/* * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org> * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com> * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com> * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org> * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ /***********************\ * PHY related functions * \***********************/ #include <linux/delay.h> #include <linux/slab.h> #include <asm/unaligned.h> #include "ath5k.h" #include "reg.h" #include "rfbuffer.h" #include "rfgain.h" #include "../regd.h" /** * DOC: PHY related functions * * Here we handle the low-level functions related to baseband * and analog frontend (RF) parts. This is by far the most complex * part of the hw code so make sure you know what you are doing. * * Here is a list of what this is all about: * * - Channel setting/switching * * - Automatic Gain Control (AGC) calibration * * - Noise Floor calibration * * - I/Q imbalance calibration (QAM correction) * * - Calibration due to thermal changes (gain_F) * * - Spur noise mitigation * * - RF/PHY initialization for the various operating modes and bwmodes * * - Antenna control * * - TX power control per channel/rate/packet type * * Also have in mind we never got documentation for most of these * functions, what we have comes mostly from Atheros's code, reverse * engineering and patent docs/presentations etc. */ /******************\ * Helper functions * \******************/ /** * ath5k_hw_radio_revision() - Get the PHY Chip revision * @ah: The &struct ath5k_hw * @band: One of enum ieee80211_band * * Returns the revision number of a 2GHz, 5GHz or single chip * radio. */ u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, enum ieee80211_band band) { unsigned int i; u32 srev; u16 ret; /* * Set the radio chip access register */ switch (band) { case IEEE80211_BAND_2GHZ: ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0)); break; case IEEE80211_BAND_5GHZ: ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); break; default: return 0; } usleep_range(2000, 2500); /* ...wait until PHY is ready and read the selected radio revision */ ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34)); for (i = 0; i < 8; i++) ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20)); if (ah->ah_version == AR5K_AR5210) { srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf; ret = (u16)ath5k_hw_bitswap(srev, 4) + 1; } else { srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff; ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) | ((srev & 0x0f) << 4), 8); } /* Reset to the 5GHz mode */ ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); return ret; } /** * ath5k_channel_ok() - Check if a channel is supported by the hw * @ah: The &struct ath5k_hw * @channel: The &struct ieee80211_channel * * Note: We don't do any regulatory domain checks here, it's just * a sanity check. */ bool ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel) { u16 freq = channel->center_freq; /* Check if the channel is in our supported range */ if (channel->band == IEEE80211_BAND_2GHZ) { if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) && (freq <= ah->ah_capabilities.cap_range.range_2ghz_max)) return true; } else if (channel->band == IEEE80211_BAND_5GHZ) if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) && (freq <= ah->ah_capabilities.cap_range.range_5ghz_max)) return true; return false; } /** * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise * @ah: The &struct ath5k_hw * @channel: The &struct ieee80211_channel */ bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah, struct ieee80211_channel *channel) { u8 refclk_freq; if ((ah->ah_radio == AR5K_RF5112) || (ah->ah_radio == AR5K_RF5413) || (ah->ah_radio == AR5K_RF2413) || (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) refclk_freq = 40; else refclk_freq = 32; if ((channel->center_freq % refclk_freq != 0) && ((channel->center_freq % refclk_freq < 10) || (channel->center_freq % refclk_freq > 22))) return true; else return false; } /** * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer * @ah: The &struct ath5k_hw * @rf_regs: The struct ath5k_rf_reg * @val: New value * @reg_id: RF register ID * @set: Indicate we need to swap data * * This is an internal function used to modify RF Banks before * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more * infos. */ static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs, u32 val, u8 reg_id, bool set) { const struct ath5k_rf_reg *rfreg = NULL; u8 offset, bank, num_bits, col, position; u16 entry; u32 mask, data, last_bit, bits_shifted, first_bit; u32 *rfb; s32 bits_left; int i; data = 0; rfb = ah->ah_rf_banks; for (i = 0; i < ah->ah_rf_regs_count; i++) { if (rf_regs[i].index == reg_id) { rfreg = &rf_regs[i]; break; } } if (rfb == NULL || rfreg == NULL) { ATH5K_PRINTF("Rf register not found!\n"); /* should not happen */ return 0; } bank = rfreg->bank; num_bits = rfreg->field.len; first_bit = rfreg->field.pos; col = rfreg->field.col; /* first_bit is an offset from bank's * start. Since we have all banks on * the same array, we use this offset * to mark each bank's start */ offset = ah->ah_offset[bank]; /* Boundary check */ if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) { ATH5K_PRINTF("invalid values at offset %u\n", offset); return 0; } entry = ((first_bit - 1) / 8) + offset; position = (first_bit - 1) % 8; if (set) data = ath5k_hw_bitswap(val, num_bits); for (bits_shifted = 0, bits_left = num_bits; bits_left > 0; position = 0, entry++) { last_bit = (position + bits_left > 8) ? 8 : position + bits_left; mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) << (col * 8); if (set) { rfb[entry] &= ~mask; rfb[entry] |= ((data << position) << (col * 8)) & mask; data >>= (8 - position); } else { data |= (((rfb[entry] & mask) >> (col * 8)) >> position) << bits_shifted; bits_shifted += last_bit - position; } bits_left -= 8 - position; } data = set ? 1 : ath5k_hw_bitswap(data, num_bits); return data; } /** * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212 * @ah: the &struct ath5k_hw * @channel: the currently set channel upon reset * * Write the delta slope coefficient (used on pilot tracking ?) for OFDM * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init. * * Since delta slope is floating point we split it on its exponent and * mantissa and provide these values on hw. * * For more infos i think this patent is related * "http://www.freepatentsonline.com/7184495.html" */ static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah, struct ieee80211_channel *channel) { /* Get exponent and mantissa and set it */ u32 coef_scaled, coef_exp, coef_man, ds_coef_exp, ds_coef_man, clock; BUG_ON(!(ah->ah_version == AR5K_AR5212) || (channel->hw_value == AR5K_MODE_11B)); /* Get coefficient * ALGO: coef = (5 * clock / carrier_freq) / 2 * we scale coef by shifting clock value by 24 for * better precision since we use integers */ switch (ah->ah_bwmode) { case AR5K_BWMODE_40MHZ: clock = 40 * 2; break; case AR5K_BWMODE_10MHZ: clock = 40 / 2; break; case AR5K_BWMODE_5MHZ: clock = 40 / 4; break; default: clock = 40; break; } coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq; /* Get exponent * ALGO: coef_exp = 14 - highest set bit position */ coef_exp = ilog2(coef_scaled); /* Doesn't make sense if it's zero*/ if (!coef_scaled || !coef_exp) return -EINVAL; /* Note: we've shifted coef_scaled by 24 */ coef_exp = 14 - (coef_exp - 24); /* Get mantissa (significant digits) * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */ coef_man = coef_scaled + (1 << (24 - coef_exp - 1)); /* Calculate delta slope coefficient exponent * and mantissa (remove scaling) and set them on hw */ ds_coef_man = coef_man >> (24 - coef_exp); ds_coef_exp = coef_exp - 16; AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3, AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man); AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3, AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp); return 0; } /** * ath5k_hw_phy_disable() - Disable PHY * @ah: The &struct ath5k_hw */ int ath5k_hw_phy_disable(struct ath5k_hw *ah) { /*Just a try M.F.*/ ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT); return 0; } /** * ath5k_hw_wait_for_synth() - Wait for synth to settle * @ah: The &struct ath5k_hw * @channel: The &struct ieee80211_channel */ static void ath5k_hw_wait_for_synth(struct ath5k_hw *ah, struct ieee80211_channel *channel) { /* * On 5211+ read activation -> rx delay * and use it (100ns steps). */ if (ah->ah_version != AR5K_AR5210) { u32 delay; delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) & AR5K_PHY_RX_DELAY_M; delay = (channel->hw_value == AR5K_MODE_11B) ? ((delay << 2) / 22) : (delay / 10); if (ah->ah_bwmode == AR5K_BWMODE_10MHZ) delay = delay << 1; if (ah->ah_bwmode == AR5K_BWMODE_5MHZ) delay = delay << 2; /* XXX: /2 on turbo ? Let's be safe * for now */ usleep_range(100 + delay, 100 + (2 * delay)); } else { usleep_range(1000, 1500); } } /**********************\ * RF Gain optimization * \**********************/ /** * DOC: RF Gain optimization * * This code is used to optimize RF gain on different environments * (temperature mostly) based on feedback from a power detector. * * It's only used on RF5111 and RF5112, later RF chips seem to have * auto adjustment on hw -notice they have a much smaller BANK 7 and * no gain optimization ladder-. * * For more infos check out this patent doc * "http://www.freepatentsonline.com/7400691.html" * * This paper describes power drops as seen on the receiver due to * probe packets * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues * %20of%20Power%20Control.pdf" * * And this is the MadWiFi bug entry related to the above * "http://madwifi-project.org/ticket/1659" * with various measurements and diagrams */ /** * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach * @ah: The &struct ath5k_hw */ int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah) { /* Initialize the gain optimization values */ switch (ah->ah_radio) { case AR5K_RF5111: ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default; ah->ah_gain.g_low = 20; ah->ah_gain.g_high = 35; ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; break; case AR5K_RF5112: ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default; ah->ah_gain.g_low = 20; ah->ah_gain.g_high = 85; ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; break; default: return -EINVAL; } return 0; } /** * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet * @ah: The &struct ath5k_hw * * Schedules a gain probe check on the next transmitted packet. * That means our next packet is going to be sent with lower * tx power and a Peak to Average Power Detector (PAPD) will try * to measure the gain. * * TODO: Force a tx packet (bypassing PCU arbitrator etc) * just after we enable the probe so that we don't mess with * standard traffic. */ static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah) { /* Skip if gain calibration is inactive or * we already handle a probe request */ if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE) return; /* Send the packet with 2dB below max power as * patent doc suggest */ ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4, AR5K_PHY_PAPD_PROBE_TXPOWER) | AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE); ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED; } /** * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction * @ah: The &struct ath5k_hw * * Calculate Gain_F measurement correction * based on the current step for RF5112 rev. 2 */ static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah) { u32 mix, step; u32 *rf; const struct ath5k_gain_opt *go; const struct ath5k_gain_opt_step *g_step; const struct ath5k_rf_reg *rf_regs; /* Only RF5112 Rev. 2 supports it */ if ((ah->ah_radio != AR5K_RF5112) || (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A)) return 0; go = &rfgain_opt_5112; rf_regs = rf_regs_5112a; ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a); g_step = &go->go_step[ah->ah_gain.g_step_idx]; if (ah->ah_rf_banks == NULL) return 0; rf = ah->ah_rf_banks; ah->ah_gain.g_f_corr = 0; /* No VGA (Variable Gain Amplifier) override, skip */ if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1) return 0; /* Mix gain stepping */ step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false); /* Mix gain override */ mix = g_step->gos_param[0]; switch (mix) { case 3: ah->ah_gain.g_f_corr = step * 2; break; case 2: ah->ah_gain.g_f_corr = (step - 5) * 2; break; case 1: ah->ah_gain.g_f_corr = step; break; default: ah->ah_gain.g_f_corr = 0; break; } return ah->ah_gain.g_f_corr; } /** * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector * @ah: The &struct ath5k_hw * * Check if current gain_F measurement is in the range of our * power detector windows. If we get a measurement outside range * we know it's not accurate (detectors can't measure anything outside * their detection window) so we must ignore it. * * Returns true if readback was O.K. or false on failure */ static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah) { const struct ath5k_rf_reg *rf_regs; u32 step, mix_ovr, level[4]; u32 *rf; if (ah->ah_rf_banks == NULL) return false; rf = ah->ah_rf_banks; if (ah->ah_radio == AR5K_RF5111) { rf_regs = rf_regs_5111; ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111); step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP, false); level[0] = 0; level[1] = (step == 63) ? 