/* * Original code based Host AP (software wireless LAN access point) driver * for Intersil Prism2/2.5/3 - hostap.o module, common routines * * Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen * <jkmaline@cc.hut.fi> * Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi> * Copyright (c) 2004, Intel Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. See README and COPYING for * more details. ****************************************************************************** Few modifications for Realtek's Wi-Fi drivers by Andrea Merello <andreamrl@tiscali.it> A special thanks goes to Realtek for their support ! ******************************************************************************/ #include <linux/compiler.h> #include <linux/errno.h> #include <linux/if_arp.h> #include <linux/in6.h> #include <linux/in.h> #include <linux/ip.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/pci.h> #include <linux/proc_fs.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/tcp.h> #include <linux/types.h> #include <linux/wireless.h> #include <linux/etherdevice.h> #include <linux/uaccess.h> #include <linux/ctype.h> #include "rtllib.h" #include "dot11d.h" static inline void rtllib_monitor_rx(struct rtllib_device *ieee, struct sk_buff *skb, struct rtllib_rx_stats *rx_status, size_t hdr_length) { skb->dev = ieee->dev; skb_reset_mac_header(skb); skb_pull(skb, hdr_length); skb->pkt_type = PACKET_OTHERHOST; skb->protocol = __constant_htons(ETH_P_80211_RAW); memset(skb->cb, 0, sizeof(skb->cb)); netif_rx(skb); } /* Called only as a tasklet (software IRQ) */ static struct rtllib_frag_entry * rtllib_frag_cache_find(struct rtllib_device *ieee, unsigned int seq, unsigned int frag, u8 tid, u8 *src, u8 *dst) { struct rtllib_frag_entry *entry; int i; for (i = 0; i < RTLLIB_FRAG_CACHE_LEN; i++) { entry = &ieee->frag_cache[tid][i]; if (entry->skb != NULL && time_after(jiffies, entry->first_frag_time + 2 * HZ)) { RTLLIB_DEBUG_FRAG( "expiring fragment cache entry " "seq=%u last_frag=%u\n", entry->seq, entry->last_frag); dev_kfree_skb_any(entry->skb); entry->skb = NULL; } if (entry->skb != NULL && entry->seq == seq && (entry->last_frag + 1 == frag || frag == -1) && memcmp(entry->src_addr, src, ETH_ALEN) == 0 && memcmp(entry->dst_addr, dst, ETH_ALEN) == 0) return entry; } return NULL; } /* Called only as a tasklet (software IRQ) */ static struct sk_buff * rtllib_frag_cache_get(struct rtllib_device *ieee, struct rtllib_hdr_4addr *hdr) { struct sk_buff *skb = NULL; u16 fc = le16_to_cpu(hdr->frame_ctl); u16 sc = le16_to_cpu(hdr->seq_ctl); unsigned int frag = WLAN_GET_SEQ_FRAG(sc); unsigned int seq = WLAN_GET_SEQ_SEQ(sc); struct rtllib_frag_entry *entry; struct rtllib_hdr_3addrqos *hdr_3addrqos; struct rtllib_hdr_4addrqos *hdr_4addrqos; u8 tid; if (((fc & RTLLIB_FCTL_DSTODS) == RTLLIB_FCTL_DSTODS) && RTLLIB_QOS_HAS_SEQ(fc)) { hdr_4addrqos = (struct rtllib_hdr_4addrqos *)hdr; tid = le16_to_cpu(hdr_4addrqos->qos_ctl) & RTLLIB_QCTL_TID; tid = UP2AC(tid); tid++; } else if (RTLLIB_QOS_HAS_SEQ(fc)) { hdr_3addrqos = (struct rtllib_hdr_3addrqos *)hdr; tid = le16_to_cpu(hdr_3addrqos->qos_ctl) & RTLLIB_QCTL_TID; tid = UP2AC(tid); tid++; } else { tid = 0; } if (frag == 0) { /* Reserve enough space to fit maximum frame length */ skb = dev_alloc_skb(ieee->dev->mtu + sizeof(struct rtllib_hdr_4addr) + 8 /* LLC */ + 2 /* alignment */ + 8 /* WEP */ + ETH_ALEN /* WDS */ + (RTLLIB_QOS_HAS_SEQ(fc) ? 2 : 0) /* QOS Control */); if (skb == NULL) return NULL; entry = &ieee->frag_cache[tid][ieee->frag_next_idx[tid]]; ieee->frag_next_idx[tid]++; if (ieee->frag_next_idx[tid] >= RTLLIB_FRAG_CACHE_LEN) ieee->frag_next_idx[tid] = 0; if (entry->skb != NULL) dev_kfree_skb_any(entry->skb); entry->first_frag_time = jiffies; entry->seq = seq; entry->last_frag = frag; entry->skb = skb; memcpy(entry->src_addr, hdr->addr2, ETH_ALEN); memcpy(entry->dst_addr, hdr->addr1, ETH_ALEN); } else { /* received a fragment of a frame for which the head fragment * should have already been received */ entry = rtllib_frag_cache_find(ieee, seq, frag, tid, hdr->addr2, hdr->addr1); if (entry != NULL) { entry->last_frag = frag; skb = entry->skb; } } return skb; } /* Called only as a tasklet (software IRQ) */ static int rtllib_frag_cache_invalidate(struct rtllib_device *ieee, struct rtllib_hdr_4addr *hdr) { u16 fc = le16_to_cpu(hdr->frame_ctl); u16 sc = le16_to_cpu(hdr->seq_ctl); unsigned int seq = WLAN_GET_SEQ_SEQ(sc); struct rtllib_frag_entry *entry; struct rtllib_hdr_3addrqos *hdr_3addrqos; struct rtllib_hdr_4addrqos *hdr_4addrqos; u8 tid; if (((fc & RTLLIB_FCTL_DSTODS) == RTLLIB_FCTL_DSTODS) && RTLLIB_QOS_HAS_SEQ(fc)) { hdr_4addrqos = (struct rtllib_hdr_4addrqos *)hdr; tid = le16_to_cpu(hdr_4addrqos->qos_ctl) & RTLLIB_QCTL_TID; tid = UP2AC(tid); tid++; } else if (RTLLIB_QOS_HAS_SEQ(fc)) { hdr_3addrqos = (struct rtllib_hdr_3addrqos *)hdr; tid = le16_to_cpu(hdr_3addrqos->qos_ctl) & RTLLIB_QCTL_TID; tid = UP2AC(tid); tid++; } else { tid = 0; } entry = rtllib_frag_cache_find(ieee, seq, -1, tid, hdr->addr2, hdr->addr1); if (entry == NULL) { RTLLIB_DEBUG_FRAG( "could not invalidate fragment cache " "entry (seq=%u)\n", seq); return -1; } entry->skb = NULL; return 0; } /* rtllib_rx_frame_mgtmt * * Responsible for handling management control frames * * Called by rtllib_rx */ static inline int rtllib_rx_frame_mgmt(struct rtllib_device *ieee, struct sk_buff *skb, struct rtllib_rx_stats *rx_stats, u16 type, u16 stype) { /* On the struct stats definition there is written that * this is not mandatory.... but seems that the probe * response parser uses it */ struct rtllib_hdr_3addr * hdr = (struct rtllib_hdr_3addr *)skb->data; rx_stats->len = skb->len; rtllib_rx_mgt(ieee, skb, rx_stats); if ((memcmp(hdr->addr1, ieee->dev->dev_addr, ETH_ALEN))) { dev_kfree_skb_any(skb); return 0; } rtllib_rx_frame_softmac(ieee, skb, rx_stats, type, stype); dev_kfree_skb_any(skb); return 0; } /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ static unsigned char rfc1042_header[] = { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ static unsigned char bridge_tunnel_header[] = { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; /* No encapsulation header if EtherType < 0x600 (=length) */ /* Called by rtllib_rx_frame_decrypt */ static int rtllib_is_eapol_frame(struct rtllib_device *ieee, struct sk_buff *skb, size_t hdrlen) { struct net_device *dev = ieee->dev; u16 fc, ethertype; struct rtllib_hdr_4addr *hdr; u8 *pos; if (skb->len < 24) return 0; hdr = (struct rtllib_hdr_4addr *) skb->data; fc = le16_to_cpu(hdr->frame_ctl); /* check that the frame is unicast frame to us */ if ((fc & (RTLLIB_FCTL_TODS | RTLLIB_FCTL_FROMDS)) == RTLLIB_FCTL_TODS && memcmp(hdr->addr1, dev->dev_addr, ETH_ALEN) == 0 && memcmp(hdr->addr3, dev->dev_addr, ETH_ALEN) == 0) { /* ToDS frame with own addr BSSID and DA */ } else if ((fc & (RTLLIB_FCTL_TODS | RTLLIB_FCTL_FROMDS)) == RTLLIB_FCTL_FROMDS && memcmp(hdr->addr1, dev->dev_addr, ETH_ALEN) == 0) { /* FromDS frame with own addr as DA */ } else return 0; if (skb->len < 24 + 8) return 0; /* check for port access entity Ethernet type */ pos = skb->data + hdrlen; ethertype = (pos[6] << 8) | pos[7]; if (ethertype == ETH_P_PAE) return 1; return 0; } /* Called only as a tasklet (software IRQ), by rtllib_rx */ static inline int rtllib_rx_frame_decrypt(struct rtllib_device *ieee, struct sk_buff *skb, struct lib80211_crypt_data *crypt) { struct rtllib_hdr_4addr *hdr; int res, hdrlen; if (crypt == NULL || crypt->ops->decrypt_mpdu == NULL) return 0; if (ieee->hwsec_active) { struct cb_desc *tcb_desc = (struct cb_desc *)(skb->cb + MAX_DEV_ADDR_SIZE); tcb_desc->bHwSec = 1; if (ieee->need_sw_enc) tcb_desc->bHwSec = 0; } hdr = (struct rtllib_hdr_4addr *) skb->data; hdrlen = rtllib_get_hdrlen(le16_to_cpu(hdr->frame_ctl)); atomic_inc(&crypt->refcnt); res = crypt->ops->decrypt_mpdu(skb, hdrlen, crypt->priv); atomic_dec(&crypt->refcnt); if (res < 0) { RTLLIB_DEBUG_DROP( "decryption failed (SA= %pM" ") res=%d\n", hdr->addr2, res); if (res == -2) RTLLIB_DEBUG_DROP("Decryption failed ICV " "mismatch (key %d)\n", skb->data[hdrlen + 3] >> 6); ieee->ieee_stats.rx_discards_undecryptable++; return -1; } return res; } /* Called only as a tasklet (software IRQ), by rtllib_rx */ static inline int rtllib_rx_frame_decrypt_msdu(struct rtllib_device *ieee, struct sk_buff *skb, int keyidx, struct lib80211_crypt_data *crypt) { struct rtllib_hdr_4addr *hdr; int res, hdrlen; if (crypt == NULL || crypt->ops->decrypt_msdu == NULL) return 0; if (ieee->hwsec_active) { struct cb_desc *tcb_desc = (struct cb_desc *)(skb->cb + MAX_DEV_ADDR_SIZE); tcb_desc->bHwSec = 1; if (ieee->need_sw_enc) tcb_desc->bHwSec = 0; } hdr = (struct rtllib_hdr_4addr *) skb->data; hdrlen = rtllib_get_hdrlen(le16_to_cpu(hdr->frame_ctl)); atomic_inc(&crypt->refcnt); res = crypt->ops->decrypt_msdu(skb, keyidx, hdrlen, crypt->priv); atomic_dec(&crypt->refcnt); if (res < 0) { printk(KERN_DEBUG "%s: MSDU decryption/MIC verification failed" " (SA= %pM keyidx=%d)\n", ieee->dev->name, hdr->addr2, keyidx); return -1; } return 0; } /* this function is stolen from ipw2200 driver*/ #define IEEE_PACKET_RETRY_TIME (5*HZ) static int is_duplicate_packet(struct rtllib_device *ieee, struct rtllib_hdr_4addr *header) { u16 fc = le16_to_cpu(header->frame_ctl); u16 sc = le16_to_cpu(header->seq_ctl); u16 seq = WLAN_GET_SEQ_SEQ(sc); u16 frag = WLAN_GET_SEQ_FRAG(sc); u16 *last_seq, *last_frag; unsigned long *last_time; struct rtllib_hdr_3addrqos *hdr_3addrqos; struct rtllib_hdr_4addrqos *hdr_4addrqos; u8 tid; if (((fc & RTLLIB_FCTL_DSTODS) == RTLLIB_FCTL_DSTODS) && RTLLIB_QOS_HAS_SEQ(fc)) { hdr_4addrqos = (struct rtllib_hdr_4addrqos *)header; tid = le16_to_cpu(hdr_4addrqos->qos_ctl) & RTLLIB_QCTL_TID; tid = UP2AC(tid); tid++; } else if (RTLLIB_QOS_HAS_SEQ(fc)) { hdr_3addrqos = (struct rtllib_hdr_3addrqos *)header; tid = le16_to_cpu(hdr_3addrqos->qos_ctl) & RTLLIB_QCTL_TID; tid = UP2AC(tid); tid++; } else { tid = 0; } switch (ieee->iw_mode) { case IW_MODE_ADHOC: { struct list_head *p; struct ieee_ibss_seq *entry = NULL; u8 *mac = header->addr2; int index = mac[5] % IEEE_IBSS_MAC_HASH_SIZE; list_for_each(p, &ieee->ibss_mac_hash[index]) { entry = list_entry(p, struct ieee_ibss_seq, list); if (!memcmp(entry->mac, mac, ETH_ALEN)) break; } if (p == &ieee->ibss_mac_hash[index]) { entry = kmalloc(sizeof(struct ieee_ibss_seq), GFP_ATOMIC); if (!entry) { printk(KERN_WARNING "Cannot malloc new mac entry\n"); return 0; } memcpy(entry->mac, mac, ETH_ALEN); entry->seq_num[tid] = seq; entry->frag_num[tid] = frag; entry->packet_time[tid] = jiffies; list_add(&entry->list, &ieee->ibss_mac_hash[index]); return 0; } last_seq = &entry->seq_num[tid]; last_frag = &entry->frag_num[tid]; last_time = &entry->packet_time[tid]; break; } case IW_MODE_INFRA: last_seq = &ieee->last_rxseq_num[tid]; last_frag = &ieee->last_rxfrag_num[tid]; last_time = &ieee->last_packet_time[tid]; break; default: return 0; } if ((*last_seq == seq) && time_after(*last_time + IEEE_PACKET_RETRY_TIME, jiffies)) { if (*last_frag == frag) goto drop; if (*last_frag + 1 != frag) /* out-of-order fragment */ goto drop; } else *last_seq = seq; *last_frag = frag; *last_time = jiffies; return 0; drop: return 1; } static bool AddReorderEntry(struct rx_ts_record *pTS, struct rx_reorder_entry *pReorderEntry) { struct list_head *pList = &pTS->RxPendingPktList; while (pList->next != &pTS->RxPendingPktList) { if (SN_LESS(pReorderEntry->SeqNum, ((struct rx_reorder_entry *) list_entry(pList->next, struct rx_reorder_entry, List))->SeqNum)) pList = pList->next; else if (SN_EQUAL(pReorderEntry->SeqNum, ((struct rx_reorder_entry *)list_entry(pList->next, struct rx_reorder_entry, List))->SeqNum)) return false; else break; } pReorderEntry->List.next = pList->next; pReorderEntry->List.next->prev = &pReorderEntry->List; pReorderEntry->List.prev = pList; pList->next = &pReorderEntry->List; return true; } void rtllib_indicate_packets(struct rtllib_device *ieee, struct rtllib_rxb **prxbIndicateArray, u8 index) { struct net_device_stats *stats = &ieee->stats; u8 i = 0 , j = 0; u16 ethertype; for (j = 0; j < index; j++) { struct rtllib_rxb *prxb = prxbIndicateArray[j]; for (i = 0; i < prxb->nr_subframes; i++) { struct sk_buff *sub_skb = prxb->subframes[i]; /* convert hdr + possible LLC headers into Ethernet header */ ethertype = (sub_skb->data[6] << 8) | sub_skb->data[7]; if (sub_skb->len >= 8 && ((memcmp(sub_skb->data, rfc1042_header, SNAP_SIZE) == 0 && ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || memcmp(sub_skb->data, bridge_tunnel_header, SNAP_SIZE) == 0)) { /* remove RFC1042 or Bridge-Tunnel encapsulation * and replace EtherType */ skb_pull(sub_skb, SNAP_SIZE); memcpy(skb_push(sub_skb, ETH_ALEN), prxb->src, ETH_ALEN); memcpy(skb_push(sub_skb, ETH_ALEN), prxb->dst, ETH_ALEN); } else { u16 len; /* Leave Ethernet header part of hdr and full payload */ len = htons(sub_skb->len); memcpy(skb_push(sub_skb, 2), &len, 2); memcpy(skb_push(sub_skb, ETH_ALEN), prxb->src, ETH_ALEN); memcpy(skb_push(sub_skb, ETH_ALEN), prxb->dst, ETH_ALEN); } /* Indicat the packets to upper layer */ if (sub_skb) { stats->rx_packets++; stats->rx_bytes += sub_skb->len; memset(sub_skb->cb, 0, sizeof(sub_skb->cb)); sub_skb->protocol = eth_type_trans(sub_skb, ieee->dev); sub_skb->dev = ieee->dev; sub_skb->dev->stats.rx_packets++; sub_skb->dev->stats.rx_bytes += sub_skb->len; sub_skb->ip_summed = CHECKSUM_NONE; /* 802.11 crc not sufficient */ ieee->last_rx_ps_time = jiffies; netif_rx(sub_skb); } } kfree(prxb); prxb = NULL; } } void rtllib_FlushRxTsPendingPkts(struct rtllib_device *ieee, struct rx_ts_record *pTS) { struct rx_reorder_entry *pRxReorderEntry; u8 RfdCnt = 0; del_timer_sync(&pTS->RxPktPendingTimer); while (!list_empty(&pTS->RxPendingPktList)) { if (RfdCnt >= REORDER_WIN_SIZE) { printk(KERN_INFO "-------------->%s() error! RfdCnt >= REORDER_WIN_SIZE\n", __func__); break; } pRxReorderEntry = (struct rx_reorder_entry *)list_entry(pTS->RxPendingPktList.prev, struct rx_reorder_entry, List); RTLLIB_DEBUG(RTLLIB_DL_REORDER, "%s(): Indicate SeqNum %d!\n", __func__, pRxReorderEntry->SeqNum); list_del_init(&pRxReorderEntry->List); ieee->RfdArray[RfdCnt] = pRxReorderEntry->prxb; RfdCnt = RfdCnt + 1; list_add_tail(&pRxReorderEntry->List, &ieee->RxReorder_Unused_List); } rtllib_indicate_packets(ieee, ieee->RfdArray, RfdCnt); pTS->RxIndicateSeq = 0xffff; } static void RxReorderIndicatePacket(struct rtllib_device *ieee, struct rtllib_rxb *prxb, struct rx_ts_record *pTS, u16 SeqNum) { struct rt_hi_throughput *pHTInfo = ieee->pHTInfo; struct rx_reorder_entry *pReorderEntry = NULL; u8 WinSize = pHTInfo->RxReorderWinSize; u16 WinEnd = 0; u8 index = 0; bool bMatchWinStart = false, bPktInBuf = false; unsigned long flags; RTLLIB_DEBUG(RTLLIB_DL_REORDER, "%s(): Seq is %d, pTS->RxIndicateSeq" " is %d, WinSize is %d\n", __func__, SeqNum, pTS->RxIndicateSeq, WinSize); spin_lock_irqsave(&(ieee->reorder_spinlock), flags); WinEnd = (pTS->RxIndicateSeq + WinSize - 1) % 4096; /* Rx Reorder initialize condition.*/ if (pTS->RxIndicateSeq == 0xffff) pTS->RxIndicateSeq = SeqNum; /* Drop out the packet which SeqNum is smaller than WinStart */ if (SN_LESS(SeqNum, pTS->RxIndicateSeq)) { RTLLIB_DEBUG(RTLLIB_DL_REORDER, "Packet Drop! IndicateSeq: %d, NewSeq: %d\n", pTS->RxIndicateSeq, SeqNum); pHTInfo->RxReorderDropCounter++; { int i; for (i = 0; i < prxb->nr_subframes; i++) dev_kfree_skb(prxb->subframes[i]); kfree(prxb); prxb = NULL; } spin_unlock_irqrestore(&(ieee->reorder_spinlock), flags); return; } /* * Sliding window manipulation. Conditions includes: * 1. Incoming SeqNum is equal to WinStart =>Window shift 1 * 2. Incoming SeqNum is larger than the WinEnd => Window shift N */ if (SN_EQUAL(SeqNum, pTS->RxIndicateSeq)) { pTS->RxIndicateSeq = (pTS->RxIndicateSeq + 1) % 4096; bMatchWinStart = true; } else if (SN_LESS(WinEnd, SeqNum)) { if (SeqNum >= (WinSize - 1)) pTS->RxIndicateSeq = SeqNum + 1 - WinSize; else pTS->RxIndicateSeq = 4095 - (WinSize - (SeqNum + 1)) + 1; RTLLIB_DEBUG(RTLLIB_DL_REORDER, "Window Shift! IndicateSeq: %d," " NewSeq: %d\n", pTS->RxIndicateSeq, SeqNum); } /* * Indication process. * After Packet dropping and Sliding Window shifting as above, we can * now just indicate the packets with the SeqNum smaller than latest * WinStart and struct buffer other packets. */ /* For Rx Reorder condition: * 1. All packets with SeqNum smaller than WinStart => Indicate * 2. All packets with SeqNum larger than or equal to * WinStart => Buffer it. */ if (bMatchWinStart) { /* Current packet is going to be indicated.*/ RTLLIB_DEBUG(RTLLIB_DL_REORDER, "Packets indication!! " "IndicateSeq: %d, NewSeq: %d\n", pTS->RxIndicateSeq, SeqNum); ieee->prxbIndicateArray[0] = prxb; index = 1; } else { /* Current packet is going to be inserted into pending list.*/ if (!list_empty(&ieee->RxReorder_Unused_List)) { pReorderEntry = (struct rx_reorder_entry *) list_entry(ieee->RxReorder_Unused_List.next, struct rx_reorder_entry, List); list_del_init(&pReorderEntry->List); /* Make a reorder entry and insert into a the packet list.*/ pReorderEntry->SeqNum = SeqNum; pReorderEntry->prxb = prxb; if (!AddReorderEntry(pTS, pReorderEntry)) { RTLLIB_DEBUG(RTLLIB_DL_REORDER, "%s(): Duplicate packet is " "dropped!! IndicateSeq: %d, " "NewSeq: %d\n", __func__, pTS->RxIndicateSeq, SeqNum); list_add_tail(&pReorderEntry->List, &ieee->RxReorder_Unused_List); { int i; for (i = 0; i < prxb->nr_subframes; i++) dev_kfree_skb(prxb->subframes[i]); kfree(prxb); prxb = NULL; } } else { RTLLIB_DEBUG(RTLLIB_DL_REORDER, "Pkt insert into struct buffer!! " "IndicateSeq: %d, NewSeq: %d\n", pTS->RxIndicateSeq, SeqNum); } } else { /* * Packets are dropped if there are not enough reorder * entries. This part should be modified!! We can just * indicate all the packets in struct buffer and get * reorder entries. */ RTLLIB_DEBUG(RTLLIB_DL_ERR, "RxReorderIndicatePacket():" " There is no reorder entry!! Packet is " "dropped!!\n"); { int i; for (i = 0; i < prxb->nr_subframes; i++) dev_kfree_skb(prxb->subframes[i]); kfree(prxb); prxb = NULL; } } } /* Check if there is any packet need indicate.*/ while (!list_empty(&pTS->RxPendingPktList)) { RTLLIB_DEBUG(RTLLIB_DL_REORDER, "%s(): start RREORDER indicate\n", __func__); pReorderEntry = (struct rx_reorder_entry *)list_entry(pTS->RxPendingPktList.prev, struct rx_reorder_entry, List); if (SN_LESS(pReorderEntry->SeqNum, pTS->RxIndicateSeq) || SN_EQUAL(pReorderEntry->SeqNum, pTS->RxIndicateSeq)) { /* This protect struct buffer from overflow. */ if (index >= REORDER_WIN_SIZE) { RTLLIB_DEBUG(RTLLIB_DL_ERR, "RxReorderIndicate" "Packet(): Buffer overflow!!