/********************************************************************** * Author: Cavium Networks * * Contact: support@caviumnetworks.com * This file is part of the OCTEON SDK * * Copyright (c) 2003-2010 Cavium Networks * * This file is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, Version 2, as * published by the Free Software Foundation. * * This file is distributed in the hope that it will be useful, but * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or * NONINFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this file; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * or visit http://www.gnu.org/licenses/. * * This file may also be available under a different license from Cavium. * Contact Cavium Networks for more information **********************************************************************/ #include <linux/module.h> #include <linux/kernel.h> #include <linux/cache.h> #include <linux/cpumask.h> #include <linux/netdevice.h> #include <linux/init.h> #include <linux/etherdevice.h> #include <linux/ip.h> #include <linux/string.h> #include <linux/prefetch.h> #include <linux/ratelimit.h> #include <linux/smp.h> #include <net/dst.h> #ifdef CONFIG_XFRM #include <linux/xfrm.h> #include <net/xfrm.h> #endif /* CONFIG_XFRM */ #include <linux/atomic.h> #include <asm/octeon/octeon.h> #include "ethernet-defines.h" #include "ethernet-mem.h" #include "ethernet-rx.h" #include "octeon-ethernet.h" #include "ethernet-util.h" #include <asm/octeon/cvmx-helper.h> #include <asm/octeon/cvmx-wqe.h> #include <asm/octeon/cvmx-fau.h> #include <asm/octeon/cvmx-pow.h> #include <asm/octeon/cvmx-pip.h> #include <asm/octeon/cvmx-scratch.h> #include <asm/octeon/cvmx-gmxx-defs.h> struct cvm_napi_wrapper { struct napi_struct napi; } ____cacheline_aligned_in_smp; static struct cvm_napi_wrapper cvm_oct_napi[NR_CPUS] __cacheline_aligned_in_smp; struct cvm_oct_core_state { int baseline_cores; /* * The number of additional cores that could be processing * input packtes. */ atomic_t available_cores; cpumask_t cpu_state; } ____cacheline_aligned_in_smp; static struct cvm_oct_core_state core_state __cacheline_aligned_in_smp; static void cvm_oct_enable_napi(void *_) { int cpu = smp_processor_id(); napi_schedule(&cvm_oct_napi[cpu].napi); } static void cvm_oct_enable_one_cpu(void) { int v; int cpu; /* Check to see if more CPUs are available for receive processing... */ v = atomic_sub_if_positive(1, &core_state.available_cores); if (v < 0) return; /* ... if a CPU is available, Turn on NAPI polling for that CPU. */ for_each_online_cpu(cpu) { if (!cpu_test_and_set(cpu, core_state.cpu_state)) { v = smp_call_function_single(cpu, cvm_oct_enable_napi, NULL, 0); if (v) panic("Can't enable NAPI."); break; } } } static void cvm_oct_no_more_work(void) { int cpu = smp_processor_id(); /* * CPU zero is special. It always has the irq enabled when * waiting for incoming packets. */ if (cpu == 0) { enable_irq(OCTEON_IRQ_WORKQ0 + pow_receive_group); return; } cpu_clear(cpu, core_state.cpu_state); atomic_add(1, &core_state.available_cores); } /** * cvm_oct_do_interrupt - interrupt handler. * * The interrupt occurs whenever the POW has packets in our group. * */ static irqreturn_t cvm_oct_do_interrupt(int cpl, void *dev_id) { /* Disable the IRQ and start napi_poll. */ disable_irq_nosync(OCTEON_IRQ_WORKQ0 + pow_receive_group); cvm_oct_enable_napi(NULL); return IRQ_HANDLED; } /** * cvm_oct_check_rcv_error - process receive errors * @work: Work queue entry pointing