/* * Adaptec AAC series RAID controller driver * (c) Copyright 2001 Red Hat Inc. * * based on the old aacraid driver that is.. * Adaptec aacraid device driver for Linux. * * Copyright (c) 2000-2010 Adaptec, Inc. * 2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * * Module Name: * comminit.c * * Abstract: This supports the initialization of the host adapter commuication interface. * This is a platform dependent module for the pci cyclone board. * */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/spinlock.h> #include <linux/slab.h> #include <linux/blkdev.h> #include <linux/completion.h> #include <linux/mm.h> #include <scsi/scsi_host.h> #include "aacraid.h" struct aac_common aac_config = { .irq_mod = 1 }; static int aac_alloc_comm(struct aac_dev *dev, void **commaddr, unsigned long commsize, unsigned long commalign) { unsigned char *base; unsigned long size, align; const unsigned long fibsize = 4096; const unsigned long printfbufsiz = 256; unsigned long host_rrq_size = 0; struct aac_init *init; dma_addr_t phys; unsigned long aac_max_hostphysmempages; if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1) host_rrq_size = (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) * sizeof(u32); size = fibsize + sizeof(struct aac_init) + commsize + commalign + printfbufsiz + host_rrq_size; base = pci_alloc_consistent(dev->pdev, size, &phys); if(base == NULL) { printk(KERN_ERR "aacraid: unable to create mapping.\n"); return 0; } dev->comm_addr = (void *)base; dev->comm_phys = phys; dev->comm_size = size; if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1) { dev->host_rrq = (u32 *)(base + fibsize); dev->host_rrq_pa = phys + fibsize; memset(dev->host_rrq, 0, host_rrq_size); } dev->init = (struct aac_init *)(base + fibsize + host_rrq_size); dev->init_pa = phys + fibsize + host_rrq_size; init = dev->init; init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION); if (dev->max_fib_size != sizeof(struct hw_fib)) init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION_4); init->MiniPortRevision = cpu_to_le32(Sa_MINIPORT_REVISION); init->fsrev = cpu_to_le32(dev->fsrev); /* * Adapter Fibs are the first thing allocated so that they * start page aligned */ dev->aif_base_va = (struct hw_fib *)base; init->AdapterFibsVirtualAddress = 0; init->AdapterFibsPhysicalAddress = cpu_to_le32((u32)phys); init->AdapterFibsSize = cpu_to_le32(fibsize); init->AdapterFibAlign = cpu_to_le32(sizeof(struct hw_fib)); /* * number of 4k pages of host physical memory. The aacraid fw needs * this number to be less than 4gb worth of pages. New firmware doesn't * have any issues with the mapping system, but older Firmware did, and * had *troubles* dealing with the math overloading past 32 bits, thus * we must limit this field. */ aac_max_hostphysmempages = dma_get_required_mask(&dev->pdev->dev) >> 12; if (aac_max_hostphysmempages < AAC_MAX_HOSTPHYSMEMPAGES) init->HostPhysMemPages = cpu_to_le32(aac_max_hostphysmempages); else init->HostPhysMemPages = cpu_to_le32(AAC_MAX_HOSTPHYSMEMPAGES); init->InitFlags = 0; if (dev->comm_interface == AAC_COMM_MESSAGE) { init->InitFlags |= cpu_to_le32(INITFLAGS_NEW_COMM_SUPPORTED); dprintk((KERN_WARNING"aacraid: New Comm Interface enabled\n")); } else