50 : step + 4; level[2] = (step != 63) ? 64 : level[0]; level[3] = level[2] + 50; ah->ah_gain.g_high = level[3] - (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5); ah->ah_gain.g_low = level[0] + (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0); } else { rf_regs = rf_regs_5112; ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112); mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false); level[0] = level[2] = 0; if (mix_ovr == 1) { level[1] = level[3] = 83; } else { level[1] = level[3] = 107; ah->ah_gain.g_high = 55; } } return (ah->ah_gain.g_current >= level[0] && ah->ah_gain.g_current <= level[1]) || (ah->ah_gain.g_current >= level[2] && ah->ah_gain.g_current <= level[3]); } /** * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment * @ah: The &struct ath5k_hw * * Choose the right target gain based on current gain * and RF gain optimization ladder */ static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah) { const struct ath5k_gain_opt *go; const struct ath5k_gain_opt_step *g_step; int ret = 0; switch (ah->ah_radio) { case AR5K_RF5111: go = &rfgain_opt_5111; break; case AR5K_RF5112: go = &rfgain_opt_5112; break; default: return 0; } g_step = &go->go_step[ah->ah_gain.g_step_idx]; if (ah->ah_gain.g_current >= ah->ah_gain.g_high) { /* Reached maximum */ if (ah->ah_gain.g_step_idx == 0) return -1; for (ah->ah_gain.g_target = ah->ah_gain.g_current; ah->ah_gain.g_target >= ah->ah_gain.g_high && ah->ah_gain.g_step_idx > 0; g_step = &go->go_step[ah->ah_gain.g_step_idx]) ah->ah_gain.g_target -= 2 * (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain - g_step->gos_gain); ret = 1; goto done; } if (ah->ah_gain.g_current <= ah->ah_gain.g_low) { /* Reached minimum */ if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1)) return -2; for (ah->ah_gain.g_target = ah->ah_gain.g_current; ah->ah_gain.g_target <= ah->ah_gain.g_low && ah->ah_gain.g_step_idx < go->go_steps_count - 1; g_step = &go->go_step[ah->ah_gain.g_step_idx]) ah->ah_gain.g_target -= 2 * (go->go_step[++ah->ah_gain.g_step_idx].gos_gain - g_step->gos_gain); ret = 2; goto done; } done: ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "ret %d, gain step %u, current gain %u, target gain %u\n", ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current, ah->ah_gain.g_target); return ret; } /** * ath5k_hw_gainf_calibrate() - Do a gain_F calibration * @ah: The &struct ath5k_hw * * Main callback for thermal RF gain calibration engine * Check for a new gain reading and schedule an adjustment * if needed. * * Returns one of enum ath5k_rfgain codes */ enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah) { u32 data, type; struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; if (ah->ah_rf_banks == NULL || ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE) return AR5K_RFGAIN_INACTIVE; /* No check requested, either engine is inactive * or an adjustment is already requested */ if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED) goto done; /* Read the PAPD (Peak to Average Power Detector) * register */ data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE); /* No probe is scheduled, read gain_F measurement */ if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) { ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S; type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE); /* If tx packet is CCK correct the gain_F measurement * by cck ofdm gain delta */ if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) { if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) ah->ah_gain.g_current += ee->ee_cck_ofdm_gain_delta; else ah->ah_gain.g_current += AR5K_GAIN_CCK_PROBE_CORR; } /* Further correct gain_F measurement for * RF5112A radios */ if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) { ath5k_hw_rf_gainf_corr(ah); ah->ah_gain.g_current = ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ? (ah->ah_gain.g_current - ah->ah_gain.g_f_corr) : 0; } /* Check if measurement is ok and if we need * to adjust gain, schedule a gain adjustment, * else switch back to the active state */ if (ath5k_hw_rf_check_gainf_readback(ah) && AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) && ath5k_hw_rf_gainf_adjust(ah)) { ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE; } else { ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; } } done: return ah->ah_gain.g_state; } /** * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw * @ah: The &struct ath5k_hw * @band: One of enum ieee80211_band * * Write initial RF gain table to set the RF sensitivity. * * NOTE: This one works on all RF chips and has nothing to do * with Gain_F calibration */ static int ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band) { const struct ath5k_ini_rfgain *ath5k_rfg; unsigned int i, size, index; switch (ah->ah_radio) { case AR5K_RF5111: ath5k_rfg = rfgain_5111; size = ARRAY_SIZE(rfgain_5111); break; case AR5K_RF5112: ath5k_rfg = rfgain_5112; size = ARRAY_SIZE(rfgain_5112); break; case AR5K_RF2413: ath5k_rfg = rfgain_2413; size = ARRAY_SIZE(rfgain_2413); break; case AR5K_RF2316: ath5k_rfg = rfgain_2316; size = ARRAY_SIZE(rfgain_2316); break; case AR5K_RF5413: ath5k_rfg = rfgain_5413; size = ARRAY_SIZE(rfgain_5413); break; case AR5K_RF2317: case AR5K_RF2425: ath5k_rfg = rfgain_2425; size = ARRAY_SIZE(rfgain_2425); break; default: return -EINVAL; } index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0; for (i = 0; i < size; i++) { AR5K_REG_WAIT(i); ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index], (u32)ath5k_rfg[i].rfg_register); } return 0; } /********************\ * RF Registers setup * \********************/ /** * ath5k_hw_rfregs_init() - Initialize RF register settings * @ah: The &struct ath5k_hw * @channel: The &struct ieee80211_channel * @mode: One of enum ath5k_driver_mode * * Setup RF registers by writing RF buffer on hw. For * more infos on this, check out rfbuffer.h */ static int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel, unsigned int mode) { const struct ath5k_rf_reg *rf_regs; const struct ath5k_ini_rfbuffer *ini_rfb; const struct ath5k_gain_opt *go = NULL; const struct ath5k_gain_opt_step *g_step; struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; u8 ee_mode = 0; u32 *rfb; int i, obdb = -1, bank = -1; switch (ah->ah_radio) { case AR5K_RF5111: rf_regs = rf_regs_5111; ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111); ini_rfb = rfb_5111; ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111); go = &rfgain_opt_5111; break; case AR5K_RF5112: if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) { rf_regs = rf_regs_5112a; ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a); ini_rfb = rfb_5112a; ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a); } else { rf_regs = rf_regs_5112; ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112); ini_rfb = rfb_5112; ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112); } go = &rfgain_opt_5112; break; case AR5K_RF2413: rf_regs = rf_regs_2413; ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413); ini_rfb = rfb_2413; ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413); break; case AR5K_RF2316: rf_regs = rf_regs_2316; ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316); ini_rfb = rfb_2316; ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316); break; case AR5K_RF5413: rf_regs = rf_regs_5413; ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413); ini_rfb = rfb_5413; ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413); break; case AR5K_RF2317: rf_regs = rf_regs_2425; ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425); ini_rfb = rfb_2317; ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317); break; case AR5K_RF2425: rf_regs = rf_regs_2425; ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425); if (ah->ah_mac_srev < AR5K_SREV_AR2417) { ini_rfb = rfb_2425; ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425); } else { ini_rfb = rfb_2417; ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417); } break; default: return -EINVAL; } /* If it's the first time we set RF buffer, allocate * ah->ah_rf_banks based on ah->ah_rf_banks_size * we set above */ if (ah->ah_rf_banks == NULL) { ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size, GFP_KERNEL); if (ah->ah_rf_banks == NULL) { ATH5K_ERR(ah, "out of memory\n"); return -ENOMEM; } } /* Copy values to modify them */ rfb = ah->ah_rf_banks; for (i = 0; i < ah->ah_rf_banks_size; i++) { if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) { ATH5K_ERR(ah, "invalid bank\n"); return -EINVAL; } /* Bank changed, write down the offset */ if (bank != ini_rfb[i].rfb_bank) { bank = ini_rfb[i].rfb_bank; ah->ah_offset[bank] = i; } rfb[i] = ini_rfb[i].rfb_mode_data[mode]; } /* Set Output and Driver bias current (OB/DB) */ if (channel->band == IEEE80211_BAND_2GHZ) { if (channel->hw_value == AR5K_MODE_11B) ee_mode = AR5K_EEPROM_MODE_11B; else ee_mode = AR5K_EEPROM_MODE_11G; /* For RF511X/RF211X combination we * use b_OB and b_DB parameters stored * in eeprom on ee->ee_ob[ee_mode][0] * * For all other chips we use OB/DB for 2GHz * stored in the b/g modal section just like * 802.11a on ee->ee_ob[ee_mode][1] */ if ((ah->ah_radio == AR5K_RF5111) || (ah->ah_radio == AR5K_RF5112)) obdb = 0; else obdb = 1; ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb], AR5K_RF_OB_2GHZ, true); ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb], AR5K_RF_DB_2GHZ, true); /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */ } else if ((channel->band == IEEE80211_BAND_5GHZ) || (ah->ah_radio == AR5K_RF5111)) { /* For 11a, Turbo and XR we need to choose * OB/DB based on frequency range */ ee_mode = AR5K_EEPROM_MODE_11A; obdb = channel->center_freq >= 5725 ? 3 : (channel->center_freq >= 5500 ? 2 : (channel->center_freq >= 5260 ? 1 : (channel->center_freq > 4000 ? 0 : -1))); if (obdb < 0) return -EINVAL; ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb], AR5K_RF_OB_5GHZ, true); ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb], AR5K_RF_DB_5GHZ, true); } g_step = &go->go_step[ah->ah_gain.g_step_idx]; /* Set turbo mode (N/A on RF5413) */ if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) && (ah->ah_radio != AR5K_RF5413)) ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false); /* Bank Modifications (chip-specific) */ if (ah->ah_radio == AR5K_RF5111) { /* Set gain_F settings according to current step */ if (channel->hw_value != AR5K_MODE_11B) { AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL, AR5K_PHY_FRAME_CTL_TX_CLIP, g_step->gos_param[0]); ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1], AR5K_RF_PWD_90, true); ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2], AR5K_RF_PWD_84, true); ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3], AR5K_RF_RFGAIN_SEL, true); /* We programmed gain_F parameters, switch back * to active state */ ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; } /* Bank 6/7 setup */ ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode], AR5K_RF_PWD_XPD, true); ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode], AR5K_RF_XPD_GAIN, true); ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode], AR5K_RF_GAIN_I, true); ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode], AR5K_RF_PLO_SEL, true); /* Tweak power detectors for half/quarter rate support */ if (ah->ah_bwmode == AR5K_BWMODE_5MHZ || ah->ah_bwmode == AR5K_BWMODE_10MHZ) { u8 wait_i; ath5k_hw_rfb_op(ah, rf_regs, 0x1f, AR5K_RF_WAIT_S, true); wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ? 