/*
 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

/*************************************\
* EEPROM access functions and helpers *
\*************************************/

#include <linux/slab.h>

#include "ath5k.h"
#include "reg.h"
#include "debug.h"


/******************\
* Helper functions *
\******************/

/*
 * Translate binary channel representation in EEPROM to frequency
 */
static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
							unsigned int mode)
{
	u16 val;

	if (bin == AR5K_EEPROM_CHANNEL_DIS)
		return bin;

	if (mode == AR5K_EEPROM_MODE_11A) {
		if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
			val = (5 * bin) + 4800;
		else
			val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
				(bin * 10) + 5100;
	} else {
		if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
			val = bin + 2300;
		else
			val = bin + 2400;
	}

	return val;
}


/*********\
* Parsers *
\*********/

/*
 * Initialize eeprom & capabilities structs
 */
static int
ath5k_eeprom_init_header(struct ath5k_hw *ah)
{
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	u16 val;
	u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;

	/*
	 * Read values from EEPROM and store them in the capability structure
	 */
	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);

	/* Return if we have an old EEPROM */
	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
		return 0;

	/*
	 * Validate the checksum of the EEPROM date. There are some
	 * devices with invalid EEPROMs.
	 */
	AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
	if (val) {
		eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
			   AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
		AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
		eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;

		/*
		 * Fail safe check to prevent stupid loops due
		 * to busted EEPROMs. XXX: This value is likely too
		 * big still, waiting on a better value.
		 */
		if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
			ATH5K_ERR(ah, "Invalid max custom EEPROM size: "
				  "%d (0x%04x) max expected: %d (0x%04x)\n",
				  eep_max, eep_max,
				  3 * AR5K_EEPROM_INFO_MAX,
				  3 * AR5K_EEPROM_INFO_MAX);
			return -EIO;
		}
	}

	for (cksum = 0, offset = 0; offset < eep_max; offset++) {
		AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
		cksum ^= val;
	}
	if (cksum != AR5K_EEPROM_INFO_CKSUM) {
		ATH5K_ERR(ah, "Invalid EEPROM "
			  "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
			  cksum, eep_max,
			  eep_max == AR5K_EEPROM_INFO_MAX ?
				"default size" : "custom size");
		return -EIO;
	}

	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
	    ee_ant_gain);

	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
		AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
		AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);

		/* XXX: Don't know which versions include these two */
		AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);

		if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);

		if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
		}
	}

	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
		AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
		ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
		ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;

		AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
		ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
		ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
	}

	AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);

	if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
		ee->ee_is_hb63 = true;
	else
		ee->ee_is_hb63 = false;

	AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
	ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
	ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;

	/* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
	 * and enable serdes programming if needed.
	 *
	 * XXX: Serdes values seem to be fixed so
	 * no need to read them here, we write them
	 * during ath5k_hw_init */
	AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
	ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
							true : false;

	return 0;
}


/*
 * Read antenna infos from eeprom
 */
static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
		unsigned int mode)
{
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	u32 o = *offset;
	u16 val;
	int i = 0;

	AR5K_EEPROM_READ(o++, val);
	ee->ee_switch_settling[mode]	= (val >> 8) & 0x7f;
	ee->ee_atn_tx_rx[mode]		= (val >> 2) & 0x3f;
	ee->ee_ant_control[mode][i]	= (val << 4) & 0x3f;

	AR5K_EEPROM_READ(o++, val);
	ee->ee_ant_control[mode][i++]	|= (val >> 12) & 0xf;
	ee->ee_ant_control[mode][i++]	= (val >> 6) & 0x3f;
	ee->ee_ant_control[mode][i++]	= val & 0x3f;

	AR5K_EEPROM_READ(o++, val);
	ee->ee_ant_control[mode][i++]	= (val >> 10) & 0x3f;
	ee->ee_ant_control[mode][i++]	= (val >> 4) & 0x3f;
	ee->ee_ant_control[mode][i]	= (val << 2) & 0x3f;

	AR5K_EEPROM_READ(o++, val);
	ee->ee_ant_control[mode][i++]	|= (val >> 14) & 0x3;
	ee->ee_ant_control[mode][i++]	= (val >> 8) & 0x3f;
	ee->ee_ant_control[mode][i++]	= (val >> 2) & 0x3f;
	ee->ee_ant_control[mode][i]	= (val << 4) & 0x3f;

	AR5K_EEPROM_READ(o++, val);
	ee->ee_ant_control[mode][i++]	|= (val >> 12) & 0xf;
	ee->ee_ant_control[mode][i++]	= (val >> 6) & 0x3f;
	ee->ee_ant_control[mode][i++]	= val & 0x3f;