if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1) { init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION_6); init->InitFlags |= cpu_to_le32(INITFLAGS_NEW_COMM_TYPE1_SUPPORTED); dprintk((KERN_WARNING "aacraid: New Comm Interface type1 enabled\n")); } init->InitFlags |= cpu_to_le32(INITFLAGS_DRIVER_USES_UTC_TIME | INITFLAGS_DRIVER_SUPPORTS_PM); init->MaxIoCommands = cpu_to_le32(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); init->MaxIoSize = cpu_to_le32(dev->scsi_host_ptr->max_sectors << 9); init->MaxFibSize = cpu_to_le32(dev->max_fib_size); init->MaxNumAif = cpu_to_le32(dev->max_num_aif); init->HostRRQ_AddrHigh = (u32)((u64)dev->host_rrq_pa >> 32); init->HostRRQ_AddrLow = (u32)(dev->host_rrq_pa & 0xffffffff); /* * Increment the base address by the amount already used */ base = base + fibsize + host_rrq_size + sizeof(struct aac_init); phys = (dma_addr_t)((ulong)phys + fibsize + host_rrq_size + sizeof(struct aac_init)); /* * Align the beginning of Headers to commalign */ align = (commalign - ((uintptr_t)(base) & (commalign - 1))); base = base + align; phys = phys + align; /* * Fill in addresses of the Comm Area Headers and Queues */ *commaddr = base; init->CommHeaderAddress = cpu_to_le32((u32)phys); /* * Increment the base address by the size of the CommArea */ base = base + commsize; phys = phys + commsize; /* * Place the Printf buffer area after the Fast I/O comm area. */ dev->printfbuf = (void *)base; init->printfbuf = cpu_to_le32(phys); init->printfbufsiz = cpu_to_le32(printfbufsiz); memset(base, 0, printfbufsiz); return 1; } static void aac_queue_init(struct aac_dev * dev, struct aac_queue * q, u32 *mem, int qsize) { q->numpending = 0; q->dev = dev; init_waitqueue_head(&q->cmdready); INIT_LIST_HEAD(&q->cmdq); init_waitqueue_head(&q->qfull); spin_lock_init(&q->lockdata); q->lock = &q->lockdata; q->headers.producer = (__le32 *)mem; q->headers.consumer = (__le32 *)(mem+1); *(q->headers.producer) = cpu_to_le32(qsize); *(q->headers.consumer) = cpu_to_le32(qsize); q->entries = qsize; } /** * aac_send_shutdown - shutdown an adapter * @dev: Adapter to shutdown * * This routine will send a VM_CloseAll (shutdown) request to the adapter. */ int aac_send_shutdown(struct aac_dev * dev) { struct fib * fibctx; struct aac_close *cmd; int status; fibctx = aac_fib_alloc(dev); if (!fibctx) return -ENOMEM; aac_fib_init(fibctx); cmd = (struct aac_close *) fib_data(fibctx); cmd->command = cpu_to_le32(VM_CloseAll); cmd->cid = cpu_to_le32(0xffffffff); status = aac_fib_send(ContainerCommand, fibctx, sizeof(struct aac_close), FsaNormal, -2 /* Timeout silently */, 1, NULL, NULL); if (status >= 0) aac_fib_complete(fibctx); /* FIB should be freed only after getting the response from the F/W */ if (status != -ERESTARTSYS) aac_fib_free(fibctx); return status; } /** * aac_comm_init - Initialise FSA data structures * @dev: Adapter to initialise * * Initializes the data structures that are required for the FSA commuication * interface to operate. * Returns * 1 - if we were able to init the commuication interface. * 0 - If there were errors initing. This is a fatal error. */ static int aac_comm_init(struct aac_dev * dev) { unsigned long hdrsize = (sizeof(u32) * NUMBER_OF_COMM_QUEUES) * 2; unsigned long