0x1f : 0x10; ath5k_hw_rfb_op(ah, rf_regs, wait_i, AR5K_RF_WAIT_I, true); ath5k_hw_rfb_op(ah, rf_regs, 3, AR5K_RF_MAX_TIME, true); } } if (ah->ah_radio == AR5K_RF5112) { /* Set gain_F settings according to current step */ if (channel->hw_value != AR5K_MODE_11B) { ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0], AR5K_RF_MIXGAIN_OVR, true); ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1], AR5K_RF_PWD_138, true); ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2], AR5K_RF_PWD_137, true); ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3], AR5K_RF_PWD_136, true); ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4], AR5K_RF_PWD_132, true); ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5], AR5K_RF_PWD_131, true); ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6], AR5K_RF_PWD_130, true); /* We programmed gain_F parameters, switch back * to active state */ ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; } /* Bank 6/7 setup */ ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode], AR5K_RF_XPD_SEL, true); if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) { /* Rev. 1 supports only one xpd */ ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode], AR5K_RF_XPD_GAIN, true); } else { u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode]; if (ee->ee_pd_gains[ee_mode] > 1) { ath5k_hw_rfb_op(ah, rf_regs, pdg_curve_to_idx[0], AR5K_RF_PD_GAIN_LO, true); ath5k_hw_rfb_op(ah, rf_regs, pdg_curve_to_idx[1], AR5K_RF_PD_GAIN_HI, true); } else { ath5k_hw_rfb_op(ah, rf_regs, pdg_curve_to_idx[0], AR5K_RF_PD_GAIN_LO, true); ath5k_hw_rfb_op(ah, rf_regs, pdg_curve_to_idx[0], AR5K_RF_PD_GAIN_HI, true); } /* Lower synth voltage on Rev 2 */ if (ah->ah_radio == AR5K_RF5112 && (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) { ath5k_hw_rfb_op(ah, rf_regs, 2, AR5K_RF_HIGH_VC_CP, true); ath5k_hw_rfb_op(ah, rf_regs, 2, AR5K_RF_MID_VC_CP, true); ath5k_hw_rfb_op(ah, rf_regs, 2, AR5K_RF_LOW_VC_CP, true); ath5k_hw_rfb_op(ah, rf_regs, 2, AR5K_RF_PUSH_UP, true); } /* Decrease power consumption on 5213+ BaseBand */ if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) { ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_PAD2GND, true); ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_XB2_LVL, true); ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_XB5_LVL, true); ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_PWD_167, true); ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_PWD_166, true); } } ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode], AR5K_RF_GAIN_I, true); /* Tweak power detector for half/quarter rates */ if (ah->ah_bwmode == AR5K_BWMODE_5MHZ || ah->ah_bwmode == AR5K_BWMODE_10MHZ) { u8 pd_delay; pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ? 0xf : 0x8; ath5k_hw_rfb_op(ah, rf_regs, pd_delay, AR5K_RF_PD_PERIOD_A, true); ath5k_hw_rfb_op(ah, rf_regs, 0xf, AR5K_RF_PD_DELAY_A, true); } } if (ah->ah_radio == AR5K_RF5413 && channel->band == IEEE80211_BAND_2GHZ) { ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE, true); /* Set optimum value for early revisions (on pci-e chips) */ if (ah->ah_mac_srev >= AR5K_SREV_AR5424 && ah->ah_mac_srev < AR5K_SREV_AR5413) ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3), AR5K_RF_PWD_ICLOBUF_2G, true); } /* Write RF banks on hw */ for (i = 0; i < ah->ah_rf_banks_size; i++) { AR5K_REG_WAIT(i); ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register); } return 0; } /**************************\ PHY/RF channel functions \**************************/ /** * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110 * @channel: The &struct ieee80211_channel * * Map channel frequency to IEEE channel number and convert it * to an internal channel value used by the RF5110 chipset. */ static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel) { u32 athchan; athchan = (ath5k_hw_bitswap( (ieee80211_frequency_to_channel( channel->center_freq) - 24) / 2, 5) << 1) | (1 << 6) | 0x1; return athchan; } /** * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110 * @ah: The &struct ath5k_hw * @channel: The &struct ieee80211_channel */ static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel) { u32 data; /* * Set the channel and wait */ data = ath5k_hw_rf5110_chan2athchan(channel); ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER); ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0); usleep_range(1000, 1500); return 0; } /** * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111 * @ieee: IEEE channel number * @athchan: The &struct ath5k_athchan_2ghz * * In order to enable the RF2111 frequency converter on RF5111/2111 setups * we need to add some offsets and extra flags to the data values we pass * on to the PHY. So for every 2GHz channel this function gets called * to do the conversion. */ static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee, struct ath5k_athchan_2ghz *athchan) { int channel; /* Cast this value to catch negative channel numbers (>= -19) */ channel = (int)ieee; /* * Map 2GHz IEEE channel to 5GHz Atheros channel */ if (channel <= 13) { athchan->a2_athchan = 115 + channel; athchan->a2_flags = 0x46; } else if (channel == 14) { athchan->a2_athchan = 124; athchan->a2_flags = 0x44; } else if (channel >= 15 && channel <= 26) { athchan->a2_athchan = ((channel - 14) * 4) + 132; athchan->a2_flags = 0x46; } else return -EINVAL; return 0; } /** * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111 * @ah: The &struct ath5k_hw * @channel: The &struct ieee80211_channel */ static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel) { struct ath5k_athchan_2ghz ath5k_channel_2ghz; unsigned int ath5k_channel = ieee80211_frequency_to_channel(channel->center_freq); u32 data0, data1, clock; int ret; /* * Set the channel on the RF5111 radio */ data0 = data1 = 0; if (channel->band == IEEE80211_BAND_2GHZ) { /* Map 2GHz channel to 5GHz Atheros channel ID */ ret = ath5k_hw_rf5111_chan2athchan( ieee80211_frequency_to_channel(channel->center_freq), &ath5k_channel_2ghz); if (ret) return ret; ath5k_channel = ath5k_channel_2ghz.a2_athchan; data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff) << 5) | (1 << 4); } if (ath5k_channel < 145 || !(ath5k_channel & 1)) { clock = 1; data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) | (clock << 1) | (1 << 10) | 1; } else { clock = 0; data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff) << 2) | (clock << 1) | (1 << 10) | 1; } ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8), AR5K_RF_BUFFER); ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00), AR5K_RF_BUFFER_CONTROL_3); return 0; } /** * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer * @ah: The &struct ath5k_hw * @channel: The &struct ieee80211_channel * * On RF5112/2112 and newer we don't need to do any conversion. * We pass the frequency value after a few modifications to the * chip directly. * * NOTE: Make sure channel frequency given is within our range or else * we might damage the chip ! Use ath5k_channel_ok before calling this one. */ static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel) { u32 data, data0, data1, data2; u16 c; data = data0 = data1 = data2 = 0; c = channel->center_freq; /* My guess based on code: * 2GHz RF has 2 synth modes, one with a Local Oscillator * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz * (3040/2). data0 is used to set the PLL divider and data1 * selects synth mode. */ if (c < 4800) { /* Channel 14 and all frequencies with 2Hz spacing * below/above (non-standard channels) */ if (!((c - 2224) % 5)) { /* Same as (c - 2224) / 5 */ data0 = ((2 * (c - 704)) - 3040) / 10; data1 = 1; /* Channel 1 and all frequencies with 5Hz spacing * below/above (standard channels without channel 14) */ } else if (!((c - 2192) % 5)) { /* Same as (c - 2192) / 5 */ data0 = ((2 * (c - 672)) - 3040) / 10; data1 = 0; } else return -EINVAL; data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8); /* This is more complex, we have a single synthesizer with * 4 reference clock settings (?) based on frequency spacing * and set using data2. LO is at 4800Hz and data0 is again used * to set some divider. * * NOTE: There is an old atheros presentation at Stanford * that mentions a method called dual direct conversion * with 1GHz sliding IF for RF5110. Maybe that's what we * have here, or an updated version. */ } else if ((c % 5) != 2 || c > 5435) { if (!(c % 20) && c >= 5120) { data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8); data2 = ath5k_hw_bitswap(3, 2); } else if (!(c % 10)) { data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8); data2 = ath5k_hw_bitswap(2, 2); } else if (!(c % 5)) { data0 = ath5k_hw_bitswap((c - 4800) / 5, 8); data2 = ath5k_hw_bitswap(1, 2); } else return -EINVAL; } else { data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8); data2 = ath5k_hw_bitswap(0, 2); } data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001; ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER); ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5); return 0; } /** * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425 * @ah: The &struct ath5k_hw * @channel: The &struct ieee80211_channel * * AR2425/2417 have a different 2GHz RF so code changes * a little bit from RF5112. */ static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel) { u32 data, data0, data2; u16 c; data = data0 = data2 = 0; c = channel->center_freq; if (c < 4800) { data0 = ath5k_hw_bitswap((c - 2272), 8); data2 = 0; /* ? 5GHz ? */ } else if ((c % 5) != 2 || c > 5435) { if (!(c % 20) && c < 5120) data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8); else if (!(c % 10)) data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8); else if (!(c % 5)) data0 = ath5k_hw_bitswap((c - 4800) / 5, 8); else return -EINVAL; data2 = ath5k_hw_bitswap(1, 2); } else { data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8); data2 = ath5k_hw_bitswap(0, 2); } data = (data0 << 4) | data2 << 2 | 0x1001; ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER); ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5); return 0; } /** * ath5k_hw_channel() - Set a channel on the radio chip * @ah: The &struct ath5k_hw * @channel: The &struct ieee80211_channel * * This is the main function called to set a channel on the * radio chip based on the radio chip version. */ static int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel) { int ret; /* * Check bounds supported by the PHY (we don't care about regulatory * restrictions at this point). */ if (!ath5k_channel_ok(ah, channel)) { ATH5K_ERR(ah, "channel frequency (%u MHz) out of supported " "band range\n", channel->center_freq); return -EINVAL; } /* * Set the channel and wait */ switch (ah->ah_radio) { case AR5K_RF5110: ret = ath5k_hw_rf5110_channel(ah, channel); break; case AR5K_RF5111: ret = ath5k_hw_rf5111_channel(ah, channel); break; case AR5K_RF2317: case AR5K_RF2425: ret = ath5k_hw_rf2425_channel(ah, channel); break; default: ret = ath5k_hw_rf5112_channel(ah, channel); break; } if (ret) return ret; /* Set JAPAN setting for channel 14 */ if (channel->center_freq == 2484) { AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL, AR5K_PHY_CCKTXCTL_JAPAN); } else { AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL, AR5K_PHY_CCKTXCTL_WORLD); } ah->ah_current_channel = channel; return 0; } /*****************\ PHY calibration \*****************/ /** * DOC: PHY Calibration routines * * Noise floor calibration: When we tell the hardware to * perform a noise floor calibration by setting the * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically * sample-and-hold the minimum noise level seen at the antennas. * This value is then stored in a ring buffer of recently measured * noise floor values so we have a moving window of the last few * samples. The median of the values in the history is then loaded * into the hardware for its own use for RSSI and CCA measurements. * This type of calibration doesn't interfere with traffic. * * AGC calibration: When we tell the hardware to perform * an AGC (Automatic Gain Control) calibration by setting the * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does * a calibration on the DC offsets of ADCs. During this period * rx/tx gets disabled so we have to deal with it on the driver * part. * * I/Q calibration: When we tell the hardware to perform * an I/Q calibration, it tries to correct I/Q imbalance and * fix QAM constellation by sampling data from rxed frames. * It doesn't interfere with traffic. * * For more infos on AGC and I/Q calibration check out patent doc * #03/094463. */ /** * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw * @ah: The &struct ath5k_hw */ static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah) { s32 val; val = ath5k_hw_reg_read(ah, AR5K_PHY_NF); return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8); } /** * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer * @ah: The &struct ath5k_hw */ void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah) { int i; ah->ah_nfcal_hist.index = 0; for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE; } /** * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer * @ah: The &struct ath5k_hw * @noise_floor: The NF we got from hw */ static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor) { struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist; hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1); hist->nfval[hist->index] = noise_floor; } /** * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer * @ah: The &struct ath5k_hw */ static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah) { s16 sort[ATH5K_NF_CAL_HIST_MAX]; s16 tmp; int i, j; memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort)); for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) { for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) { if (sort[j] > sort[j - 1]) { tmp = sort[j]; sort[j] = sort[j - 1]; sort[j - 1] = tmp; } } } for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) { ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "cal %d:%d\n", i, sort[i]); } return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2]; } /** * ath5k_hw_update_noise_floor() - Update NF on hardware * @ah: The &struct ath5k_hw * * This is the main function we call to perform a NF calibration, * it reads NF from hardware, calculates the median and updates * NF on hw. */ void ath5k_hw_update_noise_floor(struct ath5k_hw *ah) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; u32 val; s16 nf, threshold; u8 ee_mode; /* keep last value if calibration hasn't completed */ if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) { ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "NF did not complete in calibration window\n"); return; } ah->ah_cal_mask |= AR5K_CALIBRATION_NF; ee_mode = ath5k_eeprom_mode_from_channel(ah->ah_current_channel); /* completed NF calibration, test threshold */ nf = ath5k_hw_read_measured_noise_floor(ah); threshold = ee->ee_noise_floor_thr[ee_mode]; if (nf > threshold) { ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "noise floor failure detected; " "read %d, threshold %d\n", nf, threshold); nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE; } ath5k_hw_update_nfcal_hist(ah, nf); nf = ath5k_hw_get_median_noise_floor(ah); /* load noise floor (in .5 dBm) so the hardware will use it */ val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M; val |= (nf * 2) & AR5K_PHY_NF_M; ath5k_hw_reg_write(ah, val, AR5K_PHY_NF); AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF, ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE)); ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF, 0, false); /* * Load a high max CCA Power value (-50 dBm in .5 dBm units) * so that we're not capped by the median we just loaded. * This will be used as the initial value for the next noise * floor calibration. */ val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M); ath5k_hw_reg_write(ah, val, AR5K_PHY_NF); AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE | AR5K_PHY_AGCCTL_NF); ah->ah_noise_floor = nf; ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF; ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "noise floor calibrated: %d\n", nf); } /** * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110 * @ah: The &struct ath5k_hw * @channel: The &struct ieee80211_channel * * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110 */ static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah, struct ieee80211_channel *channel) { u32 phy_sig, phy_agc, phy_sat, beacon; int ret; if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL)) return 0; /* * Disable beacons and RX/TX queues, wait */ AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210, AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210); beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210); ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210); usleep_range(2000, 2500); /* * Set the channel (with AGC turned off) */ AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); udelay(10); ret = ath5k_hw_channel(ah, channel); /* * Activate PHY and wait */ ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT); usleep_range(1000, 1500); AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); if (ret) return ret; /* * Calibrate the radio chip */ /* Remember normal state */ phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG); phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE); phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT); /* Update radio registers */ ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) | AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG); ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI | AR5K_PHY_AGCCOARSE_LO)) | AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) | AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE); ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT | AR5K_PHY_ADCSAT_THR)) | AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) | AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT); udelay(20); AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); udelay(10); ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG); AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); usleep_range(1000, 1500); /* * Enable calibration and wait until completion */ AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL); ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL, 0, false); /* Reset to normal state */ ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG); ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE); ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT); if (ret) { ATH5K_ERR(ah, "calibration timeout (%uMHz)\n", channel->center_freq); return ret; } /* * Re-enable RX/TX and beacons */ AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210, AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210); ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210); return 0; } /** * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer * @ah: The &struct ath5k_hw */ static int ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah) { u32 i_pwr, q_pwr; s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd; int i; /* Skip if I/Q calibration is not needed or if it's still running */ if (!ah->ah_iq_cal_needed) return -EINVAL; else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) { ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE, "I/Q calibration still running"); return -EBUSY; } /* Calibration has finished, get the results and re-run */ /* Work around for empty results which can apparently happen on 5212: * Read registers up to 10 times until we get both i_pr and q_pwr */ for (i = 0; i <= 10; i++) { iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR); i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I); q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q); ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE, "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr); if (i_pwr && q_pwr) break; } i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7; if (ah->ah_version == AR5K_AR5211) q_coffd = q_pwr >> 6; else q_coffd = q_pwr >> 7; /* In case i_coffd became zero, cancel calibration * not only it's too small, it'll also result a divide * by zero later on. */ if (i_coffd == 0 || q_coffd < 2) return -ECANCELED; /* Protect against loss of sign bits */ i_coff = (-iq_corr) / i_coffd; i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */ if (ah->ah_version == AR5K_AR5211) q_coff = (i_pwr / q_coffd) - 64; else q_coff = (i_pwr / q_coffd) - 128; q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */ ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE, "new I:%d Q:%d (i_coffd:%x q_coffd:%x)", i_coff, q_coff, i_coffd, q_coffd); /* Commit new I/Q values (set enable bit last to match HAL sources) */ AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff); AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff); AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE); /* Re-enable calibration -if we don't we'll commit * the same values again and again */ AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15); AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN); return 0; } /** * ath5k_hw_phy_calibrate() - Perform a PHY calibration * @ah: The &struct ath5k_hw * @channel: The &struct ieee80211_channel * * The main function we call from above to perform * a short or full PHY calibration based on RF chip * and current channel */ int ath5k_hw_phy_calibrate(struct ath5k_hw *ah, struct ieee80211_channel *channel) { int ret; if (ah->ah_radio == AR5K_RF5110) return ath5k_hw_rf5110_calibrate(ah, channel); ret = ath5k_hw_rf511x_iq_calibrate(ah); if (ret) { ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE, "No I/Q correction performed (%uMHz)\n", channel->center_freq); /* Happens all the time if there is not much * traffic, consider it normal behaviour. */ ret = 0; } /* On full calibration do an AGC calibration and * request a PAPD probe for gainf calibration if * needed */ if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL) { AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL); ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF, 0, false); if (ret) { ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n", channel->center_freq); } if ((ah->ah_radio == AR5K_RF5111 || ah->ah_radio == AR5K_RF5112) && (channel->hw_value != AR5K_MODE_11B)) ath5k_hw_request_rfgain_probe(ah); } /* Update noise floor * XXX: Only do this after AGC calibration */ if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF)) ath5k_hw_update_noise_floor(ah); return ret; } /***************************\ * Spur mitigation functions * \***************************/ /** * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter * @ah: The &struct ath5k_hw * @channel: The &struct ieee80211_channel * * This function gets called during PHY initialization to * configure the spur filter for the given channel. Spur is noise * generated due to "reflection" effects, for more information on this * method check out patent US7643810 */ static void ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah, struct ieee80211_channel *channel) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; u32 mag_mask[4] = {0, 0, 0, 0}; u32 pilot_mask[2] = {0, 0}; /* Note: fbin values are scaled up by 2 */ u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window; s32 spur_delta_phase, spur_freq_sigma_delta; s32 spur_offset, num_symbols_x16; u8 num_symbol_offsets, i, freq_band; /* Convert current frequency to fbin value (the same way channels * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale * up by 2 so we can compare it later */ if (channel->band == IEEE80211_BAND_2GHZ) { chan_fbin = (channel->center_freq - 2300) * 10; freq_band = AR5K_EEPROM_BAND_2GHZ; } else { chan_fbin = (channel->center_freq - 4900) * 10; freq_band = AR5K_EEPROM_BAND_5GHZ; } /* Check if any spur_chan_fbin from EEPROM is * within our current channel's spur detection range */ spur_chan_fbin = AR5K_EEPROM_NO_SPUR; spur_detection_window = AR5K_SPUR_CHAN_WIDTH; /* XXX: Half/Quarter channels ?*/ if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) spur_detection_window *= 2; for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) { spur_chan_fbin = ee->ee_spur_chans[i][freq_band]; /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag * so it's zero if we got nothing from EEPROM */ if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) { spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK; break; } if ((chan_fbin - spur_detection_window <= (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) && (chan_fbin + spur_detection_window >= (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) { spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK; break; } } /* We need to enable spur filter for this channel */ if (spur_chan_fbin) { spur_offset = spur_chan_fbin - chan_fbin; /* * Calculate deltas: * spur_freq_sigma_delta -> spur_offset / sample_freq << 21 * spur_delta_phase -> spur_offset / chip_freq << 11 * Note: Both values have 100Hz resolution */ switch (ah->ah_bwmode) { case AR5K_BWMODE_40MHZ: /* Both sample_freq and chip_freq are 80MHz */ spur_delta_phase = (spur_offset << 16) / 25; spur_freq_sigma_delta = (spur_delta_phase >> 10); symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2; break; case AR5K_BWMODE_10MHZ: /* Both sample_freq and chip_freq are 20MHz (?) */ spur_delta_phase = (spur_offset << 18) / 25; spur_freq_sigma_delta = (spur_delta_phase >> 10); symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2; case AR5K_BWMODE_5MHZ: /* Both sample_freq and chip_freq are 10MHz (?) */ spur_delta_phase = (spur_offset << 19) / 25; spur_freq_sigma_delta = (spur_delta_phase >> 10); symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4; default: if (channel->band == IEEE80211_BAND_5GHZ) { /* Both sample_freq and chip_freq are 40MHz */ spur_delta_phase = (spur_offset << 17) / 25; spur_freq_sigma_delta = (spur_delta_phase >> 10); symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz; } else { /* sample_freq -> 40MHz chip_freq -> 44MHz * (for b compatibility) */ spur_delta_phase = (spur_offset << 17) / 25; spur_freq_sigma_delta = (spur_offset << 8) / 55; symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz; } break; } /* Calculate pilot and magnitude masks */ /* Scale up spur_offset by 1000 to switch to 100HZ resolution * and divide by symbol_width to find how many symbols we have * Note: number of symbols is scaled up by 16 */ num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width; /* Spur is on a symbol if num_symbols_x16 % 16 is zero */ if (!(num_symbols_x16 & 0xF)) /* _X_ */ num_symbol_offsets = 3; else /* _xx_ */ num_symbol_offsets = 4; for (i = 0; i < num_symbol_offsets; i++) { /* Calculate pilot mask */ s32 curr_sym_off = (num_symbols_x16 / 16) + i + 25; /* Pilot magnitude mask seems to be a way to * declare the boundaries for our detection * window or something, it's 2 for the middle * value(s) where the symbol is expected to be * and 1 on the boundary values */ u8 plt_mag_map = (i == 0 || i == (num_symbol_offsets - 1)) ? 