XBF_WRITE; bp->b_flags &= ~(XBF_ASYNC | XBF_READ); xfs_buf_delwri_dequeue(bp); xfs_bdstrat_cb(bp); error = xfs_buf_iowait(bp); if (error) { xfs_force_shutdown(bp->b_target->bt_mount, SHUTDOWN_META_IO_ERROR); } return error; } /* * Called when we want to stop a buffer from getting written or read. * We attach the EIO error, muck with its flags, and call xfs_buf_ioend * so that the proper iodone callbacks get called. */ STATIC int xfs_bioerror( xfs_buf_t *bp) { #ifdef XFSERRORDEBUG ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone); #endif /* * No need to wait until the buffer is unpinned, we aren't flushing it. */ xfs_buf_ioerror(bp, EIO); /* * We're calling xfs_buf_ioend, so delete XBF_DONE flag. */ XFS_BUF_UNREAD(bp); XFS_BUF_UNDONE(bp); xfs_buf_stale(bp); xfs_buf_ioend(bp, 0); return EIO; } /* * Same as xfs_bioerror, except that we are releasing the buffer * here ourselves, and avoiding the xfs_buf_ioend call. * This is meant for userdata errors; metadata bufs come with * iodone functions attached, so that we can track down errors. */ STATIC int xfs_bioerror_relse( struct xfs_buf *bp) { int64_t fl = bp->b_flags; /* * No need to wait until the buffer is unpinned. * We aren't flushing it. * * chunkhold expects B_DONE to be set, whether * we actually finish the I/O or not. We don't want to * change that interface. */ XFS_BUF_UNREAD(bp); XFS_BUF_DONE(bp); xfs_buf_stale(bp); bp->b_iodone = NULL; if (!(fl & XBF_ASYNC)) { /* * Mark b_error and B_ERROR _both_. * Lot's of chunkcache code assumes that. * There's no reason to mark error for * ASYNC buffers. */ xfs_buf_ioerror(bp, EIO); complete(&bp->b_iowait); } else { xfs_buf_relse(bp); } return EIO; } /* * All xfs metadata buffers except log state machine buffers * get this attached as their b_bdstrat callback function. * This is so that we can catch a buffer * after prematurely unpinning it to forcibly shutdown the filesystem. */ int xfs_bdstrat_cb( struct xfs_buf *bp) { if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { trace_xfs_bdstrat_shut(bp, _RET_IP_); /* * Metadata write that didn't get logged but * written delayed anyway. These aren't associated * with a transaction, and can be ignored. */ if (!bp->b_iodone && !XFS_BUF_ISREAD(bp)) return xfs_bioerror_relse(bp); else return xfs_bioerror(bp); } xfs_buf_iorequest(bp); return 0; } /* * Wrapper around bdstrat so that we can stop data from going to disk in case * we are shutting down the filesystem. Typically user data goes thru this * path; one of the exceptions is the superblock. */ void xfsbdstrat( struct xfs_mount *mp, struct xfs_buf *bp) { if (XFS_FORCED_SHUTDOWN(mp)) { trace_xfs_bdstrat_shut(bp, _RET_IP_); xfs_bioerror_relse(bp); return; } xfs_buf_iorequest(bp); } STATIC void _xfs_buf_ioend( xfs_buf_t *bp, int schedule) { if (atomic_dec_and_test(&bp->b_io_remaining) == 1) xfs_buf_ioend(bp, schedule); } STATIC void xfs_buf_bio_end_io( struct bio *bio, int error) { xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private; xfs_buf_ioerror(bp, -error); if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); _xfs_buf_ioend(bp, 1); bio_put(bio); } STATIC void _xfs_buf_ioapply( xfs_buf_t *bp) { int rw, map_i, total_nr_pages, nr_pages; struct bio *bio; int offset = bp->b_offset; int size = bp->b_count_desired; sector_t sector = bp->b_bn; total_nr_pages = bp->b_page_count; map_i = 0; if (bp->b_flags & XBF_WRITE) { if (bp->b_flags & XBF_SYNCIO) rw = WRITE_SYNC; else rw = WRITE; if (bp->b_flags & XBF_FUA) rw |= REQ_FUA; if (bp->b_flags & XBF_FLUSH) rw |= REQ_FLUSH; } else if (bp->b_flags & XBF_READ_AHEAD) { rw = READA; } else { rw = READ; } /* we only use the buffer cache for meta-data */ rw |= REQ_META; next_chunk: atomic_inc(&bp->b_io_remaining); nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT); if (nr_pages > total_nr_pages) nr_pages = total_nr_pages; bio = bio_alloc(GFP_NOIO, nr_pages); bio->bi_bdev = bp->b_target->bt_bdev; bio->bi_sector = sector; bio->bi_end_io = xfs_buf_bio_end_io; bio->bi_private = bp; for (; size && nr_pages; nr_pages--, map_i++) { int rbytes, nbytes = PAGE_SIZE - offset; if (nbytes > size) nbytes = size; rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset); if (rbytes < nbytes) break; offset = 0; sector += nbytes >> BBSHIFT; size -= nbytes; total_nr_pages--; } if (likely(bio->bi_size)) { if (xfs_buf_is_vmapped(bp)) { flush_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); } submit_bio(rw, bio); if (size) goto next_chunk; } else { xfs_buf_ioerror(bp, EIO); bio_put(bio); } } int xfs_buf_iorequest( xfs_buf_t *bp) { trace_xfs_buf_iorequest(bp, _RET_IP_); ASSERT(!(bp->b_flags & XBF_DELWRI)); if (bp->b_flags & XBF_WRITE) xfs_buf_wait_unpin(bp); xfs_buf_hold(bp); /* Set the count to 1 initially, this will stop an I/O * completion callout which happens before we have started * all the I/O from calling xfs_buf_ioend too early. */ atomic_set(&bp->b_io_remaining, 1); _xfs_buf_ioapply(bp); _xfs_buf_ioend(bp, 0); xfs_buf_rele(bp); return 0; } /* * Waits for I/O to complete on the buffer supplied. * It returns immediately if no I/O is pending. * It returns the I/O error code, if any, or 0 if there was no error. */ int xfs_buf_iowait( xfs_buf_t *bp) { trace_xfs_buf_iowait(bp, _RET_IP_); wait_for_completion(&bp->b_iowait); trace_xfs_buf_iowait_done(bp, _RET_IP_); return bp->b_error; } xfs_caddr_t xfs_buf_offset( xfs_buf_t *bp, size_t offset) { struct page *page; if (bp->b_flags & XBF_MAPPED) return bp->b_addr + offset; offset += bp->b_offset; page = bp->b_pages[offset >> PAGE_SHIFT]; return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1)); } /* * Move data into or out of a buffer. */ void xfs_buf_iomove( xfs_buf_t *bp, /* buffer to process */ size_t boff, /* starting buffer offset */ size_t bsize, /* length to copy */ void *data, /* data address */ xfs_buf_rw_t mode) /* read/write/zero flag */ { size_t bend, cpoff, csize; struct page *page; bend = boff + bsize; while (boff < bend) { page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)]; cpoff = xfs_buf_poff(boff + bp->b_offset); csize = min_t(size_t, PAGE_SIZE-cpoff, bp->b_count_desired-boff); ASSERT(((csize + cpoff) <= PAGE_SIZE)); switch (mode) { case XBRW_ZERO: memset(page_address(page) + cpoff, 0, csize); break; case XBRW_READ: memcpy(data, page_address(page) + cpoff, csize); break; case XBRW_WRITE: memcpy(page_address(page) + cpoff, data, csize); } boff += csize; data += csize; } } /* * Handling of buffer targets (buftargs). */ /* * Wait for any bufs with callbacks that have been submitted but have not yet * returned. These buffers will have an elevated hold count, so wait on those * while freeing all the buffers only held by the LRU. */ void xfs_wait_buftarg( struct xfs_buftarg *btp) { struct xfs_buf *bp; restart: spin_lock(&btp->bt_lru_lock); while (!list_empty(&btp->bt_lru)) { bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru); if (atomic_read(&bp->b_hold) > 1) { spin_unlock(&btp->bt_lru_lock); delay(100); goto restart; } /* * clear the LRU reference count so the buffer doesn't get * ignored in xfs_buf_rele(). */ atomic_set(&bp->b_lru_ref, 0); spin_unlock(&btp->bt_lru_lock); xfs_buf_rele(bp); spin_lock(&btp->bt_lru_lock); } spin_unlock(&btp->bt_lru_lock); } int xfs_buftarg_shrink( struct shrinker *shrink, struct shrink_control *sc) { struct xfs_buftarg *btp = container_of(shrink, struct xfs_buftarg, bt_shrinker); struct xfs_buf *bp; int nr_to_scan = sc->nr_to_scan; LIST_HEAD(dispose); if (!nr_to_scan) return btp->bt_lru_nr; spin_lock(&btp->bt_lru_lock); while (!list_empty(&btp->bt_lru)) { if (nr_to_scan-- <= 0) break; bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru); /* * Decrement the b_lru_ref count unless the value is already * zero. If the value is already zero, we need to reclaim the * buffer, otherwise it gets another trip through the LRU. */ if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) { list_move_tail(&bp->b_lru, &btp->bt_lru); continue; } /* * remove the buffer from the LRU now to avoid needing another * lock round trip inside xfs_buf_rele(). */ list_move(&bp->b_lru, &dispose); btp->bt_lru_nr--; } spin_unlock(&btp->bt_lru_lock); while (!list_empty(&dispose)) { bp = list_first_entry(&dispose, struct xfs_buf, b_lru); list_del_init(&bp->b_lru); xfs_buf_rele(bp); } return btp->bt_lru_nr; } void xfs_free_buftarg( struct xfs_mount *mp, struct xfs_buftarg *btp) { unregister_shrinker(&btp->bt_shrinker); xfs_flush_buftarg(btp, 1); if (mp->m_flags & XFS_MOUNT_BARRIER) xfs_blkdev_issue_flush(btp); kthread_stop(btp->bt_task); kmem_free(btp); } STATIC int xfs_setsize_buftarg_flags( xfs_buftarg_t *btp, unsigned int blocksize, unsigned int sectorsize, int verbose) { btp->bt_bsize = blocksize; btp->bt_sshift = ffs(sectorsize) - 1; btp->bt_smask = sectorsize - 1; if (set_blocksize(btp->bt_bdev, sectorsize)) { char name[BDEVNAME_SIZE]; bdevname(btp->bt_bdev, name); xfs_warn(btp->bt_mount, "Cannot set_blocksize to %u on device %s\n", sectorsize, name); return EINVAL; } return 0; } /* * When allocating the initial buffer target we have not yet * read in the superblock, so don't know what sized sectors * are being used is at this early stage. Play safe. */ STATIC int xfs_setsize_buftarg_early( xfs_buftarg_t *btp, struct block_device *bdev) { return xfs_setsize_buftarg_flags(btp, PAGE_SIZE, bdev_logical_block_size(bdev), 0); } int xfs_setsize_buftarg( xfs_buftarg_t *btp, unsigned int blocksize, unsigned int sectorsize) { return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1); } STATIC int xfs_alloc_delwri_queue( xfs_buftarg_t *btp, const char *fsname) { INIT_LIST_HEAD(&btp->bt_delwri_queue); spin_lock_init(&btp->bt_delwri_lock); btp->bt_flags = 0; btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname); if (IS_ERR(btp->bt_task)) return PTR_ERR(btp->bt_task); return 0; } xfs_buftarg_t * xfs_alloc_buftarg( struct xfs_mount *mp, struct block_device *bdev, int external, const char *fsname) { xfs_buftarg_t *btp; btp = kmem_zalloc(sizeof(*btp), KM_SLEEP); btp->bt_mount = mp; btp->bt_dev = bdev->bd_dev; btp->bt_bdev = bdev; btp->bt_bdi = blk_get_backing_dev_info(bdev); if (!btp->bt_bdi) goto error; INIT_LIST_HEAD(&btp->bt_lru); spin_lock_init(&btp->bt_lru_lock); if (xfs_setsize_buftarg_early(btp, bdev)) goto error; if (xfs_alloc_delwri_queue(btp, fsname)) goto error; btp->bt_shrinker.shrink = xfs_buftarg_shrink; btp->bt_shrinker.seeks = DEFAULT_SEEKS; register_shrinker(&btp->bt_shrinker); return btp; error: kmem_free(btp); return NULL; } /* * Delayed write buffer handling */ void xfs_buf_delwri_queue( xfs_buf_t *bp) { struct xfs_buftarg *btp = bp->b_target; trace_xfs_buf_delwri_queue(bp, _RET_IP_); ASSERT(!