	/* Get antenna switch tables */
	ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
	    (ee->ee_ant_control[mode][0] << 4);
	ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
	     ee->ee_ant_control[mode][1]	|
	    (ee->ee_ant_control[mode][2] << 6)	|
	    (ee->ee_ant_control[mode][3] << 12) |
	    (ee->ee_ant_control[mode][4] << 18) |
	    (ee->ee_ant_control[mode][5] << 24);
	ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
	     ee->ee_ant_control[mode][6]	|
	    (ee->ee_ant_control[mode][7] << 6)	|
	    (ee->ee_ant_control[mode][8] << 12) |
	    (ee->ee_ant_control[mode][9] << 18) |
	    (ee->ee_ant_control[mode][10] << 24);

	/* return new offset */
	*offset = o;

	return 0;
}

/*
 * Read supported modes and some mode-specific calibration data
 * from eeprom
 */
static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
		unsigned int mode)
{
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	u32 o = *offset;
	u16 val;

	ee->ee_n_piers[mode] = 0;
	AR5K_EEPROM_READ(o++, val);
	ee->ee_adc_desired_size[mode]	= (s8)((val >> 8) & 0xff);
	switch (mode) {
	case AR5K_EEPROM_MODE_11A:
		ee->ee_ob[mode][3]	= (val >> 5) & 0x7;
		ee->ee_db[mode][3]	= (val >> 2) & 0x7;
		ee->ee_ob[mode][2]	= (val << 1) & 0x7;

		AR5K_EEPROM_READ(o++, val);
		ee->ee_ob[mode][2]	|= (val >> 15) & 0x1;
		ee->ee_db[mode][2]	= (val >> 12) & 0x7;
		ee->ee_ob[mode][1]	= (val >> 9) & 0x7;
		ee->ee_db[mode][1]	= (val >> 6) & 0x7;
		ee->ee_ob[mode][0]	= (val >> 3) & 0x7;
		ee->ee_db[mode][0]	= val & 0x7;
		break;
	case AR5K_EEPROM_MODE_11G:
	case AR5K_EEPROM_MODE_11B:
		ee->ee_ob[mode][1]	= (val >> 4) & 0x7;
		ee->ee_db[mode][1]	= val & 0x7;
		break;
	}

	AR5K_EEPROM_READ(o++, val);
	ee->ee_tx_end2xlna_enable[mode]	= (val >> 8) & 0xff;
	ee->ee_thr_62[mode]		= val & 0xff;

	if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
		ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;

	AR5K_EEPROM_READ(o++, val);
	ee->ee_tx_end2xpa_disable[mode]	= (val >> 8) & 0xff;
	ee->ee_tx_frm2xpa_enable[mode]	= val & 0xff;

	AR5K_EEPROM_READ(o++, val);
	ee->ee_pga_desired_size[mode]	= (val >> 8) & 0xff;

	if ((val & 0xff) & 0x80)
		ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
	else
		ee->ee_noise_floor_thr[mode] = val & 0xff;

	if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
		ee->ee_noise_floor_thr[mode] =
		    mode == AR5K_EEPROM_MODE_11A ? -54 : -1;

	AR5K_EEPROM_READ(o++, val);
	ee->ee_xlna_gain[mode]		= (val >> 5) & 0xff;
	ee->ee_x_gain[mode]		= (val >> 1) & 0xf;
	ee->ee_xpd[mode]		= val & 0x1;

	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
	    mode != AR5K_EEPROM_MODE_11B)
		ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;

	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
		AR5K_EEPROM_READ(o++, val);
		ee->ee_false_detect[mode] = (val >> 6) & 0x7f;

		if (mode == AR5K_EEPROM_MODE_11A)
			ee->ee_xr_power[mode] = val & 0x3f;
		else {
			/* b_DB_11[bg] and b_OB_11[bg] */
			ee->ee_ob[mode][0] = val & 0x7;
			ee->ee_db[mode][0] = (val >> 3) & 0x7;
		}
	}

	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
		ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
		ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
	} else {
		ee->ee_i_gain[mode] = (val >> 13) & 0x7;

		AR5K_EEPROM_READ(o++, val);
		ee->ee_i_gain[mode] |= (val << 3) & 0x38;

		if (mode == AR5K_EEPROM_MODE_11G) {
			ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
			if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
				ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
		}
	}

	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
			mode == AR5K_EEPROM_MODE_11A) {
		ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
		ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
	}

	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
		goto done;

	/* Note: >= v5 have bg freq piers on another location
	 * so these freq piers are ignored for >= v5 (should be 0xff
	 * anyway) */
	switch (mode) {
	case AR5K_EEPROM_MODE_11A:
		if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
			break;