1 : 2; if (curr_sym_off >= 0 && curr_sym_off <= 32) { if (curr_sym_off <= 25) pilot_mask[0] |= 1 << curr_sym_off; else if (curr_sym_off >= 27) pilot_mask[0] |= 1 << (curr_sym_off - 1); } else if (curr_sym_off >= 33 && curr_sym_off <= 52) pilot_mask[1] |= 1 << (curr_sym_off - 33); /* Calculate magnitude mask (for viterbi decoder) */ if (curr_sym_off >= -1 && curr_sym_off <= 14) mag_mask[0] |= plt_mag_map << (curr_sym_off + 1) * 2; else if (curr_sym_off >= 15 && curr_sym_off <= 30) mag_mask[1] |= plt_mag_map << (curr_sym_off - 15) * 2; else if (curr_sym_off >= 31 && curr_sym_off <= 46) mag_mask[2] |= plt_mag_map << (curr_sym_off - 31) * 2; else if (curr_sym_off >= 47 && curr_sym_off <= 53) mag_mask[3] |= plt_mag_map << (curr_sym_off - 47) * 2; } /* Write settings on hw to enable spur filter */ AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL, AR5K_PHY_BIN_MASK_CTL_RATE, 0xff); /* XXX: Self correlator also ? */ AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_PILOT_MASK_EN | AR5K_PHY_IQ_CHAN_MASK_EN | AR5K_PHY_IQ_SPUR_FILT_EN); /* Set delta phase and freq sigma delta */ ath5k_hw_reg_write(ah, AR5K_REG_SM(spur_delta_phase, AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) | AR5K_REG_SM(spur_freq_sigma_delta, AR5K_PHY_TIMING_11_SPUR_FREQ_SD) | AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC, AR5K_PHY_TIMING_11); /* Write pilot masks */ ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7); AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8, AR5K_PHY_TIMING_8_PILOT_MASK_2, pilot_mask[1]); ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9); AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10, AR5K_PHY_TIMING_10_PILOT_MASK_2, pilot_mask[1]); /* Write magnitude masks */ ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1); ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2); ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3); AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL, AR5K_PHY_BIN_MASK_CTL_MASK_4, mag_mask[3]); ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1); ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2); ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3); AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4, AR5K_PHY_BIN_MASK2_4_MASK_4, mag_mask[3]); } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_SPUR_FILT_EN) { /* Clean up spur mitigation settings and disable filter */ AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL, AR5K_PHY_BIN_MASK_CTL_RATE, 0); AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_PILOT_MASK_EN | AR5K_PHY_IQ_CHAN_MASK_EN | AR5K_PHY_IQ_SPUR_FILT_EN); ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11); /* Clear pilot masks */ ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7); AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8, AR5K_PHY_TIMING_8_PILOT_MASK_2, 0); ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9); AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10, AR5K_PHY_TIMING_10_PILOT_MASK_2, 0); /* Clear magnitude masks */ ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1); ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2); ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3); AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL, AR5K_PHY_BIN_MASK_CTL_MASK_4, 0); ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1); ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2); ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3); AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4, AR5K_PHY_BIN_MASK2_4_MASK_4, 0); } } /*****************\ * Antenna control * \*****************/ /** * DOC: Antenna control * * Hw supports up to 14 antennas ! I haven't found any card that implements * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2 * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX) * omnidirectional or sectorial and antennas 3-14 sectorial (or directional). * * We can have a single antenna for RX and multiple antennas for TX. * RX antenna is our "default" antenna (usually antenna 1) set on * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor * (0 for automatic selection, 1 - 14 antenna number). * * We can let hw do all the work doing fast antenna diversity for both * tx and rx or we can do things manually. Here are the options we have * (all are bits of STA_ID1 register): * * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX * control descriptor, use the default antenna to transmit or else use the last * antenna on which we received an ACK. * * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to * the antenna on which we got the ACK for that frame. * * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the * one on the TX descriptor. * * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames * (ACKs etc), or else use current antenna (the one we just used for TX). * * Using the above we support the following scenarios: * * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically * * AR5K_ANTMODE_FIXED_A -> Only antenna A (MAIN) is present * * AR5K_ANTMODE_FIXED_B -> Only antenna B (AUX) is present * * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap * * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc * * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc * * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx- * * Also note that when setting antenna to F on tx descriptor card inverts * current tx antenna. */ /** * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer * @ah: The &struct ath5k_hw * @ant: Antenna number */ static void ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant) { if (ah->ah_version != AR5K_AR5210) ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA); } /** * ath5k_hw_set_fast_div() - Enable/disable fast rx antenna diversity * @ah: The &struct ath5k_hw * @ee_mode: One of enum ath5k_driver_mode * @enable: True to enable, false to disable */ static void ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable) { switch (ee_mode) { case AR5K_EEPROM_MODE_11G: /* XXX: This is set to * disabled on initvals !!! */ case AR5K_EEPROM_MODE_11A: if (enable) AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_OFDM_DIV_DIS); else AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_OFDM_DIV_DIS); break; case AR5K_EEPROM_MODE_11B: AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_OFDM_DIV_DIS); break; default: return; } if (enable) { AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART, AR5K_PHY_RESTART_DIV_GC, 4); AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV, AR5K_PHY_FAST_ANT_DIV_EN); } else { AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART, AR5K_PHY_RESTART_DIV_GC, 0); AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV, AR5K_PHY_FAST_ANT_DIV_EN); } } /** * ath5k_hw_set_antenna_switch() - Set up antenna switch table * @ah: The &struct ath5k_hw * @ee_mode: One of enum ath5k_driver_mode * * Switch table comes from EEPROM and includes information on controlling * the 2 antenna RX attenuators */ void ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode) { u8 ant0, ant1; /* * In case a fixed antenna was set as default * use the same switch table twice. */ if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A) ant0 = ant1 = AR5K_ANT_SWTABLE_A; else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B) ant0 = ant1 = AR5K_ANT_SWTABLE_B; else { ant0 = AR5K_ANT_SWTABLE_A; ant1 = AR5K_ANT_SWTABLE_B; } /* Set antenna idle switch table */ AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL, AR5K_PHY_ANT_CTL_SWTABLE_IDLE, (ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] | AR5K_PHY_ANT_CTL_TXRX_EN)); /* Set antenna switch tables */ ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0], AR5K_PHY_ANT_SWITCH_TABLE_0); ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1], AR5K_PHY_ANT_SWITCH_TABLE_1); } /** * ath5k_hw_set_antenna_mode() - Set antenna operating mode * @ah: The &struct ath5k_hw * @ant_mode: One of enum ath5k_ant_mode */ void ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode) { struct ieee80211_channel *channel = ah->ah_current_channel; bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div; bool use_def_for_sg; int ee_mode; u8 def_ant, tx_ant; u32 sta_id1 = 0; /* if channel is not initialized yet we can't set the antennas * so just store the mode. it will be set on the next reset */ if (channel == NULL) { ah->ah_ant_mode = ant_mode; return; } def_ant = ah->ah_def_ant; ee_mode = ath5k_eeprom_mode_from_channel(channel); if (ee_mode < 0) { ATH5K_ERR(ah, "invalid channel: %d\n", channel->center_freq); return; } switch (ant_mode) { case AR5K_ANTMODE_DEFAULT: tx_ant = 0; use_def_for_tx = false; update_def_on_tx = false; use_def_for_rts = false; use_def_for_sg = false; fast_div = true; break; case AR5K_ANTMODE_FIXED_A: def_ant = 1; tx_ant = 1; use_def_for_tx = true; update_def_on_tx = false; use_def_for_rts = true; use_def_for_sg = true; fast_div = false; break; case AR5K_ANTMODE_FIXED_B: def_ant = 2; tx_ant = 2; use_def_for_tx = true; update_def_on_tx = false; use_def_for_rts = true; use_def_for_sg = true; fast_div = false; break; case AR5K_ANTMODE_SINGLE_AP: def_ant = 1; /* updated on tx */ tx_ant = 0; use_def_for_tx = true; update_def_on_tx = true; use_def_for_rts = true; use_def_for_sg = true; fast_div = true; break; case AR5K_ANTMODE_SECTOR_AP: tx_ant = 1; /* variable */ use_def_for_tx = false; update_def_on_tx = false; use_def_for_rts = true; use_def_for_sg = false; fast_div = false; break; case AR5K_ANTMODE_SECTOR_STA: tx_ant = 1; /* variable */ use_def_for_tx = true; update_def_on_tx = false; use_def_for_rts = true; use_def_for_sg = false; fast_div = true; break; case AR5K_ANTMODE_DEBUG: def_ant = 1; tx_ant = 2; use_def_for_tx = false; update_def_on_tx = false; use_def_for_rts = false; use_def_for_sg = false; fast_div = false; break; default: return; } ah->ah_tx_ant = tx_ant; ah->ah_ant_mode = ant_mode; ah->ah_def_ant = def_ant; sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0; sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0; sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0; sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0; AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS); if (sta_id1) AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1); ath5k_hw_set_antenna_switch(ah, ee_mode); /* Note: set diversity before default antenna * because it won't work correctly */ ath5k_hw_set_fast_div(ah, ee_mode, fast_div); ath5k_hw_set_def_antenna(ah, def_ant); } /****************\ * TX power setup * \****************/ /* * Helper functions */ /** * ath5k_get_interpolated_value() - Get interpolated Y val between two points * @target: X value of the middle point * @x_left: X value of the left point * @x_right: X value of the right point * @y_left: Y value of the left point * @y_right: Y value of the right point */ static s16 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right, s16 y_left, s16 y_right) { s16 ratio, result; /* Avoid divide by zero and skip interpolation * if we have the same point */ if ((x_left == x_right) || (y_left == y_right)) return y_left; /* * Since we use ints and not fps, we need to scale up in * order to get a sane ratio value (or else we 'll eg. get * always 1 instead of 1.25, 1.75 etc). We scale up by 100 * to have some accuracy both for 0.5 and 0.25 steps. */ ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left)); /* Now scale down to be in range */ result = y_left + (ratio * (target - x_left) / 100); return result; } /** * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the * linear PCDAC curve * @stepL: Left array with y values (pcdac steps) * @stepR: Right array with y values (pcdac steps) * @pwrL: Left array with x values (power steps) * @pwrR: Right array with x values (power steps) * * Since we have the top of the curve and we draw the line below * until we reach 1 (1 pcdac step) we need to know which point * (x value) that is so that we don't go below x axis and have negative * pcdac values when creating the curve, or fill the table with zeros. */ static s16 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR, const s16 *pwrL, const s16 *pwrR) { s8 tmp; s16 min_pwrL, min_pwrR; s16 pwr_i; /* Some vendors write the same pcdac value twice !!! */ if (stepL[0] == stepL[1] || stepR[0] == stepR[1]) return max(pwrL[0], pwrR[0]); if (pwrL[0] == pwrL[1]) min_pwrL = pwrL[0]; else { pwr_i = pwrL[0]; do { pwr_i--; tmp = (s8) ath5k_get_interpolated_value(pwr_i, pwrL[0], pwrL[1], stepL[0], stepL[1]); } while (tmp > 1); min_pwrL = pwr_i; } if (pwrR[0] == pwrR[1]) min_pwrR = pwrR[0]; else { pwr_i = pwrR[0]; do { pwr_i--; tmp = (s8) ath5k_get_interpolated_value(pwr_i, pwrR[0], pwrR[1], stepR[0], stepR[1]); } while (tmp > 1); min_pwrR = pwr_i; } /* Keep the right boundary so that it works for both