/* * ADE7854/58/68/78 Polyphase Multifunction Energy Metering IC Driver (SPI Bus) * * Copyright 2010 Analog Devices Inc. * * Licensed under the GPL-2 or later. */ #include <linux/device.h> #include <linux/kernel.h> #include <linux/spi/spi.h> #include <linux/slab.h> #include <linux/module.h> #include "../iio.h" #include "ade7854.h" static int ade7854_spi_write_reg_8(struct device *dev, u16 reg_address, u8 value) { int ret; struct spi_message msg; struct iio_dev *indio_dev = dev_get_drvdata(dev); struct ade7854_state *st = iio_priv(indio_dev); struct spi_transfer xfer = { .tx_buf = st->tx, .bits_per_word = 8, .len = 4, }; mutex_lock(&st->buf_lock); st->tx[0] = ADE7854_WRITE_REG; st->tx[1] = (reg_address >> 8) & 0xFF; st->tx[2] = reg_address & 0xFF; st->tx[3] = value & 0xFF; spi_message_init(&msg); spi_message_add_tail(&xfer, &msg); ret = spi_sync(st->spi, &msg); mutex_unlock(&st->buf_lock); return ret; } static int ade7854_spi_write_reg_16(struct device *dev, u16 reg_address, u16 value) { int ret; struct spi_message msg; struct iio_dev *indio_dev = dev_get_drvdata(dev); struct ade7854_state *st = iio_priv(indio_dev); struct spi_transfer xfer = { .tx_buf = st->tx, .bits_per_word = 8, .len = 5, }; mutex_lock(&st->buf_lock); st->tx[0] = ADE7854_WRITE_REG; st->tx[1] = (reg_address >> 8) & 0xFF; st->tx[2] = reg_address & 0xFF; st->tx[3] = (value >> 8) & 0xFF; st->tx[4] = value & 0xFF; spi_message_init(&msg); spi_message_add_tail(&xfer, &msg); ret = spi_sync(st->spi, &msg); mutex_unlock(&st->buf_lock); return ret; } static int ade7854_spi_write_reg_24(struct device *dev, u16 reg_address, u32 value) { int ret; struct spi_message msg; struct iio_dev *indio_dev = dev_get_drvdata(dev); struct ade7854_state *st = iio_priv(indio_dev); struct spi_transfer xfer = { .tx_buf = st->tx, .bits_per_word = 8, .len = 6, }; mutex_lock(&st->buf_lock); st->tx[0] = ADE7854_WRITE_REG; st->tx[1] = (reg_address >> 8) & 0xFF; st->tx[2] = reg_address & 0xFF; st->tx[3] = (value >> 16) & 0xFF; st->tx[4] = (value >> 8) & 0xFF; st->tx[5] = value & 0xFF; spi_message_init(&msg); spi_message_add_tail(&xfer, &msg); ret = spi_sync(st->spi, &msg); mutex_unlock(&st->buf_lock); return ret; } static int ade7854_spi_write_reg_32(struct device *dev, u16 reg_address, u32 value) { int ret; struct spi_message msg; struct iio_dev *indio_dev = dev_get_drvdata(dev); struct ade7854_state *st = iio_priv(indio_dev); struct spi_transfer xfer = { .tx_buf = st->tx, .bits_per_word = 8, .len = 7, }; mutex_lock(&st->buf_lock); st->tx[0] = ADE7854_WRITE_REG; st->tx[1] = (reg_address >> 8) & 0xFF; st->tx[2] = reg_address & 0xFF; st->tx[3] = (value >> 24) & 0xFF; st->tx[4] = (value >> 16) & 0xFF; st->tx[5] = (value >> 8) & 0xFF; st->tx[6] = value & 0xFF; spi_message_init(&msg); spi_message_add_tail(&xfer, &msg); ret = spi_sync(st->spi, &msg); mutex_unlock(&st->buf_lock); return ret; } static int ade7854_spi_read_reg_8(struct device *dev, u16 reg_address, u8 *val) { struct spi_message msg; struct iio_dev *indio_dev = dev_get_drvdata(dev); struct ade7854_state *st = iio_priv(indio_dev); int ret; struct spi_transfer xfers[] = { { .tx_buf = st->tx, .bits_per_word = 8, .len = 3, }, { .rx_buf = st->rx, .bits_per_word = 8, .len = 1, } }; mutex_lock(&st->buf_lock); st->tx[0] = ADE7854_READ_REG; st->tx[1] = (reg_address >> 8) & 0xFF; st->tx[2] = reg_address & 0xFF; spi_message_init(&msg); spi_message_add_tail(&xfers[0], &msg); spi_message_add_tail(&xfers[1], &msg); ret = spi_sync(st->spi, &msg); if (ret) { dev_err(&st->spi->dev, "problem when reading 8 bit register 0x%02X", reg_address); goto error_ret; } *val = st->rx[0]; error_ret: mutex_unlock(&st->buf_lock); return ret; } static int ade7854_spi_read_reg_16(struct device *dev, u16 reg_address, u16 *val) { struct spi_message msg; struct