queuesize = sizeof(struct aac_entry) * TOTAL_QUEUE_ENTRIES; u32 *headers; struct aac_entry * queues; unsigned long size; struct aac_queue_block * comm = dev->queues; /* * Now allocate and initialize the zone structures used as our * pool of FIB context records. The size of the zone is based * on the system memory size. We also initialize the mutex used * to protect the zone. */ spin_lock_init(&dev->fib_lock); /* * Allocate the physically contiguous space for the commuication * queue headers. */ size = hdrsize + queuesize; if (!aac_alloc_comm(dev, (void * *)&headers, size, QUEUE_ALIGNMENT)) return -ENOMEM; queues = (struct aac_entry *)(((ulong)headers) + hdrsize); /* Adapter to Host normal priority Command queue */ comm->queue[HostNormCmdQueue].base = queues; aac_queue_init(dev, &comm->queue[HostNormCmdQueue], headers, HOST_NORM_CMD_ENTRIES); queues += HOST_NORM_CMD_ENTRIES; headers += 2; /* Adapter to Host high priority command queue */ comm->queue[HostHighCmdQueue].base = queues; aac_queue_init(dev, &comm->queue[HostHighCmdQueue], headers, HOST_HIGH_CMD_ENTRIES); queues += HOST_HIGH_CMD_ENTRIES; headers +=2; /* Host to adapter normal priority command queue */ comm->queue[AdapNormCmdQueue].base = queues; aac_queue_init(dev, &comm->queue[AdapNormCmdQueue], headers, ADAP_NORM_CMD_ENTRIES); queues += ADAP_NORM_CMD_ENTRIES; headers += 2; /* host to adapter high priority command queue */ comm->queue[AdapHighCmdQueue].base = queues; aac_queue_init(dev, &comm->queue[AdapHighCmdQueue], headers, ADAP_HIGH_CMD_ENTRIES); queues += ADAP_HIGH_CMD_ENTRIES; headers += 2; /* adapter to host normal priority response queue */ comm->queue[HostNormRespQueue].base = queues; aac_queue_init(dev, &comm->queue[HostNormRespQueue], headers, HOST_NORM_RESP_ENTRIES); queues += HOST_NORM_RESP_ENTRIES; headers += 2; /* adapter to host high priority response queue */ comm->queue[HostHighRespQueue].base = queues; aac_queue_init(dev, &comm->queue[HostHighRespQueue], headers, HOST_HIGH_RESP_ENTRIES); queues += HOST_HIGH_RESP_ENTRIES; headers += 2; /* host to adapter normal priority response queue */ comm->queue[AdapNormRespQueue].base = queues; aac_queue_init(dev, &comm->queue[AdapNormRespQueue], headers, ADAP_NORM_RESP_ENTRIES); queues += ADAP_NORM_RESP_ENTRIES; headers += 2; /* host to adapter high priority response queue */ comm->queue[AdapHighRespQueue].base = queues; aac_queue_init(dev, &comm->queue[AdapHighRespQueue], headers, ADAP_HIGH_RESP_ENTRIES); comm->queue[AdapNormCmdQueue].lock = comm->queue[HostNormRespQueue].lock; comm->queue[AdapHighCmdQueue].lock = comm->queue[HostHighRespQueue].lock; comm->queue[AdapNormRespQueue].lock = comm->queue[HostNormCmdQueue].lock; comm->queue[AdapHighRespQueue].lock = comm->queue[HostHighCmdQueue].lock; return 0; } struct aac_dev *aac_init_adapter(struct aac_dev *dev) { u32 status[5]; struct Scsi_Host * host = dev->scsi_host_ptr; /* * Check the preferred comm settings, defaults from template. */ dev->management_fib_count = 0; spin_lock_init(&dev->manage_lock); dev->max_fib_size = sizeof(struct hw_fib); dev->sg_tablesize = host->sg_tablesize = (dev->max_fib_size - sizeof(struct aac_fibhdr) - sizeof(struct aac_write) + sizeof(struct sgentry)) / sizeof(struct sgentry); dev->comm_interface = AAC_COMM_PRODUCER; dev->raw_io_interface = dev->raw_io_64 = 0; if ((!aac_adapter_sync_cmd(dev, GET_ADAPTER_PROPERTIES, 0, 0, 0, 0, 0, 0, status+0, status+1, status+2, NULL, NULL)) && (status[0] == 0x00000001)) { if (status[1] & le32_to_cpu(AAC_OPT_NEW_COMM_64)) dev->raw_io_64 = 1; if (dev->a_ops.adapter_comm) { if (status[1] & le32_to_cpu(AAC_OPT_NEW_COMM_TYPE1)) { dev->comm_interface = AAC_COMM_MESSAGE_TYPE1; dev->raw_io_interface = 1; } else if (status[1] & le32_to_cpu(AAC_OPT_NEW_COMM)) { dev->comm_interface = AAC_COMM_MESSAGE; dev->raw_io_interface = 1; } } if ((dev->comm_interface == AAC_COMM_MESSAGE) && (status[2] > dev->base_size)) { aac_adapter_ioremap(dev, 0); dev->base_size = status[2]; if (aac_adapter_ioremap(dev, status[2])) { /* remap failed, go back ... */ dev->comm_interface = AAC_COMM_PRODUCER; if (aac_adapter_ioremap(dev, AAC_MIN_FOOTPRINT_SIZE)) { printk(KERN_WARNING "aacraid: unable to map adapter.\n"); return NULL; } } } } if ((!aac_adapter_sync_cmd(dev, GET_COMM_PREFERRED_SETTINGS, 0, 0, 0, 0, 0, 0, status+0, status+1, status+2, status+3, status+4)) && (status[0] == 0x00000001)) { /* * status[1] >> 16 maximum command size in KB * status[1] & 0xFFFF maximum FIB size * status[2] >> 16 maximum SG elements to driver * status[2] & 0xFFFF maximum SG elements from driver * status[3] & 0xFFFF maximum number FIBs outstanding */ host->max_sectors = (status[1] >> 16) << 1; /* Multiple of 32 for PMC */ dev->max_fib_size = status[1] & 0xFFE0; host->sg_tablesize = status[2] >> 16; dev->sg_tablesize = status[2] & 0xFFFF; host->can_queue = (status[3] & 0xFFFF) - AAC_NUM_MGT_FIB; dev->max_num_aif = status[4] & 0xFFFF; /* * NOTE: * All these overrides are based on a fixed internal * knowledge and understanding of existing adapters, * acbsize should be set with caution. */ if (acbsize == 512) { host->max_sectors = AAC_MAX_32BIT_SGBCOUNT; dev->max_fib_size = 512; dev->sg_tablesize = host->sg_tablesize = (512 - sizeof(struct aac_fibhdr) - sizeof(struct aac_write) + sizeof(struct sgentry)) / sizeof(struct sgentry); host->can_queue = AAC_NUM_IO_FIB; } else if (acbsize == 2048) { host->max_sectors = 512; dev->max_fib_size = 2048; host->sg_tablesize = 65; dev->sg_tablesize = 81; host->can_queue = 512 - AAC_NUM_MGT_FIB; } else if (acbsize == 4096) { host->max_sectors = 1024; dev->max_fib_size = 4096; host->sg_tablesize = 129; dev->sg_tablesize = 166; host->can_queue = 256 - AAC_NUM_MGT_FIB; } else if (acbsize == 8192) { host->max_sectors = 2048; dev->max_fib_size = 8192; host->sg_tablesize = 257; dev->sg_tablesize = 337; host->can_queue = 128 - AAC_NUM_MGT_FIB; } else if (acbsize > 0) { printk("Illegal acbsize=%d ignored\n", acbsize); } } { if (numacb > 0) { if (numacb < host->can_queue) host->can_queue = numacb; else printk("numacb=%d ignored\n", numacb); } } /* * Ok now init the communication subsystem */ dev->queues = kzalloc(sizeof(struct aac_queue_block), GFP_KERNEL); if (dev->queues == NULL) { printk(KERN_ERR "Error could not allocate comm region.\n"); return NULL; } if (aac_comm_init(dev)<0){ kfree(dev->queues); return NULL; } /* * Initialize the list of fibs */ if (aac_fib_setup(dev) < 0) { kfree(dev->queues); return NULL; } INIT_LIST_HEAD(&dev->fib_list); return dev; }