curves */ return max(min_pwrL, min_pwrR); } /** * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve * @pmin: Minimum power value (xmin) * @pmax: Maximum power value (xmax) * @pwr: Array of power steps (x values) * @vpd: Array of matching PCDAC/PDADC steps (y values) * @num_points: Number of provided points * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values) * @type: One of enum ath5k_powertable_type (eeprom.h) * * Interpolate (pwr,vpd) points to create a Power to PDADC or a * Power to PCDAC curve. * * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC * steps (offsets) on y axis. Power can go up to 31.5dB and max * PCDAC/PDADC step for each curve is 64 but we can write more than * one curves on hw so we can go up to 128 (which is the max step we * can write on the final table). * * We write y values (PCDAC/PDADC steps) on hw. */ static void ath5k_create_power_curve(s16 pmin, s16 pmax, const s16 *pwr, const u8 *vpd, u8 num_points, u8 *vpd_table, u8 type) { u8 idx[2] = { 0, 1 }; s16 pwr_i = 2 * pmin; int i; if (num_points < 2) return; /* We want the whole line, so adjust boundaries * to cover the entire power range. Note that * power values are already 0.25dB so no need * to multiply pwr_i by 2 */ if (type == AR5K_PWRTABLE_LINEAR_PCDAC) { pwr_i = pmin; pmin = 0; pmax = 63; } /* Find surrounding turning points (TPs) * and interpolate between them */ for (i = 0; (i <= (u16) (pmax - pmin)) && (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) { /* We passed the right TP, move to the next set of TPs * if we pass the last TP, extrapolate above using the last * two TPs for ratio */ if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) { idx[0]++; idx[1]++; } vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i, pwr[idx[0]], pwr[idx[1]], vpd[idx[0]], vpd[idx[1]]); /* Increase by 0.5dB * (0.25 dB units) */ pwr_i += 2; } } /** * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers * for a given channel. * @ah: The &struct ath5k_hw * @channel: The &struct ieee80211_channel * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier * * Get the surrounding per-channel power calibration piers * for a given frequency so that we can interpolate between * them and come up with an appropriate dataset for our current * channel. */ static void ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah, struct ieee80211_channel *channel, struct ath5k_chan_pcal_info **pcinfo_l, struct ath5k_chan_pcal_info **pcinfo_r) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; struct ath5k_chan_pcal_info *pcinfo; u8 idx_l, idx_r; u8 mode, max, i; u32 target = channel->center_freq; idx_l = 0; idx_r = 0; switch (channel->hw_value) { case AR5K_EEPROM_MODE_11A: pcinfo = ee->ee_pwr_cal_a; mode = AR5K_EEPROM_MODE_11A; break; case AR5K_EEPROM_MODE_11B: pcinfo = ee->ee_pwr_cal_b; mode = AR5K_EEPROM_MODE_11B; break; case AR5K_EEPROM_MODE_11G: default: pcinfo = ee->ee_pwr_cal_g; mode = AR5K_EEPROM_MODE_11G; break; } max = ee->ee_n_piers[mode] - 1; /* Frequency is below our calibrated * range. Use the lowest power curve * we have */ if (target < pcinfo[0].freq) { idx_l = idx_r = 0; goto done; } /* Frequency is above our calibrated * range. Use the highest power curve * we have */ if (target > pcinfo[max].freq) { idx_l = idx_r = max; goto done; } /* Frequency is inside our calibrated * channel range. Pick the surrounding * calibration piers so that we can * interpolate */ for (i = 0; i <= max; i++) { /* Frequency matches one of our calibration * piers, no need to interpolate, just use * that calibration pier */ if (pcinfo[i].freq == target) { idx_l = idx_r = i; goto done; } /* We found a calibration pier that's above * frequency, use this pier and the previous * one to interpolate */ if (target < pcinfo[i].freq) { idx_r = i; idx_l = idx_r - 1; goto done; } } done: *pcinfo_l = &pcinfo[idx_l]; *pcinfo_r = &pcinfo[idx_r]; } /** * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power * calibration data * @ah: The &struct ath5k_hw *ah, * @channel: The &struct ieee80211_channel * @rates: The &struct ath5k_rate_pcal_info to fill * * Get the surrounding per-rate power calibration data * for a given frequency and interpolate between power * values to set max target power supported by hw for * each rate on this frequency. */ static void ath5k_get_rate_pcal_data(struct ath5k_hw *ah, struct ieee80211_channel *channel, struct ath5k_rate_pcal_info *rates) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; struct ath5k_rate_pcal_info *rpinfo; u8 idx_l, idx_r; u8 mode, max, i; u32 target = channel->center_freq; idx_l = 0; idx_r = 0; switch (channel->hw_value) { case AR5K_MODE_11A: rpinfo = ee->ee_rate_tpwr_a; mode = AR5K_EEPROM_MODE_11A; break; case AR5K_MODE_11B: rpinfo = ee->ee_rate_tpwr_b; mode = AR5K_EEPROM_MODE_11B; break; case AR5K_MODE_11G: default: rpinfo = ee->ee_rate_tpwr_g; mode = AR5K_EEPROM_MODE_11G; break; } max = ee->ee_rate_target_pwr_num[mode] - 1; /* Get the surrounding calibration * piers - same as above */ if (target < rpinfo[0].freq) { idx_l = idx_r = 0; goto done; } if (target > rpinfo[max].freq) { idx_l = idx_r = max; goto done; } for (i = 0; i <= max; i++) { if (rpinfo[i].freq == target) { idx_l = idx_r = i; goto done; } if (target < rpinfo[i].freq) { idx_r = i; idx_l = idx_r - 1; goto done; } } done: /* Now interpolate power value, based on the frequency */ rates->freq = target; rates->target_power_6to24 = ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, rpinfo[idx_r].freq, rpinfo[idx_l].target_power_6to24, rpinfo[idx_r].target_power_6to24); rates->target_power_36 = ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, rpinfo[idx_r].freq, rpinfo[idx_l].target_power_36, rpinfo[idx_r].target_power_36); rates->target_power_48 = ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, rpinfo[idx_r].freq, rpinfo[idx_l].target_power_48, rpinfo[idx_r].target_power_48); rates->target_power_54 = ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, rpinfo[idx_r].freq, rpinfo[idx_l].target_power_54, rpinfo[idx_r].target_power_54); } /** * ath5k_get_max_ctl_power() - Get max edge power for a given frequency * @ah: the &struct ath5k_hw * @channel: The &struct ieee80211_channel * * Get the max edge power for this channel if * we have such data from EEPROM's Conformance Test * Limits (CTL), and limit max power if needed. */ static void ath5k_get_max_ctl_power(struct ath5k_hw *ah, struct ieee80211_channel *channel) { struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah); struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; struct ath5k_edge_power *rep = ee->ee_ctl_pwr; u8 *ctl_val = ee->ee_ctl; s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4; s16 edge_pwr = 0; u8 rep_idx; u8 i, ctl_mode; u8 ctl_idx = 0xFF; u32 target = channel->center_freq; ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band); switch (channel->hw_value) { case AR5K_MODE_11A: if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) ctl_mode |= AR5K_CTL_TURBO; else ctl_mode |= AR5K_CTL_11A; break; case AR5K_MODE_11G: if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) ctl_mode |= AR5K_CTL_TURBOG; else ctl_mode |= AR5K_CTL_11G; break; case AR5K_MODE_11B: ctl_mode |= AR5K_CTL_11B; break; default: return; } for (i = 0; i < ee->ee_ctls; i++) { if (ctl_val[i] == ctl_mode) { ctl_idx = i; break; } } /* If we have a CTL dataset available grab it and find the * edge power for our frequency */ if (ctl_idx == 0xFF) return; /* Edge powers are sorted by frequency from lower * to higher. Each CTL corresponds to 8 edge power * measurements. */ rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES; /* Don't do boundaries check because we * might have more that one bands defined * for this mode */ /* Get the edge power that's closer to our * frequency */ for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) { rep_idx += i; if (target <= rep[rep_idx].freq) edge_pwr = (s16) rep[rep_idx].edge; } if (edge_pwr) ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr); } /* * Power to PCDAC table functions */ /** * DOC: Power to PCDAC table functions * * For RF5111 we have an XPD -eXternal Power Detector- curve * for each calibrated channel. Each curve has 0,5dB Power steps * on x axis and PCDAC steps (offsets) on y axis and looks like an * exponential function. To recreate the curve we read 11 points * from eeprom (eeprom.c) and interpolate here. * * For RF5112 we have 4 XPD -eXternal Power Detector- curves * for each calibrated channel on 0, -6, -12 and -18dBm but we only * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB * power steps on x axis and PCDAC steps on y axis and looks like a * linear function. To recreate the curve and pass the power values * on hw, we get 4 points for xpd 0 (lower gain -> max power) * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c) * and interpolate here. * * For a given channel we get the calibrated points (piers) for it or * -if we don't have calibration data for this specific channel- from the * available surrounding channels we have calibration data for, after we do a * linear interpolation between them. Then since we have our calibrated points * for this channel, we do again a linear interpolation between them to get the * whole curve. * * We finally write the Y values of the curve(s) (the PCDAC values) on hw */ /** * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111 * @ah: The &struct ath5k_hw * @table_min: Minimum power (x min) * @table_max: Maximum power (x max) * * No further processing is needed for RF5111, the only thing we have to * do is fill the values below and above calibration range since eeprom data * may not cover the entire PCDAC table. */ static void ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min, s16 *table_max) { u8 *pcdac_out = ah->ah_txpower.txp_pd_table; u8 *pcdac_tmp = ah->ah_txpower.tmpL[0]; u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i; s16 min_pwr, max_pwr; /* Get table boundaries */ min_pwr = table_min[0]; pcdac_0 = pcdac_tmp[0]; max_pwr = table_max[0]; pcdac_n = pcdac_tmp[table_max[0] - table_min[0]]; /* Extrapolate below minimum using pcdac_0 */ pcdac_i = 0; for (i = 0; i < min_pwr; i++) pcdac_out[pcdac_i++] = pcdac_0; /* Copy values from pcdac_tmp */ pwr_idx = min_pwr; for (i = 0; pwr_idx <= max_pwr && pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) { pcdac_out[pcdac_i++] = pcdac_tmp[i]; pwr_idx++; } /* Extrapolate above maximum */ while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE) pcdac_out[pcdac_i++] = pcdac_n; } /** * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves * @ah: The &struct ath5k_hw * @table_min: Minimum power (x min) * @table_max: Maximum power (x max) * @pdcurves: Number of pd curves * * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112 * RFX112 can have up to 2 curves (one for low txpower range and one for * higher txpower range). We need to put them both on pcdac_out and place * them in the correct location. In case we only have one curve available * just fit it on pcdac_out (it's supposed to cover the entire range of * available pwr levels since it's always the higher power curve). Extrapolate * below and above final table if needed. */ static void ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min, s16 *table_max, u8 pdcurves) { u8 *pcdac_out = ah->ah_txpower.txp_pd_table; u8 *pcdac_low_pwr; u8 *pcdac_high_pwr; u8 *pcdac_tmp; u8 pwr; s16 max_pwr_idx; s16 min_pwr_idx; s16 mid_pwr_idx = 0; /* Edge flag turns on the 7nth bit on the PCDAC * to declare the higher power curve (force values * to be greater than 64). If we only have one curve * we don't need to set this, if we have 2 curves and * fill the table backwards this can also be used to * switch from higher power curve to lower power curve */ u8 edge_flag; int i; /* When we have only one curve available * that's the higher power curve. If we have * two curves the first is the high power curve * and the next is the low power curve. */ if (pdcurves > 1) { pcdac_low_pwr = ah->ah_txpower.tmpL[1]; pcdac_high_pwr = ah->ah_txpower.tmpL[0]; mid_pwr_idx = table_max[1] - table_min[1] - 1; max_pwr_idx = (table_max[0] - table_min[0]) / 2; /* If table size goes beyond 31.5dB, keep the * upper 31.5dB range when setting tx power. * Note: 126 = 31.5 dB in quarter dB steps */ if (table_max[0] - table_min[1] > 126) min_pwr_idx = table_max[0] - 126; else min_pwr_idx = table_min[1]; /* Since we fill table backwards * start from high power curve */ pcdac_tmp = pcdac_high_pwr; edge_flag = 0x40; } else { pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */ pcdac_high_pwr = ah->ah_txpower.tmpL[0]; min_pwr_idx = table_min[0]; max_pwr_idx = (table_max[0] - table_min[0]) / 2; pcdac_tmp = pcdac_high_pwr; edge_flag = 0; } /* This is used when setting tx power*/ ah->ah_txpower.txp_min_idx = min_pwr_idx / 2; /* Fill Power to PCDAC table backwards */ pwr = max_pwr_idx; for (i = 63; i >= 0; i--) { /* Entering lower power range, reset * edge flag and set pcdac_tmp to lower * power curve.