to the packet. * * Returns Non-zero if the packet can be dropped, zero otherwise. */ static inline int cvm_oct_check_rcv_error(cvmx_wqe_t *work) { if ((work->word2.snoip.err_code == 10) && (work->len <= 64)) { /* * Ignore length errors on min size packets. Some * equipment incorrectly pads packets to 64+4FCS * instead of 60+4FCS. Note these packets still get * counted as frame errors. */ } else if (USE_10MBPS_PREAMBLE_WORKAROUND && ((work->word2.snoip.err_code == 5) || (work->word2.snoip.err_code == 7))) { /* * We received a packet with either an alignment error * or a FCS error. This may be signalling that we are * running 10Mbps with GMXX_RXX_FRM_CTL[PRE_CHK} * off. If this is the case we need to parse the * packet to determine if we can remove a non spec * preamble and generate a correct packet. */ int interface = cvmx_helper_get_interface_num(work->ipprt); int index = cvmx_helper_get_interface_index_num(work->ipprt); union cvmx_gmxx_rxx_frm_ctl gmxx_rxx_frm_ctl; gmxx_rxx_frm_ctl.u64 = cvmx_read_csr(CVMX_GMXX_RXX_FRM_CTL(index, interface)); if (gmxx_rxx_frm_ctl.s.pre_chk == 0) { uint8_t *ptr = cvmx_phys_to_ptr(work->packet_ptr.s.addr); int i = 0; while (i < work->len - 1) { if (*ptr != 0x55) break; ptr++; i++; } if (*ptr == 0xd5) { /* printk_ratelimited("Port %d received 0xd5 preamble\n", work->ipprt); */ work->packet_ptr.s.addr += i + 1; work->len -= i + 5; } else if ((*ptr & 0xf) == 0xd) { /* printk_ratelimited("Port %d received 0x?d preamble\n", work->ipprt); */ work->packet_ptr.s.addr += i; work->len -= i + 4; for (i = 0; i < work->len; i++) { *ptr = ((*ptr & 0xf0) >> 4) | ((*(ptr + 1) & 0xf) << 4); ptr++; } } else { printk_ratelimited("Port %d unknown preamble, packet " "dropped\n", work->ipprt); /* cvmx_helper_dump_packet(work); */ cvm_oct_free_work(work); return 1; } } } else { printk_ratelimited("Port %d receive error code %d, packet dropped\n", work->ipprt, work->word2.snoip.err_code); cvm_oct_free_work(work); return 1; } return 0; } /** * cvm_oct_napi_poll - the NAPI poll function. * @napi: The NAPI instance, or null if called from cvm_oct_poll_controller * @budget: Maximum number of packets to receive. * * Returns the number of packets processed. */ static int cvm_oct_napi_poll(struct napi_struct *napi, int budget) { const int coreid = cvmx_get_core_num(); uint64_t old_group_mask; uint64_t old_scratch; int rx_count = 0; int did_work_request = 0; int packet_not_copied; /* Prefetch cvm_oct_device since we know we need it soon */ prefetch(cvm_oct_device); if (USE_ASYNC_IOBDMA) { /* Save scratch in case userspace is using it */ CVMX_SYNCIOBDMA; old_scratch = cvmx_scratch_read64(CVMX_SCR_SCRATCH); } /* Only allow work for our group (and preserve priorities) */ old_group_mask = cvmx_read_csr(CVMX_POW_PP_GRP_MSKX(coreid)); cvmx_write_csr(CVMX_POW_PP_GRP_MSKX(coreid), (old_group_mask & ~0xFFFFull) | 1 << pow_receive_group); if (USE_ASYNC_IOBDMA) { cvmx_pow_work_request_async(CVMX_SCR_SCRATCH, CVMX_POW_NO_WAIT); did_work_request = 1; } while (rx_count < budget) { struct sk_buff *skb = NULL; struct sk_buff **pskb = NULL; int skb_in_hw; cvmx_wqe_t *work; if (USE_ASYNC_IOBDMA && did_work_request) work = cvmx_pow_work_response_async(CVMX_SCR_SCRATCH); else work = cvmx_pow_work_request_sync(CVMX_POW_NO_WAIT); prefetch(work); did_work_request = 0; if (work == NULL) { union cvmx_pow_wq_int wq_int; wq_int.u64 = 0; wq_int.s.iq_dis = 1 << pow_receive_group; wq_int.s.wq_int = 1 << pow_receive_group; cvmx_write_csr(CVMX_POW_WQ_INT, wq_int.u64); break; } pskb = (struct sk_buff **)(cvm_oct_get_buffer_ptr(work->packet_ptr) - sizeof(void *)); prefetch(pskb); if (USE_ASYNC_IOBDMA && rx_count < (budget - 1)) { cvmx_pow_work_request_async_nocheck(CVMX_SCR_SCRATCH, CVMX_POW_NO_WAIT); did_work_request = 1; } if (rx_count == 0) { /* * First time through, see if there is enough * work waiting to merit waking another * CPU. */ union cvmx_pow_wq_int_cntx counts; int backlog; int cores_in_use = core_state.baseline_cores - atomic_read(&core_state.available_cores); counts.u64 = cvmx_read_csr(CVMX_POW_WQ_INT_CNTX(pow_receive_group)); backlog = counts.s.iq_cnt + counts.s.ds_cnt; if (backlog > budget * cores_in_use && napi != NULL) cvm_oct_enable_one_cpu(); } skb_in_hw = USE_SKBUFFS_IN_HW && work->word2.s.bufs == 1; if (likely(skb_in_hw)) { skb = *pskb; prefetch(&skb->head); prefetch(&skb->len); } prefetch(cvm_oct_device[work->ipprt]); /* Immediately throw away all packets with receive errors */ if (unlikely(work->word2.snoip.rcv_error)) { if (cvm_oct_check_rcv_error(work)) continue; } /* * We can only use the zero copy path if skbuffs are * in the FPA pool and the packet fits in a single * buffer. */ if (likely(skb_in_hw)) { skb->data = skb->head + work->packet_ptr.s.addr - cvmx_ptr_to_phys(skb->head); prefetch(skb->data); skb->len = work->len; skb_set_tail_pointer(skb, skb->len); packet_not_copied = 1; } else { /* * We have to copy the packet. First allocate * an skbuff for it. */ skb = dev_alloc_skb(work->len); if (!skb) { printk_ratelimited("Port %d failed to allocate " "skbuff, packet dropped\n", work->ipprt); cvm_oct_free_work(work); continue; } /* * Check if we've received a packet that was * entirely stored in the work entry. */ if (unlikely(work->word2.s.bufs == 0)) { uint8_t *ptr = work->packet_data; if (likely(!work->word2.s.not_IP)) { /* * The beginning of the packet * moves for IP packets. */ if (work->word2.s.is_v6) ptr += 2; else ptr += 6; } memcpy(skb_put(skb, work->len), ptr, work->len); /* No packet buffers to free */ } else { int segments = work->word2.s.bufs; union cvmx_buf_ptr segment_ptr = work->packet_ptr; int len = work->len; while (segments--) { union cvmx_buf_ptr next_ptr = *(union cvmx_buf_ptr *)cvmx_phys_to_ptr(segment_ptr.s.addr - 8); /* * Octeon Errata PKI-100: The segment size is * wrong. Until it is fixed, calculate the * segment size based on the packet pool * buffer size. When it is fixed, the * following line should be replaced with this * one: int segment_size = * segment_ptr.s.size; */ int segment_size = CVMX_FPA_PACKET_POOL_SIZE - (segment_ptr.s.addr - (((segment_ptr.s.addr >> 7) - segment_ptr.s.back) << 7)); /* * Don't copy more than what * is left in the packet. */ if (segment_size > len) segment_size = len; /* Copy the data into the packet */ memcpy(skb_put(skb, segment_size), cvmx_phys_to_ptr(segment_ptr.s.addr), segment_size); len -= segment_size; segment_ptr = next_ptr; } } packet_not_copied = 0; } if (likely((work->ipprt < TOTAL_NUMBER_OF_PORTS) && cvm_oct_device[work->ipprt])) { struct net_device *dev = cvm_oct_device[work->ipprt]; struct octeon_ethernet *priv = netdev_priv(dev); /* * Only accept packets for devices that are * currently up. */ if (likely(dev->flags & IFF_UP)) { skb->protocol = eth_type_trans(skb, dev); skb->dev = dev; if (unlikely(work->word2.s.not_IP || work->word2.s.IP_exc || work->word2.s.L4_error || !work->word2.s.tcp_or_udp)) skb->ip_summed = CHECKSUM_NONE; else skb->ip_summed = CHECKSUM_UNNECESSARY; /* Increment RX stats for virtual ports */ if (work->ipprt >= CVMX_PIP_NUM_INPUT_PORTS) { #ifdef CONFIG_64BIT atomic64_add(1, (atomic64_t *)&priv->stats.rx_packets); atomic64_add(skb->len, (atomic64_t *)&priv->stats.rx_bytes); #else atomic_add(1, (atomic_t *)&priv->stats.rx_packets); atomic_add(skb->len, (atomic_t *)&priv->stats.rx_bytes); #endif } netif_receive_skb(skb); rx_count++; } else { /* Drop any packet received for a device that isn't up */ /* printk_ratelimited("%s: Device not up, packet dropped\n", dev->name); */ #ifdef CONFIG_64BIT atomic64_add(1, (atomic64_t *)&priv->stats.rx_dropped); #else atomic_add(1, (atomic_t *)&priv->stats.rx_dropped); #endif dev_kfree_skb_irq(skb); } } else { /* * Drop any packet received for a device that * doesn't exist. */ printk_ratelimited("Port %d not controlled by Linux, packet dropped\n", work->ipprt); dev_kfree_skb_irq(skb); } /* * Check to see if the skbuff and work share the same * packet buffer. */ if (USE_SKBUFFS_IN_HW && likely(packet_not_copied)) { /* * This buffer needs to be replaced, increment * the number of buffers we need to free by * one. */ cvmx_fau_atomic_add32(FAU_NUM_PACKET_BUFFERS_TO_FREE, 1); cvmx_fpa_free(work, CVMX_FPA_WQE_POOL, DONT_WRITEBACK(1)); } else { cvm_oct_free_work(work); } } /* Restore the original POW group mask */ cvmx_write_csr(CVMX_POW_PP_GRP_MSKX(coreid), old_group_mask); if (USE_ASYNC_IOBDMA) { /* Restore the scratch area */ cvmx_scratch_write64(CVMX_SCR_SCRATCH, old_scratch); } cvm_oct_rx_refill_pool(0); if (rx_count < budget && napi != NULL) { /* No more work */ napi_complete(napi); cvm_oct_no_more_work(); } return rx_count; } #ifdef CONFIG_NET_POLL_CONTROLLER /** * cvm_oct_poll_controller - poll for receive packets * device. * * @dev: Device to poll. Unused */ void cvm_oct_poll_controller(struct net_device *dev) { cvm_oct_napi_poll(NULL, 16); } #endif void cvm_oct_rx_initialize(void) { int i; struct net_device *dev_for_napi = NULL; union cvmx_pow_wq_int_thrx int_thr; union cvmx_pow_wq_int_pc int_pc; for (i = 0; i < TOTAL_NUMBER_OF_PORTS; i++) { if (cvm_oct_device[i]) { dev_for_napi = cvm_oct_device[i]; break; } } if (NULL == dev_for_napi) panic("No net_devices were allocated."); if (max_rx_cpus > 1 && max_rx_cpus < num_online_cpus()) atomic_set(&core_state.available_cores, max_rx_cpus); else atomic_set(&core_state.available_cores, num_online_cpus()); core_state.baseline_cores = atomic_read(&core_state.available_cores); core_state.cpu_state = CPU_MASK_NONE; for_each_possible_cpu(i) { netif_napi_add(dev_for_napi, &cvm_oct_napi[i].napi, cvm_oct_napi_poll, rx_napi_weight); napi_enable(&cvm_oct_napi[i].napi); } /* Register an IRQ hander for to receive POW interrupts */ i = request_irq(OCTEON_IRQ_WORKQ0 + pow_receive_group, cvm_oct_do_interrupt, 0, "Ethernet", cvm_oct_device); if (i) panic("Could not acquire Ethernet IRQ %d\n", OCTEON_IRQ_WORKQ0 + pow_receive_group); disable_irq_nosync(OCTEON_IRQ_WORKQ0 + pow_receive_group); int_thr.u64 = 0; int_thr.s.tc_en = 1; int_thr.s.tc_thr = 1; /* Enable POW interrupt when our port has at least one packet */ cvmx_write_csr(CVMX_POW_WQ_INT_THRX(pow_receive_group), int_thr.u64); int_pc.u64 = 0; int_pc.s.pc_thr = 5; cvmx_write_csr(CVMX_POW_WQ_INT_PC, int_pc.u64); /* Scheduld NAPI now. This will indirectly enable interrupts. */ cvm_oct_enable_one_cpu(); } void cvm_oct_rx_shutdown(void) { int i; /* Shutdown all of the NAPIs */ for_each_possible_cpu(i) netif_napi_del(&cvm_oct_napi[i].napi); }