		AR5K_EEPROM_READ(o++, val);
		ee->ee_margin_tx_rx[mode] = val & 0x3f;
		break;
	case AR5K_EEPROM_MODE_11B:
		AR5K_EEPROM_READ(o++, val);

		ee->ee_pwr_cal_b[0].freq =
			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
		if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
			ee->ee_n_piers[mode]++;

		ee->ee_pwr_cal_b[1].freq =
			ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
		if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
			ee->ee_n_piers[mode]++;

		AR5K_EEPROM_READ(o++, val);
		ee->ee_pwr_cal_b[2].freq =
			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
		if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
			ee->ee_n_piers[mode]++;

		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
			ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
		break;
	case AR5K_EEPROM_MODE_11G:
		AR5K_EEPROM_READ(o++, val);

		ee->ee_pwr_cal_g[0].freq =
			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
		if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
			ee->ee_n_piers[mode]++;

		ee->ee_pwr_cal_g[1].freq =
			ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
		if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
			ee->ee_n_piers[mode]++;

		AR5K_EEPROM_READ(o++, val);
		ee->ee_turbo_max_power[mode] = val & 0x7f;
		ee->ee_xr_power[mode] = (val >> 7) & 0x3f;

		AR5K_EEPROM_READ(o++, val);
		ee->ee_pwr_cal_g[2].freq =
			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
		if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
			ee->ee_n_piers[mode]++;

		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
			ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;

		AR5K_EEPROM_READ(o++, val);
		ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
		ee->ee_q_cal[mode] = val & 0x1f;

		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
			AR5K_EEPROM_READ(o++, val);
			ee->ee_cck_ofdm_gain_delta = val & 0xff;
		}
		break;
	}

	/*
	 * Read turbo mode information on newer EEPROM versions
	 */
	if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
		goto done;

	switch (mode) {
	case AR5K_EEPROM_MODE_11A:
		ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;

		ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
		AR5K_EEPROM_READ(o++, val);
		ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
		ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;

		ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
		AR5K_EEPROM_READ(o++, val);
		ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
		ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;

		if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >= 2)
			ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
		break;
	case AR5K_EEPROM_MODE_11G:
		ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;

		ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
		AR5K_EEPROM_READ(o++, val);
		ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
		ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;

		ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
		AR5K_EEPROM_READ(o++, val);
		ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
		ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
		break;
	}

done:
	/* return new offset */
	*offset = o;

	return 0;
}

/* Read mode-specific data (except power calibration data) */
static int
ath5k_eeprom_init_modes(struct ath5k_hw *ah)
{
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	u32 mode_offset[3];
	unsigned int mode;
	u32 offset;
	int ret;

	/*
	 * Get values for all modes
	 */
	mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
	mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
	mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);

	ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
		AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);

	for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
		offset = mode_offset[mode];

		ret = ath5k_eeprom_read_ants(ah, &offset, mode);
		if (ret)
			return ret;

		ret = ath5k_eeprom_read_modes(ah, &offset, mode);
		if (ret)
			return ret;
	}

	/* override for older eeprom versions for better performance */
	if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
		ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
		ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
		ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
	}

	return 0;
}

/* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
 * frequency mask) */
static inline int
ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
			struct ath5k_chan_pcal_info *pc, unsigned int mode)
{
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	int o = *offset;
	int i = 0;
	u8 freq1, freq2;
	u16 val;

	ee->ee_n_piers[mode] = 0;
	while (i < max) {
		AR5K_EEPROM_READ(o++, val);

		freq1 = val & 0xff;
		if (!freq1)
			break;

		pc[i++].freq = ath5k_eeprom_bin2freq(ee,
				freq1, mode);
		ee->ee_n_piers[mode]++;

		freq2 = (val >> 8) & 0xff;
		if (!freq2)
			break;

		pc[i++].freq = ath5k_eeprom_bin2freq(ee,
				freq2, mode);
		ee->ee_n_piers[mode]++;
	}

	/* return new offset */
	*offset = o;

	return 0;
}

/* Read frequency piers for 802.11a */
static int
ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
{
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
	int i;
	u16 val;
	u8 mask;

	if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
		ath5k_eeprom_read_freq_list(ah, &offset,
			AR5K_EEPROM_N_5GHZ_CHAN, pcal,
			AR5K_EEPROM_MODE_11A);
	} else {
		mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);

		AR5K_EEPROM_READ(offset++, val);
		pcal[0].freq  = (val >> 9) & mask;
		pcal[1].freq  = (val >> 2) & mask;
		pcal[2].freq  = (val << 5) & mask;

		AR5K_EEPROM_READ(offset++, val);
		pcal[2].freq |= (val >> 11) & 0x1f;
		pcal[3].freq  = (val >> 4) & mask;
		pcal[4].freq  = (val << 3) & mask;