*/ if (edge_flag == 0x40 && (2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) { edge_flag = 0x00; pcdac_tmp = pcdac_low_pwr; pwr = mid_pwr_idx / 2; } /* Don't go below 1, extrapolate below if we have * already switched to the lower power curve -or * we only have one curve and edge_flag is zero * anyway */ if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) { while (i >= 0) { pcdac_out[i] = pcdac_out[i + 1]; i--; } break; } pcdac_out[i] = pcdac_tmp[pwr] | edge_flag; /* Extrapolate above if pcdac is greater than * 126 -this can happen because we OR pcdac_out * value with edge_flag on high power curve */ if (pcdac_out[i] > 126) pcdac_out[i] = 126; /* Decrease by a 0.5dB step */ pwr--; } } /** * ath5k_write_pcdac_table() - Write the PCDAC values on hw * @ah: The &struct ath5k_hw */ static void ath5k_write_pcdac_table(struct ath5k_hw *ah) { u8 *pcdac_out = ah->ah_txpower.txp_pd_table; int i; /* * Write TX power values */ for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { ath5k_hw_reg_write(ah, (((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) | (((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16), AR5K_PHY_PCDAC_TXPOWER(i)); } } /* * Power to PDADC table functions */ /** * DOC: Power to PDADC table functions * * For RF2413 and later we have a Power to PDADC table (Power Detector) * instead of a PCDAC (Power Control) and 4 pd gain curves for each * calibrated channel. Each curve has power on x axis in 0.5 db steps and * PDADC steps on y axis and looks like an exponential function like the * RF5111 curve. * * To recreate the curves we read the points from eeprom (eeprom.c) * and interpolate here. Note that in most cases only 2 (higher and lower) * curves are used (like RF5112) but vendors have the opportunity to include * all 4 curves on eeprom. The final curve (higher power) has an extra * point for better accuracy like RF5112. * * The process is similar to what we do above for RF5111/5112 */ /** * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves * @ah: The &struct ath5k_hw * @pwr_min: Minimum power (x min) * @pwr_max: Maximum power (x max) * @pdcurves: Number of available curves * * Combine the various pd curves and create the final Power to PDADC table * We can have up to 4 pd curves, we need to do a similar process * as we do for RF5112. This time we don't have an edge_flag but we * set the gain boundaries on a separate register. */ static void ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah, s16 *pwr_min, s16 *pwr_max, u8 pdcurves) { u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS]; u8 *pdadc_out = ah->ah_txpower.txp_pd_table; u8 *pdadc_tmp; s16 pdadc_0; u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size; u8 pd_gain_overlap; /* Note: Register value is initialized on initvals * there is no feedback from hw. * XXX: What about pd_gain_overlap from EEPROM ? */ pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) & AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP; /* Create final PDADC table */ for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) { pdadc_tmp = ah->ah_txpower.tmpL[pdg]; if (pdg == pdcurves - 1) /* 2 dB boundary stretch for last * (higher power) curve */ gain_boundaries[pdg] = pwr_max[pdg] + 4; else /* Set gain boundary in the middle * between this curve and the next one */ gain_boundaries[pdg] = (pwr_max[pdg] + pwr_min[pdg + 1]) / 2; /* Sanity check in case our 2 db stretch got out of * range. */ if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER) gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER; /* For the first curve (lower power) * start from 0 dB */ if (pdg == 0) pdadc_0 = 0; else /* For the other curves use the gain overlap */ pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) - pd_gain_overlap; /* Force each power step to be at least 0.5 dB */ if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1) pwr_step = pdadc_tmp[1] - pdadc_tmp[0]; else pwr_step = 1; /* If pdadc_0 is negative, we need to extrapolate * below this pdgain by a number of pwr_steps */ while ((pdadc_0 < 0) && (pdadc_i < 128)) { s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step; pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp; pdadc_0++; } /* Set last pwr level, using gain boundaries */ pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg]; /* Limit it to be inside pwr range */ table_size = pwr_max[pdg] - pwr_min[pdg]; max_idx = (pdadc_n < table_size) ? pdadc_n : table_size; /* Fill pdadc_out table */ while (pdadc_0 < max_idx && pdadc_i < 128) pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++]; /* Need to extrapolate above this pdgain? */ if (pdadc_n <= max_idx) continue; /* Force each power step to be at least 0.5 dB */ if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1) pwr_step = pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]; else pwr_step = 1; /* Extrapolate above */ while ((pdadc_0 < (s16) pdadc_n) && (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) { s16 tmp = pdadc_tmp[table_size - 1] + (pdadc_0 - max_idx) * pwr_step; pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp; pdadc_0++; } } while (pdg < AR5K_EEPROM_N_PD_GAINS) { gain_boundaries[pdg] = gain_boundaries[pdg - 1]; pdg++; } while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) { pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1]; pdadc_i++; } /* Set gain boundaries */ ath5k_hw_reg_write(ah, AR5K_REG_SM(pd_gain_overlap, AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) | AR5K_REG_SM(gain_boundaries[0], AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) | AR5K_REG_SM(gain_boundaries[1], AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) | AR5K_REG_SM(gain_boundaries[2], AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) | AR5K_REG_SM(gain_boundaries[3], AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4), AR5K_PHY_TPC_RG5); /* Used for setting rate power table */ ah->ah_txpower.txp_min_idx = pwr_min[0]; } /** * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw * @ah: The &struct ath5k_hw * @ee_mode: One of enum ath5k_driver_mode */ static void ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; u8 *pdadc_out = ah->ah_txpower.txp_pd_table; u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode]; u8 pdcurves = ee->ee_pd_gains[ee_mode]; u32 reg; u8 i; /* Select the right pdgain curves */ /* Clear current settings */ reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1); reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 | AR5K_PHY_TPC_RG1_PDGAIN_2 | AR5K_PHY_TPC_RG1_PDGAIN_3 | AR5K_PHY_TPC_RG1_NUM_PD_GAIN); /* * Use pd_gains curve from eeprom * * This overrides the default setting from initvals * in case some vendors (e.g. Zcomax) don't use the default * curves. If we don't honor their settings we 'll get a * 5dB (1 * gain overlap ?) drop. */ reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN); switch (pdcurves) { case 3: reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3); /* Fall through */ case 2: reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2); /* Fall through */ case 1: reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1); break; } ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1); /* * Write TX power values */ for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { u32 val = get_unaligned_le32(&pdadc_out[4 * i]); ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i)); } } /* * Common code for PCDAC/PDADC tables */ /** * ath5k_setup_channel_powertable() - Set up power table for this channel * @ah: The &struct ath5k_hw * @channel: The &struct ieee80211_channel * @ee_mode: One of enum ath5k_driver_mode * @type: One of enum ath5k_powertable_type (eeprom.h) * * This is the main function that uses all of the above * to set PCDAC/PDADC table on hw for the current channel. * This table is used for tx power calibration on the baseband, * without it we get weird tx power levels and in some cases * distorted spectral mask */ static int ath5k_setup_channel_powertable(struct ath5k_hw *ah, struct ieee80211_channel *channel, u8 ee_mode, u8 type) { struct ath5k_pdgain_info *pdg_L, *pdg_R; struct ath5k_chan_pcal_info *pcinfo_L; struct ath5k_chan_pcal_info *pcinfo_R; struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode]; s16 table_min[AR5K_EEPROM_N_PD_GAINS]; s16 table_max[AR5K_EEPROM_N_PD_GAINS]; u8 *tmpL; u8 *tmpR; u32 target = channel->center_freq; int pdg, i; /* Get surrounding freq piers for this channel */ ath5k_get_chan_pcal_surrounding_piers(ah, channel, &pcinfo_L, &pcinfo_R); /* Loop over pd gain curves on * surrounding freq piers by index */ for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) { /* Fill curves in reverse order * from lower power (max gain) * to higher power. Use curve -> idx * backmapping we did on eeprom init */ u8 idx = pdg_curve_to_idx[pdg]; /* Grab the needed curves by index */ pdg_L = &pcinfo_L->pd_curves[idx]; pdg_R = &pcinfo_R->pd_curves[idx]; /* Initialize the temp tables */ tmpL = ah->ah_txpower.tmpL[pdg]; tmpR = ah->ah_txpower.tmpR[pdg]; /* Set curve's x boundaries and create * curves so that they cover the same * range (if we don't do that one table * will have values on some range and the * other one won't have any so interpolation * will fail) */ table_min[pdg] = min(pdg_L->pd_pwr[0], pdg_R->pd_pwr[0]) / 2; table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1], pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2; /* Now create the curves on surrounding channels * and interpolate if needed to get the final * curve for this gain on this channel */ switch (type) { case AR5K_PWRTABLE_LINEAR_PCDAC: /* Override min/max so that we don't loose * accuracy (don't divide by 2) */ table_min[pdg] = min(pdg_L->pd_pwr[0], pdg_R->pd_pwr[0]); table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1], pdg_R->pd_pwr[pdg_R->pd_points - 1]); /* Override minimum so that we don't get * out of bounds while extrapolating * below. Don't do this when we have 2 * curves and we are on the high power curve * because table_min is ok in this case */ if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) { table_min[pdg] = ath5k_get_linear_pcdac_min(pdg_L->pd_step, pdg_R->pd_step, pdg_L->pd_pwr, pdg_R->pd_pwr); /* Don't go too low because we will * miss the upper part of the curve. * Note: 126 = 31.5dB (max power supported) * in 0.25dB units */ if (table_max[pdg] - table_min[pdg] > 126) table_min[pdg] = table_max[pdg] - 126; } /* Fall through */ case AR5K_PWRTABLE_PWR_TO_PCDAC: case AR5K_PWRTABLE_PWR_TO_PDADC: ath5k_create_power_curve(table_min[pdg], table_max[pdg], pdg_L->pd_pwr, pdg_L->pd_step, pdg_L->pd_points, tmpL, type); /* We are in a calibration * pier, no need to interpolate * between freq piers */ if (pcinfo_L == pcinfo_R) continue; ath5k_create_power_curve(table_min[pdg], table_max[pdg], pdg_R->pd_pwr, pdg_R->pd_step, pdg_R->pd_points, tmpR, type); break; default: return -EINVAL; } /* Interpolate between curves * of surrounding freq piers to * get the final curve for this * pd gain. Re-use tmpL for interpolation * output */ for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) && (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) { tmpL[i] = (u8) ath5k_get_interpolated_value(target, (s16) pcinfo_L->freq, (s16) pcinfo_R->freq, (s16) tmpL[i], (s16) tmpR[i]); } } /* Now we have a set of curves for this * channel on tmpL (x range is table_max - table_min * and y values are tmpL[pdg][]) sorted in the same * order as EEPROM (because we've used the backmapping). * So for RF5112 it's from higher power to lower power * and for RF2413 it's from lower power to higher power. * For RF5111 we only have one curve. */ /* Fill min and max power levels for this * channel by interpolating the values on * surrounding channels to complete the dataset */ ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target, (s16) pcinfo_L->freq, (s16) pcinfo_R->freq, pcinfo_L->min_pwr, pcinfo_R->min_pwr); ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target, (s16) pcinfo_L->freq, (s16) pcinfo_R->freq, pcinfo_L->max_pwr, pcinfo_R->max_pwr); /* Fill PCDAC/PDADC table */ switch (type) { case AR5K_PWRTABLE_LINEAR_PCDAC: /* For RF5112 we can have one or two curves * and each curve covers a certain power lvl * range so we need to do some more processing */ ath5k_combine_linear_pcdac_curves(ah, table_min, table_max, ee->ee_pd_gains[ee_mode]); /* Set txp.offset so that we can * match max power value with max * table index */ ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2); break; case AR5K_PWRTABLE_PWR_TO_PCDAC: /* We are done for RF5111 since it has only * one curve, just fit the curve on the table */ ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max); /* No rate powertable adjustment for RF5111 */ ah->ah_txpower.txp_min_idx = 0; ah->ah_txpower.txp_offset = 0; break; case AR5K_PWRTABLE_PWR_TO_PDADC: /* Set PDADC boundaries and fill * final PDADC table */ ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max, ee->ee_pd_gains[ee_mode]); /* Set txp.offset, note