\n"); bPktInBuf = true; break; } list_del_init(&pReorderEntry->List); if (SN_EQUAL(pReorderEntry->SeqNum, pTS->RxIndicateSeq)) pTS->RxIndicateSeq = (pTS->RxIndicateSeq + 1) % 4096; ieee->prxbIndicateArray[index] = pReorderEntry->prxb; RTLLIB_DEBUG(RTLLIB_DL_REORDER, "%s(): Indicate SeqNum" " %d!\n", __func__, pReorderEntry->SeqNum); index++; list_add_tail(&pReorderEntry->List, &ieee->RxReorder_Unused_List); } else { bPktInBuf = true; break; } } /* Handling pending timer. Set this timer to prevent from long time * Rx buffering.*/ if (index > 0) { if (timer_pending(&pTS->RxPktPendingTimer)) del_timer_sync(&pTS->RxPktPendingTimer); pTS->RxTimeoutIndicateSeq = 0xffff; if (index > REORDER_WIN_SIZE) { RTLLIB_DEBUG(RTLLIB_DL_ERR, "RxReorderIndicatePacket():" " Rx Reorer struct buffer full!!\n"); spin_unlock_irqrestore(&(ieee->reorder_spinlock), flags); return; } rtllib_indicate_packets(ieee, ieee->prxbIndicateArray, index); bPktInBuf = false; } if (bPktInBuf && pTS->RxTimeoutIndicateSeq == 0xffff) { RTLLIB_DEBUG(RTLLIB_DL_REORDER, "%s(): SET rx timeout timer\n", __func__); pTS->RxTimeoutIndicateSeq = pTS->RxIndicateSeq; mod_timer(&pTS->RxPktPendingTimer, jiffies + MSECS(pHTInfo->RxReorderPendingTime)); } spin_unlock_irqrestore(&(ieee->reorder_spinlock), flags); } static u8 parse_subframe(struct rtllib_device *ieee, struct sk_buff *skb, struct rtllib_rx_stats *rx_stats, struct rtllib_rxb *rxb, u8 *src, u8 *dst) { struct rtllib_hdr_3addr *hdr = (struct rtllib_hdr_3addr *)skb->data; u16 fc = le16_to_cpu(hdr->frame_ctl); u16 LLCOffset = sizeof(struct rtllib_hdr_3addr); u16 ChkLength; bool bIsAggregateFrame = false; u16 nSubframe_Length; u8 nPadding_Length = 0; u16 SeqNum = 0; struct sk_buff *sub_skb; u8 *data_ptr; /* just for debug purpose */ SeqNum = WLAN_GET_SEQ_SEQ(le16_to_cpu(hdr->seq_ctl)); if ((RTLLIB_QOS_HAS_SEQ(fc)) && (((union frameqos *)(skb->data + RTLLIB_3ADDR_LEN))->field.reserved)) bIsAggregateFrame = true; if (RTLLIB_QOS_HAS_SEQ(fc)) LLCOffset += 2; if (rx_stats->bContainHTC) LLCOffset += sHTCLng; ChkLength = LLCOffset; if (skb->len <= ChkLength) return 0; skb_pull(skb, LLCOffset); ieee->bIsAggregateFrame = bIsAggregateFrame; if (!bIsAggregateFrame) { rxb->nr_subframes = 1; /* altered by clark 3/30/2010 * The struct buffer size of the skb indicated to upper layer * must be less than 5000, or the defraged IP datagram * in the IP layer will exceed "ipfrag_high_tresh" and be * discarded. so there must not use the function * "skb_copy" and "skb_clone" for "skb". */ /* Allocate new skb for releasing to upper layer */ sub_skb = dev_alloc_skb(RTLLIB_SKBBUFFER_SIZE); skb_reserve(sub_skb, 12); data_ptr = (u8 *)skb_put(sub_skb, skb->len); memcpy(data_ptr, skb->data, skb->len); sub_skb->dev = ieee->dev; rxb->subframes[0] = sub_skb; memcpy(rxb->src, src, ETH_ALEN); memcpy(rxb->dst, dst, ETH_ALEN); rxb->subframes[0]->dev = ieee->dev; return 1; } else { rxb->nr_subframes = 0; memcpy(rxb->src, src, ETH_ALEN); memcpy(rxb->dst, dst, ETH_ALEN); while (skb->len > ETHERNET_HEADER_SIZE) { /* Offset 12 denote 2 mac address */ nSubframe_Length = *((u16 *)(skb->data + 12)); nSubframe_Length = (nSubframe_Length >> 8) + (nSubframe_Length << 8); if (skb->len < (ETHERNET_HEADER_SIZE + nSubframe_Length)) { printk(KERN_INFO "%s: A-MSDU parse error!! " "pRfd->nTotalSubframe : %d\n",\ __func__, rxb->nr_subframes); printk(KERN_INFO "%s: A-MSDU parse error!! " "Subframe Length: %d\n", __func__, nSubframe_Length); printk(KERN_INFO "nRemain_Length is %d and " "nSubframe_Length is : %d\n", skb->len, nSubframe_Length); printk(KERN_INFO "The Packet SeqNum is %d\n", SeqNum); return 0; } /* move the data point to data content */ skb_pull(skb, ETHERNET_HEADER_SIZE); /* altered by clark 3/30/2010 * The struct buffer size of the skb indicated to upper layer * must be less than 5000, or the defraged IP datagram * in the IP layer will exceed "ipfrag_high_tresh" and be * discarded. so there must not use the function * "skb_copy" and "skb_clone" for "skb". */ /* Allocate new skb for releasing to upper layer */ sub_skb = dev_alloc_skb(nSubframe_Length + 12); skb_reserve(sub_skb, 12); data_ptr = (u8 *)skb_put(sub_skb, nSubframe_Length); memcpy(data_ptr, skb->data, nSubframe_Length); sub_skb->dev = ieee->dev; rxb->subframes[rxb->nr_subframes++] = sub_skb; if (rxb->nr_subframes >= MAX_SUBFRAME_COUNT) { RTLLIB_DEBUG_RX("ParseSubframe(): Too many " "Subframes! Packets dropped!\n"); break; } skb_pull(skb, nSubframe_Length); if (skb->len != 0) { nPadding_Length = 4 - ((nSubframe_Length + ETHERNET_HEADER_SIZE) % 4); if (nPadding_Length == 4) nPadding_Length = 0; if (skb->len < nPadding_Length) return 0; skb_pull(skb, nPadding_Length); } } return rxb->nr_subframes; } } static size_t rtllib_rx_get_hdrlen(struct rtllib_device *ieee, struct sk_buff *skb, struct rtllib_rx_stats *rx_stats) { struct rtllib_hdr_4addr *hdr = (struct rtllib_hdr_4addr *)skb->data; u16 fc = le16_to_cpu(hdr->frame_ctl); size_t hdrlen = 0; hdrlen = rtllib_get_hdrlen(fc); if (HTCCheck(ieee, skb->data)) { if (net_ratelimit()) printk(KERN_INFO "%s: find HTCControl!\n", __func__); hdrlen += 4; rx_stats->bContainHTC = 1; } if (RTLLIB_QOS_HAS_SEQ(fc)) rx_stats->bIsQosData = 1; return hdrlen; } static int rtllib_rx_check_duplicate(struct rtllib_device *ieee, struct sk_buff *skb, u8 multicast) { struct rtllib_hdr_4addr *hdr = (struct rtllib_hdr_4addr *)skb->data; u16 fc, sc; u8 frag, type, stype; fc = le16_to_cpu(hdr->frame_ctl); type = WLAN_FC_GET_TYPE(fc); stype = WLAN_FC_GET_STYPE(fc); sc = le16_to_cpu(hdr->seq_ctl); frag = WLAN_GET_SEQ_FRAG(sc); if ((ieee->pHTInfo->bCurRxReorderEnable == false) || !ieee->current_network.qos_data.active || !IsDataFrame(skb->data) || IsLegacyDataFrame(skb->data)) { if (!((type == RTLLIB_FTYPE_MGMT) && (stype == RTLLIB_STYPE_BEACON))) { if (is_duplicate_packet(ieee, hdr)) return -1; } } else { struct rx_ts_record *pRxTS = NULL; if (GetTs(ieee, (struct ts_common_info **) &pRxTS, hdr->addr2, (u8)Frame_QoSTID((u8 *)(skb->data)), RX_DIR, true)) { if ((fc & (1<<11)) && (frag == pRxTS->RxLastFragNum) && (WLAN_GET_SEQ_SEQ(sc) == pRxTS->RxLastSeqNum)) { return -1; } else { pRxTS->RxLastFragNum = frag; pRxTS->RxLastSeqNum = WLAN_GET_SEQ_SEQ(sc); } } else { RTLLIB_DEBUG(RTLLIB_DL_ERR, "ERR!!%s(): No TS!! Skip" " the check!!\n", __func__); return -1; } } return 0; } static void rtllib_rx_extract_addr(struct rtllib_device *ieee, struct rtllib_hdr_4addr *hdr, u8 *dst, u8 *src, u8 *bssid) { u16 fc = le16_to_cpu(hdr->frame_ctl); switch (fc & (RTLLIB_FCTL_FROMDS | RTLLIB_FCTL_TODS)) { case RTLLIB_FCTL_FROMDS: memcpy(dst, hdr->addr1, ETH_ALEN); memcpy(src, hdr->addr3, ETH_ALEN); memcpy(bssid, hdr->addr2, ETH_ALEN); break; case RTLLIB_FCTL_TODS: memcpy(dst, hdr->addr3, ETH_ALEN); memcpy(src, hdr->addr2, ETH_ALEN); memcpy(bssid, hdr->addr1, ETH_ALEN); break; case RTLLIB_FCTL_FROMDS | RTLLIB_FCTL_TODS: memcpy(dst, hdr->addr3, ETH_ALEN); memcpy(src, hdr->addr4, ETH_ALEN); memcpy(bssid, ieee->current_network.bssid, ETH_ALEN); break; case 0: memcpy(dst, hdr->addr1, ETH_ALEN); memcpy(src, hdr->addr2, ETH_ALEN); memcpy(bssid, hdr->addr3, ETH_ALEN); break; } } static int rtllib_rx_data_filter(struct rtllib_device *ieee, u16 fc, u8 *dst, u8 *src, u8 *bssid, u8 *addr2) { u8 zero_addr[ETH_ALEN] = {0}; u8 type, stype; type = WLAN_FC_GET_TYPE(fc); stype = WLAN_FC_GET_STYPE(fc); /* Filter frames from different BSS */ if (((fc & RTLLIB_FCTL_DSTODS) != RTLLIB_FCTL_DSTODS) && (compare_ether_addr(ieee->current_network.bssid, bssid) != 0) && memcmp(ieee->current_network.bssid, zero_addr, ETH_ALEN)) { return -1; } /* Filter packets sent by an STA that will be forwarded by AP */ if (ieee->IntelPromiscuousModeInfo.bPromiscuousOn && ieee->IntelPromiscuousModeInfo.bFilterSourceStationFrame) { if ((fc & RTLLIB_FCTL_TODS) && !(fc & RTLLIB_FCTL_FROMDS) && (compare_ether_addr(dst, ieee->current_network.bssid) != 0) && (compare_ether_addr(bssid, ieee->current_network.bssid) == 0)) { return -1; } } /* Nullfunc frames may have PS-bit set, so they must be passed to * hostap_handle_sta_rx() before being dropped here. */ if (!ieee->IntelPromiscuousModeInfo.bPromiscuousOn) { if (stype != RTLLIB_STYPE_DATA && stype != RTLLIB_STYPE_DATA_CFACK && stype != RTLLIB_STYPE_DATA_CFPOLL && stype != RTLLIB_STYPE_DATA_CFACKPOLL && stype != RTLLIB_STYPE_QOS_DATA) { if (stype != RTLLIB_STYPE_NULLFUNC) RTLLIB_DEBUG_DROP( "RX: dropped data frame " "with no data (type=0x%02x, " "subtype=0x%02x)\n", type, stype); return -1; } } if (ieee->iw_mode != IW_MODE_MESH) { /* packets from our adapter are dropped (echo) */ if (!memcmp(src, ieee->dev->dev_addr, ETH_ALEN)) return -1; /* {broad,multi}cast packets to our BSS go through */ if (is_multicast_ether_addr(dst) || is_broadcast_ether_addr(dst)) { if (memcmp(bssid, ieee->current_network.bssid, ETH_ALEN)) return -1; } } return 0; } static int rtllib_rx_get_crypt(struct rtllib_device *ieee, struct sk_buff *skb, struct lib80211_crypt_data **crypt, size_t hdrlen) { struct rtllib_hdr_4addr *hdr = (struct rtllib_hdr_4addr *)skb->data; u16 fc = le16_to_cpu(hdr->frame_ctl); int idx = 0; if (ieee->host_decrypt) { if (skb->len >= hdrlen + 3) idx = skb->data[hdrlen + 3] >> 6; *crypt = ieee->crypt_info.crypt[idx]; /* allow NULL decrypt to indicate an station specific override * for default encryption */ if (*crypt && ((*crypt)->ops == NULL || (*crypt)->ops->decrypt_mpdu == NULL)) *crypt = NULL; if (!