		AR5K_EEPROM_READ(offset++, val);
		pcal[4].freq |= (val >> 13) & 0x7;
		pcal[5].freq  = (val >> 6) & mask;
		pcal[6].freq  = (val << 1) & mask;

		AR5K_EEPROM_READ(offset++, val);
		pcal[6].freq |= (val >> 15) & 0x1;
		pcal[7].freq  = (val >> 8) & mask;
		pcal[8].freq  = (val >> 1) & mask;
		pcal[9].freq  = (val << 6) & mask;

		AR5K_EEPROM_READ(offset++, val);
		pcal[9].freq |= (val >> 10) & 0x3f;

		/* Fixed number of piers */
		ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;

		for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
			pcal[i].freq = ath5k_eeprom_bin2freq(ee,
				pcal[i].freq, AR5K_EEPROM_MODE_11A);
		}
	}

	return 0;
}

/* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
static inline int
ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
{
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	struct ath5k_chan_pcal_info *pcal;

	switch (mode) {
	case AR5K_EEPROM_MODE_11B:
		pcal = ee->ee_pwr_cal_b;
		break;
	case AR5K_EEPROM_MODE_11G:
		pcal = ee->ee_pwr_cal_g;
		break;
	default:
		return -EINVAL;
	}

	ath5k_eeprom_read_freq_list(ah, &offset,
		AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
		mode);

	return 0;
}


/*
 * Read power calibration for RF5111 chips
 *
 * For RF5111 we have an XPD -eXternal Power Detector- curve
 * for each calibrated channel. Each curve has 0,5dB Power steps
 * on x axis and PCDAC steps (offsets) on y axis and looks like an
 * exponential function. To recreate the curve we read 11 points
 * here and interpolate later.
 */

/* Used to match PCDAC steps with power values on RF5111 chips
 * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
 * steps that match with the power values we read from eeprom. On
 * older eeprom versions (< 3.2) these steps are equally spaced at
 * 10% of the pcdac curve -until the curve reaches its maximum-
 * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
 * these 11 steps are spaced in a different way. This function returns
 * the pcdac steps based on eeprom version and curve min/max so that we
 * can have pcdac/pwr points.
 */
static inline void
ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
{
	static const u16 intercepts3[] = {
		0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100
	};
	static const u16 intercepts3_2[] = {
		0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
	};
	const u16 *ip;
	int i;

	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
		ip = intercepts3_2;
	else
		ip = intercepts3;

	for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
		vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
}

static int
ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
{
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	struct ath5k_chan_pcal_info *chinfo;
	u8 pier, pdg;

	switch (mode) {
	case AR5K_EEPROM_MODE_11A:
		if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
			return 0;
		chinfo = ee->ee_pwr_cal_a;
		break;
	case AR5K_EEPROM_MODE_11B:
		if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
			return 0;
		chinfo = ee->ee_pwr_cal_b;
		break;
	case AR5K_EEPROM_MODE_11G:
		if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
			return 0;
		chinfo = ee->ee_pwr_cal_g;
		break;
	default:
		return -EINVAL;
	}

	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
		if (!chinfo[pier].pd_curves)
			continue;

		for (pdg = 0; pdg < AR5K_EEPROM_N_PD_CURVES; pdg++) {
			struct ath5k_pdgain_info *pd =
					&chinfo[pier].pd_curves[pdg];

			kfree(pd->pd_step);
			kfree(pd->pd_pwr);
		}

		kfree(chinfo[pier].pd_curves);
	}

	return 0;
}

/* Convert RF5111 specific data to generic raw data
 * used by interpolation code */
static int
ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
				struct ath5k_chan_pcal_info *chinfo)
{
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	struct ath5k_chan_pcal_info_rf5111 *pcinfo;
	struct ath5k_pdgain_info *pd;
	u8 pier, point, idx;
	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];

	/* Fill raw data for each calibration pier */
	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {

		pcinfo = &chinfo[pier].rf5111_info;

		/* Allocate pd_curves for this cal pier */
		chinfo[pier].pd_curves =
			kcalloc(AR5K_EEPROM_N_PD_CURVES,
				sizeof(struct ath5k_pdgain_info),
				GFP_KERNEL);

		if (!chinfo[pier].pd_curves)
			goto err_out;

		/* Only one curve for RF5111
		 * find out which one and place
		 * in pd_curves.
		 * Note: ee_x_gain is reversed here */
		for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {

			if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
				pdgain_idx[0] = idx;
				break;
			}
		}

		ee->ee_pd_gains[mode] = 1;

		pd = &chinfo[pier].pd_curves[idx];

		pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;