that table_min * can be negative */ ah->ah_txpower.txp_offset = table_min[0]; break; default: return -EINVAL; } ah->ah_txpower.txp_setup = true; return 0; } /** * ath5k_write_channel_powertable() - Set power table for current channel on hw * @ah: The &struct ath5k_hw * @ee_mode: One of enum ath5k_driver_mode * @type: One of enum ath5k_powertable_type (eeprom.h) */ static void ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type) { if (type == AR5K_PWRTABLE_PWR_TO_PDADC) ath5k_write_pwr_to_pdadc_table(ah, ee_mode); else ath5k_write_pcdac_table(ah); } /** * DOC: Per-rate tx power setting * * This is the code that sets the desired tx power limit (below * maximum) on hw for each rate (we also have TPC that sets * power per packet type). We do that by providing an index on the * PCDAC/PDADC table we set up above, for each rate. * * For now we only limit txpower based on maximum tx power * supported by hw (what's inside rate_info) + conformance test * limits. We need to limit this even more, based on regulatory domain * etc to be safe. Normally this is done from above so we don't care * here, all we care is that the tx power we set will be O.K. * for the hw (e.g. won't create noise on PA etc). * * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps - * x values) and is indexed as follows: * rates[0] - rates[7] -> OFDM rates * rates[8] - rates[14] -> CCK rates * rates[15] -> XR rates (they all have the same power) */ /** * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power * @ah: The &struct ath5k_hw * @max_pwr: The maximum tx power requested in 0.5dB steps * @rate_info: The &struct ath5k_rate_pcal_info to fill * @ee_mode: One of enum ath5k_driver_mode */ static void ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr, struct ath5k_rate_pcal_info *rate_info, u8 ee_mode) { unsigned int i; u16 *rates; /* max_pwr is power level we got from driver/user in 0.5dB * units, switch to 0.25dB units so we can compare */ max_pwr *= 2; max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2; /* apply rate limits */ rates = ah->ah_txpower.txp_rates_power_table; /* OFDM rates 6 to 24Mb/s */ for (i = 0; i < 5; i++) rates[i] = min(max_pwr, rate_info->target_power_6to24); /* Rest OFDM rates */ rates[5] = min(rates[0], rate_info->target_power_36); rates[6] = min(rates[0], rate_info->target_power_48); rates[7] = min(rates[0], rate_info->target_power_54); /* CCK rates */ /* 1L */ rates[8] = min(rates[0], rate_info->target_power_6to24); /* 2L */ rates[9] = min(rates[0], rate_info->target_power_36); /* 2S */ rates[10] = min(rates[0], rate_info->target_power_36); /* 5L */ rates[11] = min(rates[0], rate_info->target_power_48); /* 5S */ rates[12] = min(rates[0], rate_info->target_power_48); /* 11L */ rates[13] = min(rates[0], rate_info->target_power_54); /* 11S */ rates[14] = min(rates[0], rate_info->target_power_54); /* XR rates */ rates[15] = min(rates[0], rate_info->target_power_6to24); /* CCK rates have different peak to average ratio * so we have to tweak their power so that gainf * correction works ok. For this we use OFDM to * CCK delta from eeprom */ if ((ee_mode == AR5K_EEPROM_MODE_11G) && (ah->ah_phy_revision < AR5K_SREV_PHY_5212A)) for (i = 8; i <= 15; i++) rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta; /* Now that we have all rates setup use table offset to * match the power range set by user with the power indices * on PCDAC/PDADC table */ for (i = 0; i < 16; i++) { rates[i] += ah->ah_txpower.txp_offset; /* Don't get out of bounds */ if (rates[i] > 63) rates[i] = 63; } /* Min/max in 0.25dB units */ ah->ah_txpower.txp_min_pwr = 2 * rates[7]; ah->ah_txpower.txp_cur_pwr = 2 * rates[0]; ah->ah_txpower.txp_ofdm = rates[7]; } /** * ath5k_hw_txpower() - Set transmission power limit for a given channel * @ah: The &struct ath5k_hw * @channel: The &struct ieee80211_channel * @txpower: Requested tx power in 0.5dB steps * * Combines all of the above to set the requested tx power limit * on hw. */ static int ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel, u8 txpower) { struct ath5k_rate_pcal_info rate_info; struct ieee80211_channel *curr_channel = ah->ah_current_channel; int ee_mode; u8 type; int ret; if (txpower > AR5K_TUNE_MAX_TXPOWER) { ATH5K_ERR(ah, "invalid tx power: %u\n", txpower); return -EINVAL; } ee_mode = ath5k_eeprom_mode_from_channel(channel); if (ee_mode < 0) { ATH5K_ERR(ah, "invalid channel: %d\n", channel->center_freq); return -EINVAL; } /* Initialize TX power table */ switch (ah->ah_radio) { case AR5K_RF5110: /* TODO */ return 0; case AR5K_RF5111: type = AR5K_PWRTABLE_PWR_TO_PCDAC; break; case AR5K_RF5112: type = AR5K_PWRTABLE_LINEAR_PCDAC; break; case AR5K_RF2413: case AR5K_RF5413: case AR5K_RF2316: case AR5K_RF2317: case AR5K_RF2425: type = AR5K_PWRTABLE_PWR_TO_PDADC; break; default: return -EINVAL; } /* * If we don't change channel/mode skip tx powertable calculation * and use the cached one. */ if (!ah->ah_txpower.txp_setup || (channel->hw_value != curr_channel->hw_value) || (channel->center_freq != curr_channel->center_freq)) { /* Reset TX power values */ memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower)); ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER; /* Calculate the powertable */ ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type); if (ret) return ret; } /* Write table on hw */ ath5k_write_channel_powertable(ah, ee_mode, type); /* Limit max power if we have a CTL available */ ath5k_get_max_ctl_power(ah, channel); /* FIXME: Antenna reduction stuff */ /* FIXME: Limit power on turbo modes */ /* FIXME: TPC scale reduction */ /* Get surrounding channels for per-rate power table * calibration */ ath5k_get_rate_pcal_data(ah, channel, &rate_info); /* Setup rate power table */ ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode); /* Write rate power table on hw */ ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) | AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) | AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1); ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) | AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) | AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2); ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) | AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) | AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3); ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) | AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) | AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4); /* FIXME: TPC support */ if (ah->ah_txpower.txp_tpc) { ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE | AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); ath5k_hw_reg_write(ah, AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) | AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) | AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP), AR5K_TPC); } else { ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX | AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); } return 0; } /** * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel * @ah: The &struct ath5k_hw * @txpower: The requested tx power limit in 0.5dB steps * * This function provides access to ath5k_hw_txpower to the driver in * case user or an application changes it while PHY is running. */ int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower) { ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER, "changing txpower to %d\n", txpower); return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower); } /*************\ Init function \*************/ /** * ath5k_hw_phy_init() - Initialize PHY * @ah: The &struct ath5k_hw * @channel: The @struct ieee80211_channel * @mode: One of enum ath5k_driver_mode * @fast: Try a fast channel switch instead * * This is the main function used during reset to initialize PHY * or do a fast channel change if possible. * * NOTE: Do not call this one from the driver, it assumes PHY is in a * warm reset state ! */ int ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel, u8 mode, bool fast) { struct ieee80211_channel *curr_channel; int ret, i; u32 phy_tst1; ret = 0; /* * Sanity check for fast flag * Don't try fast channel change when changing modulation * mode/band. We check for chip compatibility on * ath5k_hw_reset. */ curr_channel = ah->ah_current_channel; if (fast && (channel->hw_value != curr_channel->hw_value)) return -EINVAL; /* * On fast channel change we only set the synth parameters * while PHY is running, enable calibration and skip the rest. */ if (fast) { AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ, AR5K_PHY_RFBUS_REQ_REQUEST); for (i = 0; i < 100; i++) { if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT)) break; udelay(5); } /* Failed */ if (i >= 100) return -EIO; /* Set channel and wait for synth */ ret = ath5k_hw_channel(ah, channel); if (ret) return ret; ath5k_hw_wait_for_synth(ah, channel); } /* * Set TX power * * Note: We need to do that before we set * RF buffer settings on 5211/5212+ so that we * properly set curve indices. */ ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_cur_pwr ? ah->ah_txpower.txp_cur_pwr / 2 : AR5K_TUNE_MAX_TXPOWER); if (ret) return ret; /* Write OFDM timings on 5212*/ if (ah->ah_version == AR5K_AR5212 && channel->hw_value != AR5K_MODE_11B) { ret = ath5k_hw_write_ofdm_timings(ah, channel); if (ret) return ret; /* Spur info is available only from EEPROM versions * greater than 5.3, but the EEPROM routines will use * static values for older versions */ if (ah->ah_mac_srev >= AR5K_SREV_AR5424) ath5k_hw_set_spur_mitigation_filter(ah, channel); } /* If we used fast channel switching * we are done, release RF bus and * fire up NF calibration. * * Note: Only NF calibration due to * channel change, not AGC calibration * since AGC is still running ! */ if (fast) { /* * Release RF Bus grant */ AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ, AR5K_PHY_RFBUS_REQ_REQUEST); /* * Start NF calibration */ AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF); return ret; } /* * For 5210 we do all initialization using * initvals, so we don't have to modify * any settings (5210 also only supports * a/aturbo modes) */ if (ah->ah_version != AR5K_AR5210) { /* * Write initial RF gain settings * This should work for both 5111/5112 */ ret = ath5k_hw_rfgain_init(ah, channel->band); if (ret) return ret; usleep_range(1000, 1500); /* * Write RF buffer */ ret = ath5k_hw_rfregs_init(ah, channel, mode); if (ret) return ret; /*Enable/disable 802.11b mode on 5111 (enable 2111 frequency converter + CCK)*/ if (ah->ah_radio == AR5K_RF5111) { if (mode == AR5K_MODE_11B) AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_B_MODE); else AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_B_MODE); } } else if (ah->ah_version == AR5K_AR5210) { usleep_range(1000, 1500); /* Disable phy and wait */ ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT); usleep_range(1000, 1500); } /* Set channel on PHY */ ret = ath5k_hw_channel(ah, channel); if (ret) return ret; /* * Enable the PHY and wait until completion * This includes BaseBand and Synthesizer * activation. */ ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT); ath5k_hw_wait_for_synth(ah, channel); /* * Perform ADC test to see if baseband is ready * Set tx hold and check adc test register */ phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1); ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1); for (i = 0; i <= 20; i++) { if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10)) break; usleep_range(200, 250); } ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1); /* * Start automatic gain control calibration * * During AGC calibration RX path is re-routed to * a power detector so we don't receive anything. * * This method is used to calibrate some static offsets * used together with on-the fly I/Q calibration (the * one performed via ath5k_hw_phy_calibrate), which doesn't * interrupt rx path. * * While rx path is re-routed to the power detector we also * start a noise floor calibration to measure the * card's noise floor (the noise we measure when we are not * transmitting or receiving anything). * * If we are in a noisy environment, AGC calibration may time * out and/or noise floor calibration might timeout. */ AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF); /* At the same time start I/Q calibration for QAM constellation * -no need for CCK- */ ah->ah_iq_cal_needed = false; if (!(mode == AR5K_MODE_11B)) { ah->ah_iq_cal_needed = true; AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15); AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN); } /* Wait for gain calibration to finish (we check for I/Q calibration * during ath5k_phy_calibrate) */ if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL, 0, false)) { ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n", channel->center_freq); } /* Restore antenna mode */ ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode); return ret; }