*crypt && (fc & RTLLIB_FCTL_WEP)) { /* This seems to be triggered by some (multicast?) * frames from other than current BSS, so just drop the * frames silently instead of filling system log with * these reports. */ RTLLIB_DEBUG_DROP("Decryption failed (not set)" " (SA= %pM)\n", hdr->addr2); ieee->ieee_stats.rx_discards_undecryptable++; return -1; } } return 0; } static int rtllib_rx_decrypt(struct rtllib_device *ieee, struct sk_buff *skb, struct rtllib_rx_stats *rx_stats, struct lib80211_crypt_data *crypt, size_t hdrlen) { struct rtllib_hdr_4addr *hdr; int keyidx = 0; u16 fc, sc; u8 frag; hdr = (struct rtllib_hdr_4addr *)skb->data; fc = le16_to_cpu(hdr->frame_ctl); sc = le16_to_cpu(hdr->seq_ctl); frag = WLAN_GET_SEQ_FRAG(sc); if ((!rx_stats->Decrypted)) ieee->need_sw_enc = 1; else ieee->need_sw_enc = 0; keyidx = rtllib_rx_frame_decrypt(ieee, skb, crypt); if (ieee->host_decrypt && (fc & RTLLIB_FCTL_WEP) && (keyidx < 0)) { printk(KERN_INFO "%s: decrypt frame error\n", __func__); return -1; } hdr = (struct rtllib_hdr_4addr *) skb->data; if ((frag != 0 || (fc & RTLLIB_FCTL_MOREFRAGS))) { int flen; struct sk_buff *frag_skb = rtllib_frag_cache_get(ieee, hdr); RTLLIB_DEBUG_FRAG("Rx Fragment received (%u)\n", frag); if (!frag_skb) { RTLLIB_DEBUG(RTLLIB_DL_RX | RTLLIB_DL_FRAG, "Rx cannot get skb from fragment " "cache (morefrag=%d seq=%u frag=%u)\n", (fc & RTLLIB_FCTL_MOREFRAGS) != 0, WLAN_GET_SEQ_SEQ(sc), frag); return -1; } flen = skb->len; if (frag != 0) flen -= hdrlen; if (frag_skb->tail + flen > frag_skb->end) { printk(KERN_WARNING "%s: host decrypted and " "reassembled frame did not fit skb\n", __func__); rtllib_frag_cache_invalidate(ieee, hdr); return -1; } if (frag == 0) { /* copy first fragment (including full headers) into * beginning of the fragment cache skb */ memcpy(skb_put(frag_skb, flen), skb->data, flen); } else { /* append frame payload to the end of the fragment * cache skb */ memcpy(skb_put(frag_skb, flen), skb->data + hdrlen, flen); } dev_kfree_skb_any(skb); skb = NULL; if (fc & RTLLIB_FCTL_MOREFRAGS) { /* more fragments expected - leave the skb in fragment * cache for now; it will be delivered to upper layers * after all fragments have been received */ return -2; } /* this was the last fragment and the frame will be * delivered, so remove skb from fragment cache */ skb = frag_skb; hdr = (struct rtllib_hdr_4addr *) skb->data; rtllib_frag_cache_invalidate(ieee, hdr); } /* skb: hdr + (possible reassembled) full MSDU payload; possibly still * encrypted/authenticated */ if (ieee->host_decrypt && (fc & RTLLIB_FCTL_WEP) && rtllib_rx_frame_decrypt_msdu(ieee, skb, keyidx, crypt)) { printk(KERN_INFO "%s: ==>decrypt msdu error\n", __func__); return -1; } hdr = (struct rtllib_hdr_4addr *) skb->data; if (crypt && !(fc & RTLLIB_FCTL_WEP) && !ieee->open_wep) { if (/*ieee->ieee802_1x &&*/ rtllib_is_eapol_frame(ieee, skb, hdrlen)) { /* pass unencrypted EAPOL frames even if encryption is * configured */ struct eapol *eap = (struct eapol *)(skb->data + 24); RTLLIB_DEBUG_EAP("RX: IEEE 802.1X EAPOL frame: %s\n", eap_get_type(eap->type)); } else { RTLLIB_DEBUG_DROP( "encryption configured, but RX " "frame not encrypted (SA= %pM)\n", hdr->addr2); return -1; } } if (crypt && !(fc & RTLLIB_FCTL_WEP) && rtllib_is_eapol_frame(ieee, skb, hdrlen)) { struct eapol *eap = (struct eapol *)(skb->data + 24); RTLLIB_DEBUG_EAP("RX: IEEE 802.1X EAPOL frame: %s\n", eap_get_type(eap->type)); } if (crypt && !(fc & RTLLIB_FCTL_WEP) && !ieee->open_wep && !rtllib_is_eapol_frame(ieee, skb, hdrlen)) { RTLLIB_DEBUG_DROP( "dropped unencrypted RX data " "frame from %pM" " (drop_unencrypted=1)\n", hdr->addr2); return -1; } if (rtllib_is_eapol_frame(ieee, skb, hdrlen)) printk(KERN_WARNING "RX: IEEE802.1X EAPOL frame!\n"); return 0; } static void rtllib_rx_check_leave_lps(struct rtllib_device *ieee, u8 unicast, u8 nr_subframes) { if (unicast) { if ((ieee->state == RTLLIB_LINKED)) { if (((ieee->LinkDetectInfo.NumRxUnicastOkInPeriod + ieee->LinkDetectInfo.NumTxOkInPeriod) > 8) || (ieee->LinkDetectInfo.NumRxUnicastOkInPeriod > 2)) { if (ieee->LeisurePSLeave) ieee->LeisurePSLeave(ieee->dev); } } } ieee->last_rx_ps_time = jiffies; } static void rtllib_rx_indicate_pkt_legacy(struct rtllib_device *ieee, struct rtllib_rx_stats *rx_stats, struct rtllib_rxb *rxb, u8 *dst, u8 *src) { struct net_device *dev = ieee->dev; u16 ethertype; int i = 0; if (rxb == NULL) { printk(KERN_INFO "%s: rxb is NULL!!\n", __func__); return ; } for (i = 0; i < rxb->nr_subframes; i++) { struct sk_buff *sub_skb = rxb->subframes[i]; if (sub_skb) { /* convert hdr + possible LLC headers into Ethernet header */ ethertype = (sub_skb->data[6] << 8) | sub_skb->data[7]; if (sub_skb->len >= 8 && ((memcmp(sub_skb->data, rfc1042_header, SNAP_SIZE) == 0 && ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || memcmp(sub_skb->data, bridge_tunnel_header, SNAP_SIZE) == 0)) { /* remove RFC1042 or Bridge-Tunnel encapsulation and * replace EtherType */ skb_pull(sub_skb, SNAP_SIZE); memcpy(skb_push(sub_skb, ETH_ALEN), src, ETH_ALEN); memcpy(skb_push(sub_skb, ETH_ALEN), dst, ETH_ALEN); } else { u16 len; /* Leave Ethernet header part of hdr and full payload */ len = htons(sub_skb->len); memcpy(skb_push(sub_skb, 2), &len, 2); memcpy(skb_push(sub_skb, ETH_ALEN), src, ETH_ALEN); memcpy(skb_push(sub_skb, ETH_ALEN), dst, ETH_ALEN); } ieee->stats.rx_packets++; ieee->stats.rx_bytes += sub_skb->len; if (is_multicast_ether_addr(dst)) ieee->stats.multicast++; /* Indicat the packets to upper layer */ memset(sub_skb->cb, 0, sizeof(sub_skb->cb)); sub_skb->protocol = eth_type_trans(sub_skb, dev); sub_skb->dev = dev; sub_skb->dev->stats.rx_packets++; sub_skb->dev->stats.rx_bytes += sub_skb->len; sub_skb->ip_summed = CHECKSUM_NONE; /* 802.11 crc not sufficient */ netif_rx(sub_skb); } } kfree(rxb); rxb = NULL; } static int rtllib_rx_InfraAdhoc(struct rtllib_device *ieee, struct sk_buff *skb, struct rtllib_rx_stats *rx_stats) { struct net_device *dev = ieee->dev; struct rtllib_hdr_4addr *hdr = (struct rtllib_hdr_4addr *)skb->data; struct lib80211_crypt_data *crypt = NULL; struct rtllib_rxb *rxb = NULL; struct rx_ts_record *pTS = NULL; u16 fc, sc, SeqNum = 0; u8 type, stype, multicast = 0, unicast = 0, nr_subframes = 0, TID = 0; u8 dst[ETH_ALEN], src[ETH_ALEN], bssid[ETH_ALEN] = {0}, *payload; size_t hdrlen = 0; bool bToOtherSTA = false; int ret = 0, i = 0; hdr = (struct rtllib_hdr_4addr *)skb->data; fc = le16_to_cpu(hdr->frame_ctl); type = WLAN_FC_GET_TYPE(fc); stype = WLAN_FC_GET_STYPE(fc); sc = le16_to_cpu(hdr->seq_ctl); /*Filter pkt not to me*/ multicast = is_multicast_ether_addr(hdr->addr1)|is_broadcast_ether_addr(hdr->addr1); unicast = !multicast; if (unicast && (compare_ether_addr(dev->dev_addr, hdr->addr1) != 0)) { if (ieee->bNetPromiscuousMode) bToOtherSTA = true; else goto rx_dropped; } /*Filter pkt has too small length */ hdrlen = rtllib_rx_get_hdrlen(ieee, skb, rx_stats); if (skb->len < hdrlen) { printk(KERN_INFO "%s():ERR!!! skb->len is smaller than hdrlen\n", __func__); goto rx_dropped; } /* Filter Duplicate pkt */ ret = rtllib_rx_check_duplicate(ieee, skb, multicast); if (ret < 0) goto rx_dropped; /* Filter CTRL Frame */ if (type == RTLLIB_FTYPE_CTL) goto rx_dropped; /* Filter MGNT Frame */ if (type == RTLLIB_FTYPE_MGMT) { if (bToOtherSTA) goto rx_dropped; if (rtllib_rx_frame_mgmt(ieee, skb, rx_stats, type, stype)) goto rx_dropped; else goto rx_exit; } /* Filter WAPI DATA Frame */ /* Update statstics for AP roaming */ if (!bToOtherSTA) { ieee->LinkDetectInfo.NumRecvDataInPeriod++; ieee->LinkDetectInfo.NumRxOkInPeriod++; } dev->last_rx = jiffies; /* Data frame - extract src/dst addresses */ rtllib_rx_extract_addr(ieee, hdr, dst, src, bssid); /* Filter Data frames */ ret = rtllib_rx_data_filter(ieee, fc, dst, src, bssid, hdr->addr2); if (ret < 0) goto rx_dropped; if (skb->len == hdrlen) goto rx_dropped; /* Send pspoll based on moredata */ if ((ieee->iw_mode == IW_MODE_INFRA) && (ieee->sta_sleep == LPS_IS_SLEEP) && (ieee->polling) && (!bToOtherSTA)) { if (WLAN_FC_MORE_DATA(fc)) { /* more data bit is set, let's request a new frame from the AP */ rtllib_sta_ps_send_pspoll_frame(ieee); } else { ieee->polling = false; } } /* Get crypt if encrypted */ ret = rtllib_rx_get_crypt(ieee, skb, &crypt, hdrlen); if (ret == -1) goto rx_dropped; /* Decrypt data frame (including reassemble) */ ret = rtllib_rx_decrypt(ieee, skb, rx_stats, crypt, hdrlen); if (ret == -1) goto rx_dropped; else if (ret == -2) goto rx_exit; /* Get TS for Rx Reorder */ hdr = (struct rtllib_hdr_4addr *) skb->data; if (ieee->current_network.qos_data.active && IsQoSDataFrame(skb->data) && !is_multicast_ether_addr(hdr->addr1) && !is_broadcast_ether_addr(hdr->addr1) && (!bToOtherSTA)) { TID = Frame_QoSTID(skb->data); SeqNum = WLAN_GET_SEQ_SEQ(sc); GetTs(ieee, (struct ts_common_info **) &pTS, hdr->addr2, TID, RX_DIR, true); if (TID != 0 && TID != 3) ieee->bis_any_nonbepkts = true; } /* Parse rx data frame (For AMSDU) */ /* skb: hdr + (possible