		/* Allocate pd points for this curve */
		pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
					sizeof(u8), GFP_KERNEL);
		if (!pd->pd_step)
			goto err_out;

		pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
					sizeof(s16), GFP_KERNEL);
		if (!pd->pd_pwr)
			goto err_out;

		/* Fill raw dataset
		 * (convert power to 0.25dB units
		 * for RF5112 compatibility) */
		for (point = 0; point < pd->pd_points; point++) {

			/* Absolute values */
			pd->pd_pwr[point] = 2 * pcinfo->pwr[point];

			/* Already sorted */
			pd->pd_step[point] = pcinfo->pcdac[point];
		}

		/* Set min/max pwr */
		chinfo[pier].min_pwr = pd->pd_pwr[0];
		chinfo[pier].max_pwr = pd->pd_pwr[10];

	}

	return 0;

err_out:
	ath5k_eeprom_free_pcal_info(ah, mode);
	return -ENOMEM;
}

/* Parse EEPROM data */
static int
ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
{
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	struct ath5k_chan_pcal_info *pcal;
	int offset, ret;
	int i;
	u16 val;

	offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
	switch (mode) {
	case AR5K_EEPROM_MODE_11A:
		if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
			return 0;

		ret = ath5k_eeprom_init_11a_pcal_freq(ah,
			offset + AR5K_EEPROM_GROUP1_OFFSET);
		if (ret < 0)
			return ret;

		offset += AR5K_EEPROM_GROUP2_OFFSET;
		pcal = ee->ee_pwr_cal_a;
		break;
	case AR5K_EEPROM_MODE_11B:
		if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
		    !AR5K_EEPROM_HDR_11G(ee->ee_header))
			return 0;

		pcal = ee->ee_pwr_cal_b;
		offset += AR5K_EEPROM_GROUP3_OFFSET;

		/* fixed piers */
		pcal[0].freq = 2412;
		pcal[1].freq = 2447;
		pcal[2].freq = 2484;
		ee->ee_n_piers[mode] = 3;
		break;
	case AR5K_EEPROM_MODE_11G:
		if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
			return 0;

		pcal = ee->ee_pwr_cal_g;
		offset += AR5K_EEPROM_GROUP4_OFFSET;

		/* fixed piers */
		pcal[0].freq = 2312;
		pcal[1].freq = 2412;
		pcal[2].freq = 2484;
		ee->ee_n_piers[mode] = 3;
		break;
	default:
		return -EINVAL;
	}

	for (i = 0; i < ee->ee_n_piers[mode]; i++) {
		struct ath5k_chan_pcal_info_rf5111 *cdata =
			&pcal[i].rf5111_info;

		AR5K_EEPROM_READ(offset++, val);
		cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
		cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
		cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);

		AR5K_EEPROM_READ(offset++, val);
		cdata->pwr[0] |= ((val >> 14) & 0x3);
		cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
		cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
		cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);

		AR5K_EEPROM_READ(offset++, val);
		cdata->pwr[3] |= ((val >> 12) & 0xf);
		cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
		cdata->pwr[5] = (val  & AR5K_EEPROM_POWER_M);

		AR5K_EEPROM_READ(offset++, val);
		cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
		cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
		cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);

		AR5K_EEPROM_READ(offset++, val);
		cdata->pwr[8] |= ((val >> 14) & 0x3);
		cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
		cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);

		ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
			cdata->pcdac_max, cdata->pcdac);
	}

	return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
}


/*
 * Read power calibration for RF5112 chips
 *
 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
 * for each calibrated channel on 0, -6, -12 and -18dBm but we only
 * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
 * power steps on x axis and PCDAC steps on y axis and looks like a
 * linear function. To recreate the curve and pass the power values
 * on hw, we read 4 points for xpd 0 (lower gain -> max power)
 * and 3 points for xpd 3 (higher gain -> lower power) here and
 * interpolate later.
 *
 * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
 */

/* Convert RF5112 specific data to generic raw data
 * used by interpolation code */
static int
ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
				struct ath5k_chan_pcal_info *chinfo)
{
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	struct ath5k_chan_pcal_info_rf5112 *pcinfo;
	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
	unsigned int pier, pdg, point;

	/* Fill raw data for each calibration pier */
	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {

		pcinfo = &chinfo[pier].rf5112_info;

		/* Allocate pd_curves for this cal pier */
		chinfo[pier].pd_curves =
				kcalloc(AR5K_EEPROM_N_PD_CURVES,
					sizeof(struct ath5k_pdgain_info),
					GFP_KERNEL);

		if (!chinfo[pier].pd_curves)
			goto err_out;

		/* Fill pd_curves */
		for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {

			u8 idx = pdgain_idx[pdg];
			struct ath5k_pdgain_info *pd =
					&chinfo[pier].pd_curves[idx];