(bp->b_flags & XBF_READ)); spin_lock(&btp->bt_delwri_lock); if (!list_empty(&bp->b_list)) { /* if already in the queue, move it to the tail */ ASSERT(bp->b_flags & _XBF_DELWRI_Q); list_move_tail(&bp->b_list, &btp->bt_delwri_queue); } else { /* start xfsbufd as it is about to have something to do */ if (list_empty(&btp->bt_delwri_queue)) wake_up_process(bp->b_target->bt_task); atomic_inc(&bp->b_hold); bp->b_flags |= XBF_DELWRI | _XBF_DELWRI_Q | XBF_ASYNC; list_add_tail(&bp->b_list, &btp->bt_delwri_queue); } bp->b_queuetime = jiffies; spin_unlock(&btp->bt_delwri_lock); } void xfs_buf_delwri_dequeue( xfs_buf_t *bp) { int dequeued = 0; spin_lock(&bp->b_target->bt_delwri_lock); if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) { ASSERT(bp->b_flags & _XBF_DELWRI_Q); list_del_init(&bp->b_list); dequeued = 1; } bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q); spin_unlock(&bp->b_target->bt_delwri_lock); if (dequeued) xfs_buf_rele(bp); trace_xfs_buf_delwri_dequeue(bp, _RET_IP_); } /* * If a delwri buffer needs to be pushed before it has aged out, then promote * it to the head of the delwri queue so that it will be flushed on the next * xfsbufd run. We do this by resetting the queuetime of the buffer to be older * than the age currently needed to flush the buffer. Hence the next time the * xfsbufd sees it is guaranteed to be considered old enough to flush. */ void xfs_buf_delwri_promote( struct xfs_buf *bp) { struct xfs_buftarg *btp = bp->b_target; long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1; ASSERT(bp->b_flags & XBF_DELWRI); ASSERT(bp->b_flags & _XBF_DELWRI_Q); /* * Check the buffer age before locking the delayed write queue as we * don't need to promote buffers that are already past the flush age. */ if (bp->b_queuetime < jiffies - age) return; bp->b_queuetime = jiffies - age; spin_lock(&btp->bt_delwri_lock); list_move(&bp->b_list, &btp->bt_delwri_queue); spin_unlock(&btp->bt_delwri_lock); } /* * Move as many buffers as specified to the supplied list * idicating if we skipped any buffers to prevent deadlocks. */ STATIC int xfs_buf_delwri_split( xfs_buftarg_t *target, struct list_head *list, unsigned long age) { xfs_buf_t *bp, *n; int skipped = 0; int force; force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags); INIT_LIST_HEAD(list); spin_lock(&target->bt_delwri_lock); list_for_each_entry_safe(bp, n, &target->bt_delwri_queue, b_list) { ASSERT(bp->b_flags & XBF_DELWRI); if (!xfs_buf_ispinned(bp) && xfs_buf_trylock(bp)) { if (!force && time_before(jiffies, bp->b_queuetime + age)) { xfs_buf_unlock(bp); break; } bp->b_flags &= ~(XBF_DELWRI | _XBF_DELWRI_Q); bp->b_flags |= XBF_WRITE; list_move_tail(&bp->b_list, list); trace_xfs_buf_delwri_split(bp, _RET_IP_); } else skipped++; } spin_unlock(&target->bt_delwri_lock); return skipped; } /* * Compare function is more complex than it needs to be because * the return value is only 32 bits