iio_dev *indio_dev = dev_get_drvdata(dev); struct ade7854_state *st = iio_priv(indio_dev); int ret; struct spi_transfer xfers[] = { { .tx_buf = st->tx, .bits_per_word = 8, .len = 3, }, { .rx_buf = st->rx, .bits_per_word = 8, .len = 2, } }; mutex_lock(&st->buf_lock); st->tx[0] = ADE7854_READ_REG; st->tx[1] = (reg_address >> 8) & 0xFF; st->tx[2] = reg_address & 0xFF; spi_message_init(&msg); spi_message_add_tail(&xfers[0], &msg); spi_message_add_tail(&xfers[1], &msg); ret = spi_sync(st->spi, &msg); if (ret) { dev_err(&st->spi->dev, "problem when reading 16 bit register 0x%02X", reg_address); goto error_ret; } *val = be16_to_cpup((const __be16 *)st->rx); error_ret: mutex_unlock(&st->buf_lock); return ret; } static int ade7854_spi_read_reg_24(struct device *dev, u16 reg_address, u32 *val) { struct spi_message msg; struct iio_dev *indio_dev = dev_get_drvdata(dev); struct ade7854_state *st = iio_priv(indio_dev); int ret; struct spi_transfer xfers[] = { { .tx_buf = st->tx, .bits_per_word = 8, .len = 3, }, { .rx_buf = st->rx, .bits_per_word = 8, .len = 3, } }; mutex_lock(&st->buf_lock); st->tx[0] = ADE7854_READ_REG; st->tx[1] = (reg_address >> 8) & 0xFF; st->tx[2] = reg_address & 0xFF; spi_message_init(&msg); spi_message_add_tail(&xfers[0], &msg); spi_message_add_tail(&xfers[1], &msg); ret = spi_sync(st->spi, &msg); if (ret) { dev_err(&st->spi->dev, "problem when reading 24 bit register 0x%02X", reg_address); goto error_ret; } *val = (st->rx[0] << 16) | (st->rx[1] << 8) | st->rx[2]; error_ret: mutex_unlock(&st->buf_lock); return ret; } static int ade7854_spi_read_reg_32(struct device *dev, u16 reg_address, u32 *val) { struct spi_message msg; struct iio_dev *indio_dev = dev_get_drvdata(dev); struct ade7854_state *st = iio_priv(indio_dev); int ret; struct spi_transfer xfers[] = { { .tx_buf = st->tx, .bits_per_word = 8, .len = 3, }, { .rx_buf = st->rx, .bits_per_word = 8, .len = 4, } }; mutex_lock(&st->buf_lock); st->tx[0] = ADE7854_READ_REG; st->tx[1] = (reg_address >> 8) & 0xFF; st->tx[2] = reg_address & 0xFF; spi_message_init(&msg); spi_message_add_tail(&xfers[0], &msg); spi_message_add_tail(&xfers[1], &msg); ret = spi_sync(st->spi, &msg); if (ret) { dev_err(&st->spi->dev, "problem when reading 32 bit register 0x%02X", reg_address); goto error_ret; } *val = be32_to_cpup((const __be32 *)st->rx); error_ret: mutex_unlock(&st->buf_lock); return ret; } static int __devinit ade7854_spi_probe(struct spi_device *spi) { int ret; struct ade7854_state *st; struct iio_dev *indio_dev; indio_dev = iio_allocate_device(sizeof(*st)); if (indio_dev == NULL) return -ENOMEM; st = iio_priv(indio_dev); spi_set_drvdata(spi, indio_dev); st->read_reg_8 = ade7854_spi_read_reg_8; st->read_reg_16 = ade7854_spi_read_reg_16; st->read_reg_24 = ade7854_spi_read_reg_24; st->read_reg_32 = ade7854_spi_read_reg_32; st->write_reg_8 = ade7854_spi_write_reg_8; st->write_reg_16 = ade7854_spi_write_reg_16; st->write_reg_24 = ade7854_spi_write_reg_24; st->write_reg_32 = ade7854_spi_write_reg_32; st->irq = spi->irq; st->spi = spi; ret = ade7854_probe(indio_dev, &spi->dev); if (ret) iio_free_device(indio_dev); return 0; } static int ade7854_spi_remove(struct spi_device *spi) { ade7854_remove(spi_get_drvdata(spi)); return 0; } static const struct spi_device_id ade7854_id[] = { { "ade7854", 0 }, { "ade7858", 0 }, { "ade7868", 0 }, { "ade7878", 0 }, { } }; MODULE_DEVICE_TABLE(spi, ade7854_id); static struct spi_driver ade7854_driver = { .driver = { .name = "ade7854", .owner = THIS_MODULE, }, .probe = ade7854_spi_probe, .remove = __devexit_p(ade7854_spi_remove), .id_table = ade7854_id, }; module_spi_driver(ade7854_driver); MODULE_AUTHOR("Barry Song <21cnbao@gmail.com>"); MODULE_DESCRIPTION("Analog Devices ADE7854/58/68/78 SPI Driver"); MODULE_LICENSE("GPL v2");