			/* Lowest gain curve (max power) */
			if (pdg == 0) {
				/* One more point for better accuracy */
				pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;

				/* Allocate pd points for this curve */
				pd->pd_step = kcalloc(pd->pd_points,
						sizeof(u8), GFP_KERNEL);

				if (!pd->pd_step)
					goto err_out;

				pd->pd_pwr = kcalloc(pd->pd_points,
						sizeof(s16), GFP_KERNEL);

				if (!pd->pd_pwr)
					goto err_out;

				/* Fill raw dataset
				 * (all power levels are in 0.25dB units) */
				pd->pd_step[0] = pcinfo->pcdac_x0[0];
				pd->pd_pwr[0] = pcinfo->pwr_x0[0];

				for (point = 1; point < pd->pd_points;
				point++) {
					/* Absolute values */
					pd->pd_pwr[point] =
						pcinfo->pwr_x0[point];

					/* Deltas */
					pd->pd_step[point] =
						pd->pd_step[point - 1] +
						pcinfo->pcdac_x0[point];
				}

				/* Set min power for this frequency */
				chinfo[pier].min_pwr = pd->pd_pwr[0];

			/* Highest gain curve (min power) */
			} else if (pdg == 1) {

				pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;

				/* Allocate pd points for this curve */
				pd->pd_step = kcalloc(pd->pd_points,
						sizeof(u8), GFP_KERNEL);

				if (!pd->pd_step)
					goto err_out;

				pd->pd_pwr = kcalloc(pd->pd_points,
						sizeof(s16), GFP_KERNEL);

				if (!pd->pd_pwr)
					goto err_out;

				/* Fill raw dataset
				 * (all power levels are in 0.25dB units) */
				for (point = 0; point < pd->pd_points;
				point++) {
					/* Absolute values */
					pd->pd_pwr[point] =
						pcinfo->pwr_x3[point];

					/* Fixed points */
					pd->pd_step[point] =
						pcinfo->pcdac_x3[point];
				}

				/* Since we have a higher gain curve
				 * override min power */
				chinfo[pier].min_pwr = pd->pd_pwr[0];
			}
		}
	}

	return 0;

err_out:
	ath5k_eeprom_free_pcal_info(ah, mode);
	return -ENOMEM;
}

/* Parse EEPROM data */
static int
ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
{
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
	struct ath5k_chan_pcal_info *gen_chan_info;
	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
	u32 offset;
	u8 i, c;
	u16 val;
	u8 pd_gains = 0;

	/* Count how many curves we have and
	 * identify them (which one of the 4
	 * available curves we have on each count).
	 * Curves are stored from lower (x0) to
	 * higher (x3) gain */
	for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
		/* ee_x_gain[mode] is x gain mask */
		if ((ee->ee_x_gain[mode] >> i) & 0x1)
			pdgain_idx[pd_gains++] = i;
	}
	ee->ee_pd_gains[mode] = pd_gains;

	if (pd_gains == 0 || pd_gains > 2)
		return -EINVAL;

	switch (mode) {
	case AR5K_EEPROM_MODE_11A:
		/*
		 * Read 5GHz EEPROM channels
		 */
		offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
		ath5k_eeprom_init_11a_pcal_freq(ah, offset);

		offset += AR5K_EEPROM_GROUP2_OFFSET;
		gen_chan_info = ee->ee_pwr_cal_a;
		break;
	case AR5K_EEPROM_MODE_11B:
		offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
		if (AR5K_EEPROM_HDR_11A(ee->ee_header))
			offset += AR5K_EEPROM_GROUP3_OFFSET;

		/* NB: frequency piers parsed during mode init */
		gen_chan_info = ee->ee_pwr_cal_b;
		break;
	case AR5K_EEPROM_MODE_11G:
		offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
		if (AR5K_EEPROM_HDR_11A(ee->ee_header))
			offset += AR5K_EEPROM_GROUP4_OFFSET;
		else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
			offset += AR5K_EEPROM_GROUP2_OFFSET;

		/* NB: frequency piers parsed during mode init */
		gen_chan_info = ee->ee_pwr_cal_g;
		break;
	default:
		return -EINVAL;
	}

	for (i = 0; i < ee->ee_n_piers[mode]; i++) {
		chan_pcal_info = &gen_chan_info[i].rf5112_info;

		/* Power values in quarter dB
		 * for the lower xpd gain curve
		 * (0 dBm -> higher output power) */
		for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
			AR5K_EEPROM_READ(offset++, val);
			chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
			chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
		}

		/* PCDAC steps
		 * corresponding to the above power
		 * measurements */
		AR5K_EEPROM_READ(offset++, val);
		chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
		chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
		chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);