and we are doing comparisons * on 64 bit values */ static int xfs_buf_cmp( void *priv, struct list_head *a, struct list_head *b) { struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list); struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list); xfs_daddr_t diff; diff = ap->b_bn - bp->b_bn; if (diff < 0) return -1; if (diff > 0) return 1; return 0; } STATIC int xfsbufd( void *data) { xfs_buftarg_t *target = (xfs_buftarg_t *)data; current->flags |= PF_MEMALLOC; set_freezable(); do { long age = xfs_buf_age_centisecs * msecs_to_jiffies(10); long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10); struct list_head tmp; struct blk_plug plug; if (unlikely(freezing(current))) try_to_freeze(); /* sleep for a long time if there is nothing to do. */ if (list_empty(&target->bt_delwri_queue)) tout = MAX_SCHEDULE_TIMEOUT; schedule_timeout_interruptible(tout); xfs_buf_delwri_split(target, &tmp, age); list_sort(NULL, &tmp, xfs_buf_cmp); blk_start_plug(&plug); while (!list_empty(&tmp)) { struct xfs_buf *bp; bp = list_first_entry(&tmp, struct xfs_buf, b_list); list_del_init(&bp->b_list); xfs_bdstrat_cb(bp); } blk_finish_plug(&plug); } while (!kthread_should_stop()); return 0; } /* * Go through all incore buffers, and release buffers if they belong to * the given device. This is used in filesystem error handling to * preserve the consistency of its metadata. */ int xfs_flush_buftarg( xfs_buftarg_t *target, int wait) { xfs_buf_t *bp; int pincount = 0; LIST_HEAD(tmp_list); LIST_HEAD(wait_list); struct blk_plug plug; flush_workqueue(xfslogd_workqueue); set_bit(XBT_FORCE_FLUSH, &target->bt_flags); pincount = xfs_buf_delwri_split(target, &tmp_list, 0); /* * Dropped the delayed write list lock, now walk the temporary list. * All I/O is issued async and then if we need to wait for completion * we do that after issuing all the IO. */ list_sort(NULL, &tmp_list, xfs_buf_cmp); blk_start_plug(&plug); while (!list_empty(&tmp_list)) { bp = list_first_entry(&tmp_list, struct xfs_buf, b_list); ASSERT(target == bp->b_target); list_del_init(&bp->b_list); if (wait) { bp->b_flags &= ~XBF_ASYNC; list_add(&bp->b_list, &wait_list); } xfs_bdstrat_cb(bp); } blk_finish_plug(&plug); if (wait) { /* Wait for IO to complete. */ while (!list_empty(&wait_list)) { bp = list_first_entry(&wait_list, struct xfs_buf, b_list); list_del_init(&bp->b_list); xfs_buf_iowait(bp); xfs_buf_relse(bp); } } return pincount; } int __init xfs_buf_init(void) { xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf", KM_ZONE_HWALIGN, NULL); if (!xfs_buf_zone) goto out; xfslogd_workqueue = alloc_workqueue("xfslogd", WQ_MEM_RECLAIM | WQ_HIGHPRI, 1); if (!xfslogd_workqueue) goto out_free_buf_zone; xfsdatad_workqueue = alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM, 1); if (!xfsdatad_workqueue) goto out_destroy_xfslogd_workqueue; xfsconvertd_workqueue = alloc_workqueue("xfsconvertd", WQ_MEM_RECLAIM, 1); if (!xfsconvertd_workqueue) goto out_destroy_xfsdatad_workqueue; return 0; out_destroy_xfsdatad_workqueue: destroy_workqueue(xfsdatad_workqueue); out_destroy_xfslogd_workqueue: destroy_workqueue(xfslogd_workqueue); out_free_buf_zone: kmem_zone_destroy(xfs_buf_zone); out: return -ENOMEM; } void xfs_buf_terminate(void) { destroy_workqueue(xfsconvertd_workqueue); destroy_workqueue(xfsdatad_workqueue); destroy_workqueue(xfslogd_workqueue); kmem_zone_destroy(xfs_buf_zone); }