reassembled) full plaintext payload */ payload = skb->data + hdrlen; rxb = kmalloc(sizeof(struct rtllib_rxb), GFP_ATOMIC); if (rxb == NULL) { RTLLIB_DEBUG(RTLLIB_DL_ERR, "%s(): kmalloc rxb error\n", __func__); goto rx_dropped; } /* to parse amsdu packets */ /* qos data packets & reserved bit is 1 */ if (parse_subframe(ieee, skb, rx_stats, rxb, src, dst) == 0) { /* only to free rxb, and not submit the packets to upper layer */ for (i = 0; i < rxb->nr_subframes; i++) dev_kfree_skb(rxb->subframes[i]); kfree(rxb); rxb = NULL; goto rx_dropped; } /* Update WAPI PN */ /* Check if leave LPS */ if (!bToOtherSTA) { if (ieee->bIsAggregateFrame) nr_subframes = rxb->nr_subframes; else nr_subframes = 1; if (unicast) ieee->LinkDetectInfo.NumRxUnicastOkInPeriod += nr_subframes; rtllib_rx_check_leave_lps(ieee, unicast, nr_subframes); } /* Indicate packets to upper layer or Rx Reorder */ if (ieee->pHTInfo->bCurRxReorderEnable == false || pTS == NULL || bToOtherSTA) rtllib_rx_indicate_pkt_legacy(ieee, rx_stats, rxb, dst, src); else RxReorderIndicatePacket(ieee, rxb, pTS, SeqNum); dev_kfree_skb(skb); rx_exit: return 1; rx_dropped: if (rxb != NULL) { kfree(rxb); rxb = NULL; } ieee->stats.rx_dropped++; /* Returning 0 indicates to caller that we have not handled the SKB-- * so it is still allocated and can be used again by underlying * hardware as a DMA target */ return 0; } static int rtllib_rx_Master(struct rtllib_device *ieee, struct sk_buff *skb, struct rtllib_rx_stats *rx_stats) { return 0; } static int rtllib_rx_Monitor(struct rtllib_device *ieee, struct sk_buff *skb, struct rtllib_rx_stats *rx_stats) { struct rtllib_hdr_4addr *hdr = (struct rtllib_hdr_4addr *)skb->data; u16 fc = le16_to_cpu(hdr->frame_ctl); size_t hdrlen = rtllib_get_hdrlen(fc); if (skb->len < hdrlen) { printk(KERN_INFO "%s():ERR!!! skb->len is smaller than hdrlen\n", __func__); return 0; } if (HTCCheck(ieee, skb->data)) { if (net_ratelimit()) printk(KERN_INFO "%s: Find HTCControl!\n", __func__); hdrlen += 4; } rtllib_monitor_rx(ieee, skb, rx_stats, hdrlen); ieee->stats.rx_packets++; ieee->stats.rx_bytes += skb->len; return 1; } static int rtllib_rx_Mesh(struct rtllib_device *ieee, struct sk_buff *skb, struct rtllib_rx_stats *rx_stats) { return 0; } /* All received frames are sent to this function. @skb contains the frame in * IEEE 802.11 format, i.e., in the format it was sent over air. * This function is called only as a tasklet (software IRQ). */ int rtllib_rx(struct rtllib_device *ieee, struct sk_buff *skb, struct rtllib_rx_stats *rx_stats) { int ret = 0; if ((NULL == ieee) || (NULL == skb) || (NULL == rx_stats)) { printk(KERN_INFO "%s: Input parameters NULL!\n", __func__); goto rx_dropped; } if (skb->len < 10) { printk(KERN_INFO "%s: SKB length < 10\n", __func__); goto rx_dropped; } switch (ieee->iw_mode) { case IW_MODE_ADHOC: case IW_MODE_INFRA: ret = rtllib_rx_InfraAdhoc(ieee, skb, rx_stats); break; case IW_MODE_MASTER: case IW_MODE_REPEAT: ret = rtllib_rx_Master(ieee, skb, rx_stats); break; case IW_MODE_MONITOR: ret = rtllib_rx_Monitor(ieee, skb, rx_stats); break; case IW_MODE_MESH: ret = rtllib_rx_Mesh(ieee, skb, rx_stats); break; default: printk(KERN_INFO"%s: ERR iw mode!!!\n", __func__); break; } return ret; rx_dropped: ieee->stats.rx_dropped++; return 0; } EXPORT_SYMBOL(rtllib_rx); static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 }; /* * Make ther structure we read from the beacon packet has * the right values */ static int rtllib_verify_qos_info(struct rtllib_qos_information_element *info_element, int sub_type) { if (info_element->qui_subtype != sub_type) return -1; if (memcmp(info_element->qui, qos_oui, QOS_OUI_LEN)) return -1; if (info_element->qui_type != QOS_OUI_TYPE) return -1; if (info_element->version != QOS_VERSION_1) return -1; return 0; } /* * Parse a QoS parameter element */ static int rtllib_read_qos_param_element(struct rtllib_qos_parameter_info *element_param, struct rtllib_info_element *info_element) { int ret = 0; u16 size = sizeof(struct rtllib_qos_parameter_info) - 2; if ((info_element == NULL) || (element_param == NULL)) return -1; if (info_element->id == QOS_ELEMENT_ID && info_element->len == size) { memcpy(element_param->info_element.qui, info_element->data, info_element->len); element_param->info_element.elementID = info_element->id; element_param->info_element.length = info_element->len; } else ret = -1; if (ret == 0) ret = rtllib_verify_qos_info(&element_param->info_element, QOS_OUI_PARAM_SUB_TYPE); return ret; } /* * Parse a QoS information element */ static int rtllib_read_qos_info_element(struct rtllib_qos_information_element *element_info, struct rtllib_info_element *info_element) { int ret = 0; u16 size = sizeof(struct rtllib_qos_information_element) - 2; if (element_info == NULL) return -1; if (info_element == NULL) return -1; if ((info_element->id == QOS_ELEMENT_ID) && (info_element->len == size)) { memcpy(element_info->qui, info_element->data, info_element->len); element_info->elementID = info_element->id; element_info->length = info_element->len; } else ret = -1; if (ret == 0) ret = rtllib_verify_qos_info(element_info, QOS_OUI_INFO_SUB_TYPE); return ret; } /* * Write QoS parameters from the ac parameters. */ static int rtllib_qos_convert_ac_to_parameters(struct rtllib_qos_parameter_info *param_elm, struct rtllib_qos_data *qos_data) { struct rtllib_qos_ac_parameter *ac_params; struct rtllib_qos_parameters *qos_param = &(qos_data->parameters); int rc = 0; int i; u8 aci; u8 acm; qos_data->wmm_acm = 0; for (i = 0; i < QOS_QUEUE_NUM; i++) { ac_params = &(param_elm->ac_params_record[i]); aci = (ac_params->aci_aifsn & 0x60) >> 5; acm = (ac_params->aci_aifsn & 0x10) >> 4; if (aci >= QOS_QUEUE_NUM) continue; switch (aci) { case 1: /* BIT(0) | BIT(3) */ if (acm) qos_data->wmm_acm |= (0x01<<0)|(0x01<<3); break; case 2: /* BIT(4) | BIT(5) */ if (acm) qos_data->wmm_acm |= (0x01<<4)|(0x01<<5); break; case 3: /* BIT(6) | BIT(7) */ if (acm) qos_data->wmm_acm |= (0x01<<6)|(0x01<<7); break; case 0: default: /* BIT(1) | BIT(2) */ if (acm) qos_data->wmm_acm |= (0x01<<1)|(0x01<<2); break; } qos_param->aifs[aci] = (ac_params->aci_aifsn) & 0x0f; /* WMM spec P.11: The minimum value for AIFSN shall be 2 */ qos_param->aifs[aci] = (qos_param->aifs[aci] < 2) ? 2 : qos_param->aifs[aci]; qos_param->cw_min[aci] = ac_params->ecw_min_max & 0x0F; qos_param->cw_max[aci] = (ac_params->ecw_min_max & 0xF0) >> 4; qos_param->flag[aci] = (ac_params->aci_aifsn & 0x10) ? 0x01 : 0x00; qos_param->tx_op_limit[aci] = le16_to_cpu(ac_params->tx_op_limit); } return rc; } /* * we have a generic data element which it may contain QoS information or * parameters element. check the information element length to decide * which type to read */ static int rtllib_parse_qos_info_param_IE(struct rtllib_info_element *info_element, struct rtllib_network *network) { int rc = 0; struct rtllib_qos_information_element qos_info_element; rc = rtllib_read_qos_info_element(&qos_info_element, info_element); if (rc == 0) { network->qos_data.param_count = qos_info_element.ac_info & 0x0F; network->flags |= NETWORK_HAS_QOS_INFORMATION; } else { struct rtllib_qos_parameter_info param_element; rc = rtllib_read_qos_param_element(¶m_element, info_element); if (rc == 0) { rtllib_qos_convert_ac_to_parameters(¶m_element, &(network->qos_data)); network->flags |= NETWORK_HAS_QOS_PARAMETERS; network->qos_data.param_count = param_element.info_element.ac_info & 0x0F; } } if (rc == 0) { RTLLIB_DEBUG_QOS("QoS is supported\n"); network->qos_data.supported = 1; } return rc; } #define MFIE_STRING(x) case MFIE_TYPE_ ##x: return #x static const char *get_info_element_string(u16 id) { switch (id) { MFIE_STRING(SSID); MFIE_STRING(RATES); MFIE_STRING(FH_SET); MFIE_STRING(DS_SET); MFIE_STRING(CF_SET); MFIE_STRING(TIM); MFIE_STRING(IBSS_SET); MFIE_STRING(COUNTRY); MFIE_STRING(HOP_PARAMS); MFIE_STRING(HOP_TABLE); MFIE_STRING(REQUEST); MFIE_STRING(CHALLENGE); MFIE_STRING(POWER_CONSTRAINT); MFIE_STRING(POWER_CAPABILITY); MFIE_STRING(TPC_REQUEST); MFIE_STRING(TPC_REPORT); MFIE_STRING(SUPP_CHANNELS); MFIE_STRING(CSA); MFIE_STRING(MEASURE_REQUEST); MFIE_STRING(MEASURE_REPORT); MFIE_STRING(QUIET); MFIE_STRING(IBSS_DFS); MFIE_STRING(RSN); MFIE_STRING(RATES_EX); MFIE_STRING(GENERIC); MFIE_STRING(QOS_PARAMETER); default: return "UNKNOWN"; } } static inline void rtllib_extract_country_ie( struct rtllib_device *ieee, struct rtllib_info_element *info_element, struct rtllib_network *network, u8 *addr2) { if (IS_DOT11D_ENABLE(ieee)) { if (info_element->len != 0) { memcpy(network->CountryIeBuf, info_element->data, info_element->len); network->CountryIeLen = info_element->len; if (!IS_COUNTRY_IE_VALID(ieee)) { if ((rtllib_act_scanning(ieee, false) == true) && (ieee->FirstIe_InScan == 1)) printk(KERN_INFO "Received beacon ContryIE, SSID: <%s>\n", network->ssid); Dot11d_UpdateCountryIe(ieee, addr2, info_element->len, info_element->data); } } if (IS_EQUAL_CIE_SRC(ieee, addr2)) UPDATE_CIE_WATCHDOG(ieee); } } int rtllib_parse_info_param(struct rtllib_device *ieee, struct rtllib_info_element *info_element, u16 length, struct rtllib_network *network, struct rtllib_rx_stats *stats) { u8 i; short offset; u16 tmp_htcap_len = 0; u16 tmp_htinfo_len = 0; u16 ht_realtek_agg_len = 0; u8 ht_realtek_agg_buf[MAX_IE_LEN]; char rates_str[64]; char *p; while (length >= sizeof(*info_element)) { if (sizeof(*info_element) + info_element->len > length) { RTLLIB_DEBUG_MGMT("Info elem: parse failed: " "info_element->len + 2 > left : " "info_element->len+2=%zd left=%d, id=%d.