		/* Power values in quarter dB
		 * for the higher xpd gain curve
		 * (18 dBm -> lower output power) */
		AR5K_EEPROM_READ(offset++, val);
		chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
		chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);

		AR5K_EEPROM_READ(offset++, val);
		chan_pcal_info->pwr_x3[2] = (val & 0xff);

		/* PCDAC steps
		 * corresponding to the above power
		 * measurements (fixed) */
		chan_pcal_info->pcdac_x3[0] = 20;
		chan_pcal_info->pcdac_x3[1] = 35;
		chan_pcal_info->pcdac_x3[2] = 63;

		if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
			chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);

			/* Last xpd0 power level is also channel maximum */
			gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
		} else {
			chan_pcal_info->pcdac_x0[0] = 1;
			gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
		}

	}

	return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
}


/*
 * Read power calibration for RF2413 chips
 *
 * For RF2413 we have a Power to PDDAC table (Power Detector)
 * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
 * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
 * axis and looks like an exponential function like the RF5111 curve.
 *
 * To recreate the curves we read here the points and interpolate
 * later. Note that in most cases only 2 (higher and lower) curves are
 * used (like RF5112) but vendors have the opportunity to include all
 * 4 curves on eeprom. The final curve (higher power) has an extra
 * point for better accuracy like RF5112.
 */

/* For RF2413 power calibration data doesn't start on a fixed location and
 * if a mode is not supported, its section is missing -not zeroed-.
 * So we need to calculate the starting offset for each section by using
 * these two functions */

/* Return the size of each section based on the mode and the number of pd
 * gains available (maximum 4). */
static inline unsigned int
ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
{
	static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
	unsigned int sz;

	sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
	sz *= ee->ee_n_piers[mode];

	return sz;
}

/* Return the starting offset for a section based on the modes supported
 * and each section's size. */
static unsigned int
ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
{
	u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);

	switch (mode) {
	case AR5K_EEPROM_MODE_11G:
		if (AR5K_EEPROM_HDR_11B(ee->ee_header))
			offset += ath5k_pdgains_size_2413(ee,
					AR5K_EEPROM_MODE_11B) +
					AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
		/* fall through */
	case AR5K_EEPROM_MODE_11B:
		if (AR5K_EEPROM_HDR_11A(ee->ee_header))
			offset += ath5k_pdgains_size_2413(ee,
					AR5K_EEPROM_MODE_11A) +
					AR5K_EEPROM_N_5GHZ_CHAN / 2;
		/* fall through */
	case AR5K_EEPROM_MODE_11A:
		break;
	default:
		break;
	}

	return offset;
}

/* Convert RF2413 specific data to generic raw data
 * used by interpolation code */
static int
ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
				struct ath5k_chan_pcal_info *chinfo)
{
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	struct ath5k_chan_pcal_info_rf2413 *pcinfo;
	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
	unsigned int pier, pdg, point;

	/* Fill raw data for each calibration pier */
	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {

		pcinfo = &chinfo[pier].rf2413_info;

		/* Allocate pd_curves for this cal pier */
		chinfo[pier].pd_curves =
				kcalloc(AR5K_EEPROM_N_PD_CURVES,
					sizeof(struct ath5k_pdgain_info),
					GFP_KERNEL);

		if (!chinfo[pier].pd_curves)
			goto err_out;

		/* Fill pd_curves */
		for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {

			u8 idx = pdgain_idx[pdg];
			struct ath5k_pdgain_info *pd =
					&chinfo[pier].pd_curves[idx];

			/* One more point for the highest power
			 * curve (lowest gain) */
			if (pdg == ee->ee_pd_gains[mode] - 1)
				pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
			else
				pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;

			/* Allocate pd points for this curve */
			pd->pd_step = kcalloc(pd->pd_points,
					sizeof(u8), GFP_KERNEL);

			if (!pd->pd_step)
				goto err_out;

			pd->pd_pwr = kcalloc(pd->pd_points,
					sizeof(s16), GFP_KERNEL);

			if (!pd->pd_pwr)
				goto err_out;

			/* Fill raw dataset
			 * convert all pwr levels to
			 * quarter dB for RF5112 compatibility */
			pd->pd_step[0] = pcinfo->pddac_i[pdg];
			pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];

			for (point = 1; point < pd->pd_points; point++) {

				pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
					2 * pcinfo->pwr[pdg][point - 1];

				pd->pd_step[point] = pd->pd_step[point - 1] +
						pcinfo->pddac[pdg][point - 1];

			}

			/* Highest gain curve -> min power */
			if (pdg == 0)
				chinfo[pier].min_pwr = pd->pd_pwr[0];

