/* * Copyright (C) 2012 Google, Inc. * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include <linux/device.h> #include <linux/err.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/io.h> #include <linux/list.h> #include <linux/memblock.h> #include <linux/persistent_ram.h> #include <linux/rslib.h> #include <linux/slab.h> #include <linux/vmalloc.h> struct persistent_ram_buffer { uint32_t sig; atomic_t start; atomic_t size; uint8_t data[0]; }; #define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */ static __devinitdata LIST_HEAD(persistent_ram_list); static inline size_t buffer_size(struct persistent_ram_zone *prz) { return atomic_read(&prz->buffer->size); } static inline size_t buffer_start(struct persistent_ram_zone *prz) { return atomic_read(&prz->buffer->start); } /* increase and wrap the start pointer, returning the old value */ static inline size_t buffer_start_add(struct persistent_ram_zone *prz, size_t a) { int old; int new; do { old = atomic_read(&prz->buffer->start); new = old + a; while (unlikely(new > prz->buffer_size)) new -= prz->buffer_size; } while (atomic_cmpxchg(&prz->buffer->start, old, new) != old); return old; } /* increase the size counter until it hits the max size */ static inline void buffer_size_add(struct persistent_ram_zone *prz, size_t a) { size_t old; size_t new; if (atomic_read(&prz->buffer->size) == prz->buffer_size) return; do { old = atomic_read(&prz->buffer->size); new = old + a; if (new > prz->buffer_size) new = prz->buffer_size; } while (atomic_cmpxchg(&prz->buffer->size, old, new) != old); } /* increase the size counter, retuning an error if it hits the max size */ static inline ssize_t buffer_size_add_clamp(struct persistent_ram_zone *prz, size_t a) { size_t old; size_t new; do { old = atomic_read(&prz->buffer->size); new = old + a; if (new > prz->buffer_size) return -ENOMEM; } while (atomic_cmpxchg(&prz->buffer->size, old, new) != old); return 0; } static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz, uint8_t *data, size_t len, uint8_t *ecc) { int i; uint16_t par[prz->ecc_size]; /* Initialize the parity buffer */ memset(par, 0, sizeof(par)); encode_rs8(prz->rs_decoder, data, len, par, 0); for (i = 0; i < prz->ecc_size; i++) ecc[i] = par[i]; } static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz, void *data, size_t len, uint8_t *ecc) { int i; uint16_t par[prz->ecc_size]; for (i = 0; i < prz->ecc_size; i++) par[i] = ecc[i]; return decode_rs8(prz->rs_decoder, data, par, len, NULL, 0, NULL, 0, NULL); } static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz, unsigned int start, unsigned int count) { struct persistent_ram_buffer *buffer = prz->buffer; uint8_t *buffer_end = buffer->data + prz->buffer_size; uint8_t *block; uint8_t *par; int ecc_block_size = prz->ecc_block_size; int ecc_size = prz->ecc_size; int size = prz->ecc_block_size; if (!prz->ecc) return; block = buffer->data + (start & ~(ecc_block_size - 1)); par = prz->par_buffer + (start / ecc_block_size) * prz->ecc_size; do { if (block + ecc_block_size > buffer_end) size = buffer_end - block; persistent_ram_encode_rs8(prz, block, size, par); block += ecc_block_size; par += ecc_size; } while (block < buffer->data + start + count); } static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz) { struct persistent_ram_buffer *buffer = prz->buffer; if (!prz->ecc) return; persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer), prz->par_header); } static void persistent_ram_ecc_old(struct persistent_ram_zone *prz) { struct persistent_ram_buffer *buffer = prz->buffer; uint8_t *block; uint8_t *par; if (!prz->ecc) return; block = buffer->data; par = prz->par_buffer; while (block < buffer->data + buffer_size(prz)) { int numerr; int size = prz->ecc_block_size; if (block + size > buffer->data + prz->buffer_size) size = buffer->data + prz->buffer_size - block; numerr = persistent_ram_decode_rs8(prz, block, size, par); if (numerr > 0) { pr_devel("persistent_ram: error in block %p, %d\n", block, numerr); prz->corrected_bytes += numerr; } else if (numerr < 0) { pr_devel("persistent_ram: uncorrectable error in block %p\n", block); prz->bad_blocks++; } block += prz->ecc_block_size; par += prz->ecc_size; } } static int persistent_ram_init_ecc(struct persistent_ram_zone *prz, size_t buffer_size) { int numerr; struct persistent_ram_buffer *buffer = prz->buffer; int ecc_blocks; if (!prz->ecc) return 0; prz->ecc_block_size = 128; prz->ecc_size = 16; prz->ecc_symsize = 8; prz->ecc_poly = 0x11d; ecc_blocks = DIV_ROUND_UP(prz->buffer_size, prz->ecc_block_size); prz->buffer_size -= (ecc_blocks + 1) * prz->ecc_size; if (prz->buffer_size > buffer_size) { pr_err("persistent_ram: invalid size %zu, non-ecc datasize %zu\n", buffer_size, prz->buffer_size); return -EINVAL; } prz->par_buffer = buffer->data + prz->buffer_size; prz->par_header = prz->par_buffer + ecc_blocks * prz->ecc_size; /* * first consecutive root is 0 * primitive element to generate roots = 1 */ prz->rs_decoder = init_rs(prz->ecc_symsize, prz->ecc_poly, 0, 1, prz->ecc_size); if (prz->rs_decoder == NULL) { pr_info("persistent_ram: init_rs failed\n"); return -EINVAL; } prz->corrected_bytes = 0; prz->bad_blocks = 0; numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer), prz->par_header); if (numerr > 