\n", info_element->len + sizeof(*info_element), length, info_element->id); /* We stop processing but don't return an error here * because some misbehaviour APs break this rule. ie. * Orinoco AP1000. */ break; } switch (info_element->id) { case MFIE_TYPE_SSID: if (rtllib_is_empty_essid(info_element->data, info_element->len)) { network->flags |= NETWORK_EMPTY_ESSID; break; } network->ssid_len = min(info_element->len, (u8) IW_ESSID_MAX_SIZE); memcpy(network->ssid, info_element->data, network->ssid_len); if (network->ssid_len < IW_ESSID_MAX_SIZE) memset(network->ssid + network->ssid_len, 0, IW_ESSID_MAX_SIZE - network->ssid_len); RTLLIB_DEBUG_MGMT("MFIE_TYPE_SSID: '%s' len=%d.\n", network->ssid, network->ssid_len); break; case MFIE_TYPE_RATES: p = rates_str; network->rates_len = min(info_element->len, MAX_RATES_LENGTH); for (i = 0; i < network->rates_len; i++) { network->rates[i] = info_element->data[i]; p += snprintf(p, sizeof(rates_str) - (p - rates_str), "%02X ", network->rates[i]); if (rtllib_is_ofdm_rate (info_element->data[i])) { network->flags |= NETWORK_HAS_OFDM; if (info_element->data[i] & RTLLIB_BASIC_RATE_MASK) network->flags &= ~NETWORK_HAS_CCK; } if (rtllib_is_cck_rate (info_element->data[i])) { network->flags |= NETWORK_HAS_CCK; } } RTLLIB_DEBUG_MGMT("MFIE_TYPE_RATES: '%s' (%d)\n", rates_str, network->rates_len); break; case MFIE_TYPE_RATES_EX: p = rates_str; network->rates_ex_len = min(info_element->len, MAX_RATES_EX_LENGTH); for (i = 0; i < network->rates_ex_len; i++) { network->rates_ex[i] = info_element->data[i]; p += snprintf(p, sizeof(rates_str) - (p - rates_str), "%02X ", network->rates[i]); if (rtllib_is_ofdm_rate (info_element->data[i])) { network->flags |= NETWORK_HAS_OFDM; if (info_element->data[i] & RTLLIB_BASIC_RATE_MASK) network->flags &= ~NETWORK_HAS_CCK; } } RTLLIB_DEBUG_MGMT("MFIE_TYPE_RATES_EX: '%s' (%d)\n", rates_str, network->rates_ex_len); break; case MFIE_TYPE_DS_SET: RTLLIB_DEBUG_MGMT("MFIE_TYPE_DS_SET: %d\n", info_element->data[0]); network->channel = info_element->data[0]; break; case MFIE_TYPE_FH_SET: RTLLIB_DEBUG_MGMT("MFIE_TYPE_FH_SET: ignored\n"); break; case MFIE_TYPE_CF_SET: RTLLIB_DEBUG_MGMT("MFIE_TYPE_CF_SET: ignored\n"); break; case MFIE_TYPE_TIM: if (info_element->len < 4) break; network->tim.tim_count = info_element->data[0]; network->tim.tim_period = info_element->data[1]; network->dtim_period = info_element->data[1]; if (ieee->state != RTLLIB_LINKED) break; network->last_dtim_sta_time = jiffies; network->dtim_data = RTLLIB_DTIM_VALID; if (info_element->data[2] & 1) network->dtim_data |= RTLLIB_DTIM_MBCAST; offset = (info_element->data[2] >> 1)*2; if (ieee->assoc_id < 8*offset || ieee->assoc_id > 8*(offset + info_element->len - 3)) break; offset = (ieee->assoc_id / 8) - offset; if (info_element->data[3 + offset] & (1 << (ieee->assoc_id % 8))) network->dtim_data |= RTLLIB_DTIM_UCAST; network->listen_interval = network->dtim_period; break; case MFIE_TYPE_ERP: network->erp_value = info_element->data[0]; network->flags |= NETWORK_HAS_ERP_VALUE; RTLLIB_DEBUG_MGMT("MFIE_TYPE_ERP_SET: %d\n", network->erp_value); break; case MFIE_TYPE_IBSS_SET: network->atim_window = info_element->data[0]; RTLLIB_DEBUG_MGMT("MFIE_TYPE_IBSS_SET: %d\n", network->atim_window); break; case MFIE_TYPE_CHALLENGE: RTLLIB_DEBUG_MGMT("MFIE_TYPE_CHALLENGE: ignored\n"); break; case MFIE_TYPE_GENERIC: RTLLIB_DEBUG_MGMT("MFIE_TYPE_GENERIC: %d bytes\n", info_element->len); if (!rtllib_parse_qos_info_param_IE(info_element, network)) break; if (info_element->len >= 4 && info_element->data[0] == 0x00 && info_element->data[1] == 0x50 && info_element->data[2] == 0xf2 && info_element->data[3] == 0x01) { network->wpa_ie_len = min(info_element->len + 2, MAX_WPA_IE_LEN); memcpy(network->wpa_ie, info_element, network->wpa_ie_len); break; } if (info_element->len == 7 && info_element->data[0] == 0x00 && info_element->data[1] == 0xe0 && info_element->data[2] == 0x4c && info_element->data[3] == 0x01 && info_element->data[4] == 0x02) network->Turbo_Enable = 1; if (tmp_htcap_len == 0) { if (info_element->len >= 4 && info_element->data[0] == 0x00 && info_element->data[1] == 0x90 && info_element->data[2] == 0x4c && info_element->data[3] == 0x033) { tmp_htcap_len = min(info_element->len, (u8)MAX_IE_LEN); if (tmp_htcap_len != 0) { network->bssht.bdHTSpecVer = HT_SPEC_VER_EWC; network->bssht.bdHTCapLen = tmp_htcap_len > sizeof(network->bssht.bdHTCapBuf) ? sizeof(network->bssht.bdHTCapBuf) : tmp_htcap_len; memcpy(network->bssht.bdHTCapBuf, info_element->data, network->bssht.bdHTCapLen); } } if (tmp_htcap_len != 0) { network->bssht.bdSupportHT = true; network->bssht.bdHT1R = ((((struct ht_capab_ele *)(network->bssht.bdHTCapBuf))->MCS[1]) == 0); } else { network->bssht.bdSupportHT = false; network->bssht.bdHT1R = false; } } if (tmp_htinfo_len == 0) { if (info_element->len >= 4 && info_element->data[0] == 0x00 && info_element->data[1] == 0x90 && info_element->data[2] == 0x4c && info_element->data[3] == 0x034) { tmp_htinfo_len = min(info_element->len, (u8)MAX_IE_LEN); if (tmp_htinfo_len != 0) { network->bssht.bdHTSpecVer = HT_SPEC_VER_EWC; if (tmp_htinfo_len) { network->bssht.bdHTInfoLen = tmp_htinfo_len > sizeof(network->bssht.bdHTInfoBuf) ? sizeof(network->bssht.bdHTInfoBuf) : tmp_htinfo_len; memcpy(network->bssht.bdHTInfoBuf, info_element->data, network->bssht.bdHTInfoLen); } } } } if (ieee->aggregation) { if (network->bssht.bdSupportHT) { if (info_element->len >= 4 && info_element->data[0] == 0x00 && info_element->data[1] == 0xe0 && info_element->data[2] == 0x4c && info_element->data[3] == 0x02) { ht_realtek_agg_len = min(info_element->len, (u8)MAX_IE_LEN); memcpy(ht_realtek_agg_buf, info_element->data, info_element->len); } if (ht_realtek_agg_len >= 5) { network->realtek_cap_exit = true; network->bssht.bdRT2RTAggregation = true; if ((ht_realtek_agg_buf[4] == 1) && (ht_realtek_agg_buf[5] & 0x02)) network->bssht.bdRT2RTLongSlotTime = true; if ((ht_realtek_agg_buf[4] == 1) && (ht_realtek_agg_buf[5] & RT_HT_CAP_USE_92SE)) network->bssht.RT2RT_HT_Mode |= RT_HT_CAP_USE_92SE; } } if (ht_realtek_agg_len >= 5) { if ((ht_realtek_agg_buf[5] & RT_HT_CAP_USE_SOFTAP)) network->bssht.RT2RT_HT_Mode |= RT_HT_CAP_USE_SOFTAP; } } if ((info_element->len >= 3 && info_element->data[0] == 0x00 && info_element->data[1] == 0x05 && info_element->data[2] == 0xb5) || (info_element->len >= 3 && info_element->data[0] == 0x00 && info_element->data[1] == 0x0a && info_element->data[2] == 0xf7) || (info_element->len >= 3 && info_element->data[0] == 0x00 && info_element->data[1] == 0x10 && info_element->data[2] == 0x18)) { network->broadcom_cap_exist = true; } if (info_element->len >= 3 && info_element->data[0] == 0x00 && info_element->data[1] == 0x0c && info_element->data[2] == 0x43) network->ralink_cap_exist = true; if ((info_element->len >= 3 && info_element->data[0] == 0x00 && info_element->data[1] == 0x03 && info_element->data[2] == 0x7f) || (info_element->len >= 3 && info_element->data[0] == 0x00 && info_element->data[1] == 0x13 && info_element->data[2] == 0x74)) network->atheros_cap_exist = true; if ((info_element->len >= 3 && info_element->data[0] == 0x00 && info_element->data[1] == 0x50 && info_element->data[2] == 0x43)) network->marvell_cap_exist = true; if (info_element->len >= 3 && info_element->data[0] == 0x00 && info_element->data[1] == 0x40 && info_element->data[2] == 0x96) network->cisco_cap_exist = true; if (info_element->len >= 3 && info_element->data[0] == 0x00 && info_element->data[1] == 0x0a && info_element->data[2] == 0xf5) network->airgo_cap_exist = true; if (info_element->len > 4 && info_element->data[0] == 0x00 && info_element->data[1] == 0x40 && info_element->data[2] == 0x96 && info_element->data[3] == 0x01) { if (info_element->len == 6) { memcpy(network->CcxRmState, &info_element[4], 2); if (network->CcxRmState[0] != 0) network->bCcxRmEnable = true; else network->bCcxRmEnable = false; network->MBssidMask = network->CcxRmState[1] & 0x07; if (network->MBssidMask != 0) { network->bMBssidValid = true; network->MBssidMask = 0xff << (network->MBssidMask); memcpy(network->MBssid, network->bssid, ETH_ALEN); network->MBssid[5] &= network->MBssidMask; } else { network->bMBssidValid = false; } } else { network->bCcxRmEnable = false; } } if (info_element->len > 4 && info_element->data[0] == 0x00 && info_element->data[1] == 0x40 && info_element->data[2] == 0x96 && info_element->data[3] == 0x03) { if (info_element->len == 5) { network->bWithCcxVerNum = true; network->BssCcxVerNumber = info_element->data[4]; } else { network->bWithCcxVerNum = false; network->BssCcxVerNumber = 0; } } if (info_element->len > 4 && info_element->data[0] == 0x00 && info_element->data[1] == 0x50 && info_element->data[2] == 0xf2 && info_element->data[3] == 0x04) { RTLLIB_DEBUG_MGMT("MFIE_TYPE_WZC: %d bytes\n", info_element->len); network->wzc_ie_len = min(info_element->len+2, MAX_WZC_IE_LEN); memcpy(network->wzc_ie, info_element, network->wzc_ie_len); } break; case