0) { pr_info("persistent_ram: error in header, %d\n", numerr); prz->corrected_bytes += numerr; } else if (numerr < 0) { pr_info("persistent_ram: uncorrectable error in header\n"); prz->bad_blocks++; } return 0; } ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz, char *str, size_t len) { ssize_t ret; if (prz->corrected_bytes || prz->bad_blocks) ret = snprintf(str, len, "" "\n%d Corrected bytes, %d unrecoverable blocks\n", prz->corrected_bytes, prz->bad_blocks); else ret = snprintf(str, len, "\nNo errors detected\n"); return ret; } static void notrace persistent_ram_update(struct persistent_ram_zone *prz, const void *s, unsigned int start, unsigned int count) { struct persistent_ram_buffer *buffer = prz->buffer; memcpy(buffer->data + start, s, count); persistent_ram_update_ecc(prz, start, count); } static void __devinit persistent_ram_save_old(struct persistent_ram_zone *prz) { struct persistent_ram_buffer *buffer = prz->buffer; size_t size = buffer_size(prz); size_t start = buffer_start(prz); char *dest; persistent_ram_ecc_old(prz); dest = kmalloc(size, GFP_KERNEL); if (dest == NULL) { pr_err("persistent_ram: failed to allocate buffer\n"); return; } prz->old_log = dest; prz->old_log_size = size; memcpy(prz->old_log, &buffer->data[start], size - start); memcpy(prz->old_log + size - start, &buffer->data[0], start); } int notrace persistent_ram_write(struct persistent_ram_zone *prz, const void *s, unsigned int count) { int rem; int c = count; size_t start; if (unlikely(c > prz->buffer_size)) { s += c - prz->buffer_size; c = prz->buffer_size; } buffer_size_add_clamp(prz, c); start = buffer_start_add(prz, c); rem = prz->buffer_size - start; if (unlikely(rem < c)) { persistent_ram_update(prz, s, start, rem); s += rem; c -= rem; start = 0; } persistent_ram_update(prz, s, start, c); persistent_ram_update_header_ecc(prz); return count; } size_t persistent_ram_old_size(struct persistent_ram_zone *prz) { return prz->old_log_size; } void *persistent_ram_old(struct persistent_ram_zone *prz) { return prz->old_log; } void persistent_ram_free_old(struct persistent_ram_zone *prz) { kfree(prz->old_log); prz->old_log = NULL; prz->old_log_size = 0; } static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size, struct persistent_ram_zone *prz) { struct page **pages; phys_addr_t page_start; unsigned int page_count; pgprot_t prot; unsigned int i; page_start = start - offset_in_page(start); page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE); prot = pgprot_noncached(PAGE_KERNEL); pages = kmalloc(sizeof(struct page *) * page_count, GFP_KERNEL); if (!pages) { pr_err("%s: Failed to allocate array for %u pages\n", __func__, page_count); return -ENOMEM; } for (i = 0; i < page_count; i++) pages[i] = phys_to_page(page_start + i * PAGE_SIZE); prz->vaddr = vmap(pages, page_count, VM_MAP, prot); kfree(pages); if (!prz->vaddr) { pr_err("%s: Failed to map %u pages\n", __func__, page_count); return -ENOMEM; } prz->buffer = prz->vaddr + offset_in_page(start); prz->buffer_size = size - sizeof(struct persistent_ram_buffer); return 0; } static int __devinit persistent_ram_buffer_init(const char *name, struct persistent_ram_zone *prz) { int i; struct persistent_ram *ram; struct persistent_ram_descriptor *desc; phys_addr_t start; list_for_each_entry(ram, &persistent_ram_list, node) { start = ram->start; for (i = 0; i < ram->num_descs; i++) { desc = &ram->descs[i]; if (!strcmp(desc->name, name)) return persistent_ram_buffer_map(start, desc->size, prz); start += desc->size; } } return -EINVAL; } static __devinit struct persistent_ram_zone *__persistent_ram_init(struct device *dev, bool ecc) { struct persistent_ram_zone *prz; int ret; prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL); if (!prz) { pr_err("persistent_ram: failed to allocate persistent ram zone\n"); return ERR_PTR(-ENOMEM); } INIT_LIST_HEAD(&prz->node); ret = persistent_ram_buffer_init(dev_name(dev), prz); if (ret) { pr_err("persistent_ram: failed to initialize buffer\n"); return ERR_PTR(ret); } prz->ecc = ecc; ret = persistent_ram_init_ecc(prz, prz->buffer_size); if (ret) return ERR_PTR(ret); if (prz->buffer->sig == PERSISTENT_RAM_SIG) { if (buffer_size(prz) > prz->buffer_size || buffer_start(prz) > buffer_size(prz)) pr_info("persistent_ram: found existing invalid buffer, size %d, start %d\n", buffer_size(prz), buffer_start(prz)); else { pr_info("persistent_ram: found existing buffer, size %d, start %d\n", buffer_size(prz), buffer_start(prz)); persistent_ram_save_old(prz); } } else { pr_info("persistent_ram: no valid data in buffer (sig = 0x%08x)\n", prz->buffer->sig); } prz->buffer->sig = PERSISTENT_RAM_SIG; atomic_set(&prz->buffer->start, 0); atomic_set(&prz->buffer->size, 0); return prz; } struct persistent_ram_zone * __devinit persistent_ram_init_ringbuffer(struct device *dev, bool ecc) { return __persistent_ram_init(dev, ecc); } int __init persistent_ram_early_init(struct persistent_ram *ram) { int ret; ret = memblock_reserve(ram->start, ram->size); if (ret) { pr_err("Failed to reserve persistent memory from %08x-%08x\n", ram->start, ram->start + ram->size - 1); return ret; } list_add_tail(&ram->node, &persistent_ram_list); pr_info("Initialized persistent memory from %08x-%08x\n", ram->start, ram->start + ram->size - 1); return 0; }