MFIE_TYPE_RSN: RTLLIB_DEBUG_MGMT("MFIE_TYPE_RSN: %d bytes\n", info_element->len); network->rsn_ie_len = min(info_element->len + 2, MAX_WPA_IE_LEN); memcpy(network->rsn_ie, info_element, network->rsn_ie_len); break; case MFIE_TYPE_HT_CAP: RTLLIB_DEBUG_SCAN("MFIE_TYPE_HT_CAP: %d bytes\n", info_element->len); tmp_htcap_len = min(info_element->len, (u8)MAX_IE_LEN); if (tmp_htcap_len != 0) { network->bssht.bdHTSpecVer = HT_SPEC_VER_EWC; network->bssht.bdHTCapLen = tmp_htcap_len > sizeof(network->bssht.bdHTCapBuf) ? sizeof(network->bssht.bdHTCapBuf) : tmp_htcap_len; memcpy(network->bssht.bdHTCapBuf, info_element->data, network->bssht.bdHTCapLen); network->bssht.bdSupportHT = true; network->bssht.bdHT1R = ((((struct ht_capab_ele *) network->bssht.bdHTCapBuf))->MCS[1]) == 0; network->bssht.bdBandWidth = (enum ht_channel_width) (((struct ht_capab_ele *) (network->bssht.bdHTCapBuf))->ChlWidth); } else { network->bssht.bdSupportHT = false; network->bssht.bdHT1R = false; network->bssht.bdBandWidth = HT_CHANNEL_WIDTH_20; } break; case MFIE_TYPE_HT_INFO: RTLLIB_DEBUG_SCAN("MFIE_TYPE_HT_INFO: %d bytes\n", info_element->len); tmp_htinfo_len = min(info_element->len, (u8)MAX_IE_LEN); if (tmp_htinfo_len) { network->bssht.bdHTSpecVer = HT_SPEC_VER_IEEE; network->bssht.bdHTInfoLen = tmp_htinfo_len > sizeof(network->bssht.bdHTInfoBuf) ? sizeof(network->bssht.bdHTInfoBuf) : tmp_htinfo_len; memcpy(network->bssht.bdHTInfoBuf, info_element->data, network->bssht.bdHTInfoLen); } break; case MFIE_TYPE_AIRONET: RTLLIB_DEBUG_SCAN("MFIE_TYPE_AIRONET: %d bytes\n", info_element->len); if (info_element->len > IE_CISCO_FLAG_POSITION) { network->bWithAironetIE = true; if ((info_element->data[IE_CISCO_FLAG_POSITION] & SUPPORT_CKIP_MIC) || (info_element->data[IE_CISCO_FLAG_POSITION] & SUPPORT_CKIP_PK)) network->bCkipSupported = true; else network->bCkipSupported = false; } else { network->bWithAironetIE = false; network->bCkipSupported = false; } break; case MFIE_TYPE_QOS_PARAMETER: printk(KERN_ERR "QoS Error need to parse QOS_PARAMETER IE\n"); break; case MFIE_TYPE_COUNTRY: RTLLIB_DEBUG_SCAN("MFIE_TYPE_COUNTRY: %d bytes\n", info_element->len); rtllib_extract_country_ie(ieee, info_element, network, network->bssid); break; /* TODO */ default: RTLLIB_DEBUG_MGMT ("Unsupported info element: %s (%d)\n", get_info_element_string(info_element->id), info_element->id); break; } length -= sizeof(*info_element) + info_element->len; info_element = (struct rtllib_info_element *)&info_element-> data[info_element->len]; } if (!network->atheros_cap_exist && !network->broadcom_cap_exist && !network->cisco_cap_exist && !network->ralink_cap_exist && !network->bssht.bdRT2RTAggregation) network->unknown_cap_exist = true; else network->unknown_cap_exist = false; return 0; } static inline u8 rtllib_SignalStrengthTranslate(u8 CurrSS) { u8 RetSS; if (CurrSS >= 71 && CurrSS <= 100) RetSS = 90 + ((CurrSS - 70) / 3); else if (CurrSS >= 41 && CurrSS <= 70) RetSS = 78 + ((CurrSS - 40) / 3); else if (CurrSS >= 31 && CurrSS <= 40) RetSS = 66 + (CurrSS - 30); else if (CurrSS >= 21 && CurrSS <= 30) RetSS = 54 + (CurrSS - 20); else if (CurrSS >= 5 && CurrSS <= 20) RetSS = 42 + (((CurrSS - 5) * 2) / 3); else if (CurrSS == 4) RetSS = 36; else if (CurrSS == 3) RetSS = 27; else if (CurrSS == 2) RetSS = 18; else if (CurrSS == 1) RetSS = 9; else RetSS = CurrSS; return RetSS; } static long rtllib_translate_todbm(u8 signal_strength_index) { long signal_power; signal_power = (long)((signal_strength_index + 1) >> 1); signal_power -= 95; return signal_power; } static inline int rtllib_network_init( struct rtllib_device *ieee, struct rtllib_probe_response *beacon, struct rtllib_network *network, struct rtllib_rx_stats *stats) { /* network->qos_data.active = 0; network->qos_data.supported = 0; network->qos_data.param_count = 0; network->qos_data.old_param_count = 0; */ memset(&network->qos_data, 0, sizeof(struct rtllib_qos_data)); /* Pull out fixed field data */ memcpy(network->bssid, beacon->header.addr3, ETH_ALEN); network->capability = le16_to_cpu(beacon->capability); network->last_scanned = jiffies; network->time_stamp[0] = le32_to_cpu(beacon->time_stamp[0]); network->time_stamp[1] = le32_to_cpu(beacon->time_stamp[1]); network->beacon_interval = le32_to_cpu(beacon->beacon_interval); /* Where to pull this? beacon->listen_interval;*/ network->listen_interval = 0x0A; network->rates_len = network->rates_ex_len = 0; network->last_associate = 0; network->ssid_len = 0; network->hidden_ssid_len = 0; memset(network->hidden_ssid, 0, sizeof(network->hidden_ssid)); network->flags = 0; network->atim_window = 0; network->erp_value = (network->capability & WLAN_CAPABILITY_IBSS) ? 0x3 : 0x0; network->berp_info_valid = false; network->broadcom_cap_exist = false; network->ralink_cap_exist = false; network->atheros_cap_exist = false; network->cisco_cap_exist = false; network->unknown_cap_exist = false; network->realtek_cap_exit = false; network->marvell_cap_exist = false; network->airgo_cap_exist = false; network->Turbo_Enable = 0; network->SignalStrength = stats->SignalStrength; network->RSSI = stats->SignalStrength; network->CountryIeLen = 0; memset(network->CountryIeBuf, 0, MAX_IE_LEN); HTInitializeBssDesc(&network->bssht); if (stats->freq == RTLLIB_52GHZ_BAND) { /* for A band (No DS info) */ network->channel = stats->received_channel; } else network->flags |= NETWORK_HAS_CCK; network->wpa_ie_len = 0; network->rsn_ie_len = 0; network->wzc_ie_len = 0; if (rtllib_parse_info_param(ieee, beacon->info_element, (stats->len - sizeof(*beacon)), network, stats)) return 1; network->mode = 0; if (stats->freq == RTLLIB_52GHZ_BAND) network->mode = IEEE_A; else { if (network->flags & NETWORK_HAS_OFDM) network->mode |= IEEE_G; if (network->flags & NETWORK_HAS_CCK) network->mode |= IEEE_B; } if (network->mode == 0) { RTLLIB_DEBUG_SCAN("Filtered out '%s (%pM)' " "network.\n", escape_essid(network->ssid, network->ssid_len), network->bssid); return 1; } if (network->bssht.bdSupportHT) { if (network->mode == IEEE_A) network->mode = IEEE_N_5G; else if (network->mode & (IEEE_G | IEEE_B)) network->mode = IEEE_N_24G; } if (rtllib_is_empty_essid(network->ssid, network->ssid_len)) network->flags |= NETWORK_EMPTY_ESSID; stats->signal = 30 + (stats->SignalStrength * 70) / 100; stats->noise = rtllib_translate_todbm((u8)(100-stats->signal)) - 25; memcpy(&network->stats, stats, sizeof(network->stats)); return 0; } static inline int is_same_network(struct rtllib_network *src, struct rtllib_network *dst, u8 ssidbroad) { /* A network is only a duplicate if the channel, BSSID, ESSID * and the capability field (in particular IBSS and BSS) all match. * We treat all <hidden> with the same BSSID and channel * as one network */ return (((src->ssid_len == dst->ssid_len) || (!ssidbroad)) && (src->channel == dst->channel) && !memcmp(src->bssid, dst->bssid, ETH_ALEN) && (!memcmp(src->ssid, dst->ssid, src->ssid_len) || (!ssidbroad)) && ((src->capability & WLAN_CAPABILITY_IBSS) == (dst->capability & WLAN_CAPABILITY_IBSS)) && ((src->capability & WLAN_CAPABILITY_ESS) == (dst->capability & WLAN_CAPABILITY_ESS))); } static inline void update_ibss_network(struct rtllib_network *dst, struct rtllib_network *src) { memcpy(&dst->stats, &src->stats, sizeof(struct rtllib_rx_stats)); dst->last_scanned = jiffies; } static inline void update_network(struct rtllib_network *dst, struct rtllib_network *src) { int qos_active; u8 old_param; memcpy(&dst->stats, &src->stats, sizeof(struct rtllib_rx_stats)); dst->capability = src->capability; memcpy(dst->rates, src->rates, src->rates_len); dst->rates_len = src->rates_len; memcpy(dst->rates_ex, src->rates_ex, src->rates_ex_len); dst->rates_ex_len = src->rates_ex_len; if (src->ssid_len > 0) { if (dst->ssid_len == 0) { memset(dst->hidden_ssid, 0, sizeof(dst->hidden_ssid)); dst->hidden_ssid_len = src->ssid_len; memcpy(dst->hidden_ssid, src->ssid, src->ssid_len); } else { memset(dst->ssid, 0, dst->ssid_len); dst->ssid_len = src->ssid_len; memcpy(dst->ssid, src->ssid, src->ssid_len); } } dst->mode = src->mode; dst->flags = src->flags; dst->time_stamp[0] = src->time_stamp[0]; dst->time_stamp[1] = src->time_stamp[1]; if (src->flags & NETWORK_HAS_ERP_VALUE) { dst->erp_value = src->erp_value; dst->berp_info_valid = src->berp_info_valid = true; } dst->beacon_interval = src->beacon_interval; dst->listen_interval = src->listen_interval; dst->atim_window = src->atim_window; dst->dtim_period = src->dtim_period; dst->dtim_data = src->dtim_data; dst->last_dtim_sta_time = src->last_dtim_sta_time; memcpy(&dst->tim, &src->tim, sizeof(struct rtllib_tim_parameters)); dst->bssht.bdSupportHT = src->bssht.bdSupportHT; dst->bssht.bdRT2RTAggregation = src->bssht.bdRT2RTAggregation; dst->bssht.bdHTCapLen = src->bssht.bdHTCapLen; memcpy(dst->bssht.bdHTCapBuf, src->bssht.bdHTCapBuf, src->bssht.bdHTCapLen); dst->bssht.bdHTInfoLen = src->bssht.bdHTInfoLen; memcpy(dst->bssht.bdHTInfoBuf, src->bssht.bdHTInfoBuf, src->bssht.bdHTInfoLen); dst->bssht.bdHTSpecVer = src->bssht.bdHTSpecVer; dst->bssht.bdRT2RTLongSlotTime = src->bssht.bdRT2RTLongSlotTime; dst->broadcom_cap_exist = src->broadcom_cap_exist; dst->ralink_cap_exist = src->ralink_cap_exist; dst->atheros_cap_exist = src->atheros_cap_exist; dst->realtek_cap_exit = src->realtek_cap_exit; dst->marvell_cap_exist = src->marvell_cap_exist; dst->cisco_cap_exist = src->cisco_cap_exist; dst->airgo_cap_exist = src->airgo_cap_exist; dst->unknown_cap_exist = src->unknown_cap_exist; memcpy(dst->wpa_ie, src->wpa_ie, src->wpa_ie_len); dst->wpa_ie_len = src->wpa_ie_len; memcpy(dst->rsn_ie, src->rsn_ie, src->rsn_ie_len); dst->rsn_ie_len = src->rsn_ie_len; memcpy(dst->wzc_ie, src->wzc_ie, src->wzc_ie_len); dst->wzc_ie_len = src->wzc_ie_len; dst->last_scanned = jiffies; /* qos related parameters */ qos_active = dst->qos_data.active; old_param = dst->qos_data.param_count; dst->qos_data.supported = src->qos_data.supported; if (dst->flags & NETWORK_HAS_QOS_PARAMETERS) memcpy(&dst->qos_data, &src->qos_data, sizeof(struct rtllib_qos_data)); if (dst->qos_data.supported == 1) { if (dst->ssid_len) RTLLIB_DEBUG_QOS ("QoS the network %s is QoS supported\n", dst->ssid); else RTLLIB_DEBUG_QOS ("QoS the network is QoS supported\n"); } dst->qos_data.active = qos_active; dst->qos_data.old_param_count = old_param; /* dst->last_associate is not overwritten */ dst->wmm_info = src->wmm_info; if (src->wmm_param[0].ac_aci_acm_aifsn || src->wmm_param[1].ac_aci_acm_aifsn || src->wmm_param[2].ac_aci_acm_aifsn || src->wmm_param[1].ac_aci_acm_aifsn) memcpy(dst->wmm_param, src->wmm_param, WME_AC_PRAM_LEN); dst->SignalStrength = src->SignalStrength; dst->RSSI = src->RSSI; dst->Turbo_Enable = src->Turbo_Enable; dst->CountryIeLen = src->CountryIeLen; memcpy(dst->CountryIeBuf, src->CountryIeBuf, src->CountryIeLen); dst->bWithAironetIE = src->bWithAironetIE; dst->bCkipSupported = src->bCkipSupported; memcpy(dst->CcxRmState, src->CcxRmState, 2); dst->bCcxRmEnable = src->bCcxRmEnable; dst->MBssidMask = src->MBssidMask; dst->bMBssidValid = src->bMBssidValid; memcpy(dst->MBssid, src->MBssid, 6); dst->bWithCcxVerNum = src->bWithCcxVerNum; dst->BssCcxVerNumber = src->BssCcxVerNumber; } static inline int is_beacon(__le16 fc) { return (WLAN_FC_GET_STYPE(le16_to_cpu(fc)) == RTLLIB_STYPE_BEACON); } static int IsPassiveChannel(struct rtllib_device *rtllib, u8 channel) { if (MAX_CHANNEL_NUMBER < channel) { printk(KERN_INFO "%s(): Invalid Channel\n", __func__); return 0; } if (rtllib->active_channel_map[channel] == 2) return 1; return 0; } int rtllib_legal_channel(struct rtllib_device *rtllib, u8 channel) { if (MAX_CHANNEL_NUMBER < channel) { printk(KERN_INFO "%s(): Invalid Channel\n", __func__); return 0; } if (rtllib->active_channel_map[channel] > 0) return 1; return 0; } EXPORT_SYMBOL(rtllib_legal_channel); static inline void rtllib_process_probe_response( struct rtllib_device *ieee, struct rtllib_probe_response *beacon, struct rtllib_rx_stats *stats) { struct rtllib_network *target; struct rtllib_network *oldest = NULL; struct rtllib_info_element *info_element = &beacon->info_element[0]; unsigned long flags; short renew; struct rtllib_network *network = kzalloc(sizeof(struct rtllib_network), GFP_ATOMIC); if (!network) return; RTLLIB_DEBUG_SCAN( "'%s' ( %pM ): %c%c%c%c %c%c%c%c-%c%c%c%c %c%c%c%c\n", escape_essid(info_element->data, info_element->len), beacon->header.addr3, (beacon->capability & (1<<0xf)) ? '1' : '0', (beacon->capability & (1<<0xe)) ? '1' : '0', (beacon->capability & (1<<0xd)) ? '1' : '0', (beacon->capability & (1<<0xc)) ? '1' : '0', (beacon->capability & (1<<0xb)) ? '1' : '0', (beacon->capability & (1<<0xa)) ? '1' : '0', (beacon->capability & (1<<0x9)) ? '1' : '0', (beacon->capability & (1<<0x8)) ? '1' : '0', (beacon->capability & (1<<0x7)) ? '1' : '0', (beacon->capability & (1<<0x6)) ? '1' : '0', (beacon->capability & (1<<0x5)) ? '1' : '0', (beacon->capability & (1<<0x4)) ? '1' : '0', (beacon->capability & (1<<0x3)) ? '1' : '0', (beacon->capability & (1<<0x2)) ? '1' : '0', (beacon->capability & (1<<0x1)) ? '1' : '0', (beacon->capability & (1<<0x0)) ? '1' : '0'); if (rtllib_network_init(ieee, beacon, network, stats)) { RTLLIB_DEBUG_SCAN("Dropped '%s' ( %pM) via %s.\n", escape_essid(info_element->data, info_element->len), beacon->header.addr3, WLAN_FC_GET_STYPE(beacon->header.frame_ctl) == RTLLIB_STYPE_PROBE_RESP ? "PROBE RESPONSE" : "BEACON"); goto free_network; } if (!rtllib_legal_channel(ieee, network->channel)) goto free_network; if (WLAN_FC_GET_STYPE(beacon->header.frame_ctl) == RTLLIB_STYPE_PROBE_RESP) { if (IsPassiveChannel(ieee, network->channel)) { printk(KERN_INFO "GetScanInfo(): For Global Domain, " "filter probe response at channel(%d).\n", network->channel); goto free_network; } } /* The network parsed correctly -- so now we scan our known networks * to see if we can find it in our list. * * NOTE: This search is definitely not optimized. Once its doing * the "right thing" we'll optimize it for efficiency if * necessary */ /* Search for this entry in the list and update it if it is * already there. */ spin_lock_irqsave(&ieee->lock, flags); if (is_same_network(&ieee->current_network, network, (network->ssid_len ? 1 : 0))) { update_network(&ieee->current_network, network); if ((ieee->current_network.mode == IEEE_N_24G || ieee->current_network.mode == IEEE_G) && ieee->current_network.berp_info_valid) { if (ieee->current_network.erp_value & ERP_UseProtection) ieee->current_network.buseprotection = true; else ieee->current_network.buseprotection = false; } if (is_beacon(beacon->header.frame_ctl)) { if (ieee->state >= RTLLIB_LINKED) ieee->LinkDetectInfo.NumRecvBcnInPeriod++; } } list_for_each_entry(target, &ieee->network_list, list) { if (is_same_network(target, network, (target->ssid_len ? 1 : 0))) break; if ((oldest == NULL) || (target->last_scanned < oldest->last_scanned)) oldest = target; } /* If we didn't find a match, then get a new network slot to initialize * with this beacon's information */ if (&target->list == &ieee->network_list) { if (list_empty(&ieee->network_free_list)) { /* If there are no more slots, expire the oldest */ list_del(&oldest->list); target = oldest; RTLLIB_DEBUG_SCAN("Expired '%s' ( %pM) from " "network list.\n", escape_essid(target->ssid, target->ssid_len), target->bssid); } else { /* Otherwise just pull from the free list */ target = list_entry(ieee->network_free_list.next, struct rtllib_network, list); list_del(ieee->network_free_list.next); } RTLLIB_DEBUG_SCAN("Adding '%s' ( %pM) via %s.\n", escape_essid(network->ssid, network->ssid_len), network->bssid, WLAN_FC_GET_STYPE(beacon->header.frame_ctl) == RTLLIB_STYPE_PROBE_RESP ? "PROBE RESPONSE" : "BEACON"); memcpy(target, network, sizeof(*target)); list_add_tail(&target->list, &ieee->network_list); if (ieee->softmac_features & IEEE_SOFTMAC_ASSOCIATE) rtllib_softmac_new_net(ieee, network); } else { RTLLIB_DEBUG_SCAN("Updating '%s' ( %pM) via %s.\n", escape_essid(target->ssid, target->ssid_len), target->bssid, WLAN_FC_GET_STYPE(beacon->header.frame_ctl) == RTLLIB_STYPE_PROBE_RESP ? "PROBE RESPONSE" : "BEACON"); /* we have an entry and we are going to update it. But this * entry may be already expired. In this case we do the same * as we found a new net and call the new_net handler */ renew = !time_after(target->last_scanned + ieee->scan_age, jiffies); if ((!target->ssid_len) && (((network->ssid_len > 0) && (target->hidden_ssid_len == 0)) || ((ieee->current_network.ssid_len == network->ssid_len) && (strncmp(ieee->current_network.ssid, network->ssid, network->ssid_len) == 0) && (ieee->state == RTLLIB_NOLINK)))) renew = 1; update_network(target, network); if (renew && (ieee->softmac_features & IEEE_SOFTMAC_ASSOCIATE)) rtllib_softmac_new_net(ieee, network); } spin_unlock_irqrestore(&ieee->lock, flags); if (is_beacon(beacon->header.frame_ctl) && is_same_network(&ieee->current_network, network, (network->ssid_len ? 1 : 0)) && (ieee->state == RTLLIB_LINKED)) { if (ieee->handle_beacon != NULL) ieee->handle_beacon(ieee->dev, beacon, &ieee->current_network); } free_network: kfree(network); return; } void rtllib_rx_mgt(struct rtllib_device *ieee, struct sk_buff *skb, struct rtllib_rx_stats *stats) { struct rtllib_hdr_4addr *header = (struct rtllib_hdr_4addr *)skb->data ; if (WLAN_FC_GET_STYPE(header->frame_ctl) != RTLLIB_STYPE_PROBE_RESP && WLAN_FC_GET_STYPE(header->frame_ctl) != RTLLIB_STYPE_BEACON) ieee->last_rx_ps_time = jiffies; switch (WLAN_FC_GET_STYPE(header->frame_ctl)) { case RTLLIB_STYPE_BEACON: RTLLIB_DEBUG_MGMT("received BEACON (%d)\n", WLAN_FC_GET_STYPE(header->frame_ctl)); RTLLIB_DEBUG_SCAN("Beacon\n"); rtllib_process_probe_response( ieee, (struct rtllib_probe_response *)header, stats); if (ieee->sta_sleep || (ieee->ps != RTLLIB_PS_DISABLED && ieee->iw_mode == IW_MODE_INFRA && ieee->state == RTLLIB_LINKED)) tasklet_schedule(&ieee->ps_task); break; case RTLLIB_STYPE_PROBE_RESP: RTLLIB_DEBUG_MGMT("received PROBE RESPONSE (%d)\n", WLAN_FC_GET_STYPE(header->frame_ctl)); RTLLIB_DEBUG_SCAN("Probe response\n"); rtllib_process_probe_response(ieee, (struct rtllib_probe_response *)header, stats); break; case RTLLIB_STYPE_PROBE_REQ: RTLLIB_DEBUG_MGMT("received PROBE RESQUEST (%d)\n", WLAN_FC_GET_STYPE(header->frame_ctl)); RTLLIB_DEBUG_SCAN("Probe request\n"); if ((ieee->softmac_features & IEEE_SOFTMAC_PROBERS) && ((ieee->iw_mode == IW_MODE_ADHOC || ieee->iw_mode == IW_MODE_MASTER) && ieee->state == RTLLIB_LINKED)) rtllib_rx_probe_rq(ieee, skb); break; } }