			/* Lowest gain curve -> max power */
			if (pdg == ee->ee_pd_gains[mode] - 1)
				chinfo[pier].max_pwr =
					pd->pd_pwr[pd->pd_points - 1];
		}
	}

	return 0;

err_out:
	ath5k_eeprom_free_pcal_info(ah, mode);
	return -ENOMEM;
}

/* Parse EEPROM data */
static int
ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
{
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	struct ath5k_chan_pcal_info_rf2413 *pcinfo;
	struct ath5k_chan_pcal_info *chinfo;
	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
	u32 offset;
	int idx, i;
	u16 val;
	u8 pd_gains = 0;

	/* Count how many curves we have and
	 * identify them (which one of the 4
	 * available curves we have on each count).
	 * Curves are stored from higher to
	 * lower gain so we go backwards */
	for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
		/* ee_x_gain[mode] is x gain mask */
		if ((ee->ee_x_gain[mode] >> idx) & 0x1)
			pdgain_idx[pd_gains++] = idx;

	}
	ee->ee_pd_gains[mode] = pd_gains;

	if (pd_gains == 0)
		return -EINVAL;

	offset = ath5k_cal_data_offset_2413(ee, mode);
	switch (mode) {
	case AR5K_EEPROM_MODE_11A:
		if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
			return 0;

		ath5k_eeprom_init_11a_pcal_freq(ah, offset);
		offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
		chinfo = ee->ee_pwr_cal_a;
		break;
	case AR5K_EEPROM_MODE_11B:
		if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
			return 0;

		ath5k_eeprom_init_11bg_2413(ah, mode, offset);
		offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
		chinfo = ee->ee_pwr_cal_b;
		break;
	case AR5K_EEPROM_MODE_11G:
		if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
			return 0;

		ath5k_eeprom_init_11bg_2413(ah, mode, offset);
		offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
		chinfo = ee->ee_pwr_cal_g;
		break;
	default:
		return -EINVAL;
	}

	for (i = 0; i < ee->ee_n_piers[mode]; i++) {
		pcinfo = &chinfo[i].rf2413_info;

		/*
		 * Read pwr_i, pddac_i and the first
		 * 2 pd points (pwr, pddac)
		 */
		AR5K_EEPROM_READ(offset++, val);
		pcinfo->pwr_i[0] = val & 0x1f;
		pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
		pcinfo->pwr[0][0] = (val >> 12) & 0xf;

		AR5K_EEPROM_READ(offset++, val);
		pcinfo->pddac[0][0] = val & 0x3f;
		pcinfo->pwr[0][1] = (val >> 6) & 0xf;
		pcinfo->pddac[0][1] = (val >> 10) & 0x3f;

		AR5K_EEPROM_READ(offset++, val);
		pcinfo->pwr[0][2] = val & 0xf;
		pcinfo->pddac[0][2] = (val >> 4) & 0x3f;

		pcinfo->pwr[0][3] = 0;
		pcinfo->pddac[0][3] = 0;

		if (pd_gains > 1) {
			/*
			 * Pd gain 0 is not the last pd gain
			 * so it only has 2 pd points.
			 * Continue with pd gain 1.
			 */
			pcinfo->pwr_i[1] = (val >> 10) & 0x1f;

			pcinfo->pddac_i[1] = (val >> 15) & 0x1;
			AR5K_EEPROM_READ(offset++, val);
			pcinfo->pddac_i[1] |= (val & 0x3F) << 1;

			pcinfo->pwr[1][0] = (val >> 6) & 0xf;
			pcinfo->pddac[1][0] = (val >> 10) & 0x3f;

			AR5K_EEPROM_READ(offset++, val);
			pcinfo->pwr[1][1] = val & 0xf;
			pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
			pcinfo->pwr[1][2] = (val >> 10) & 0xf;

			pcinfo->pddac[1][2] = (val >> 14) & 0x3;
			AR5K_EEPROM_READ(offset++, val);
			pcinfo->pddac[1][2] |= (val & 0xF) << 2;

			pcinfo->pwr[1][3] = 0;
			pcinfo->pddac[1][3] = 0;
		} else if (pd_gains == 1) {
			/*
			 * Pd gain 0 is the last one so
			 * read the extra point.
			 */
			pcinfo->pwr[0][3] = (val >> 10) & 0xf;

			pcinfo->pddac[0][3] = (val >> 14) & 0x3;
			AR5K_EEPROM_READ(offset++, val);
			pcinfo->pddac[0][3] |= (val & 0xF) << 2;
		}

		/*
		 * Proceed with the other pd_gains
		 * as above.
		 */
		if (pd_gains > 2) {
			pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
			pcinfo->pddac_i[2] = (val >> 9) & 0x7f;

			AR5K_EEPROM_READ(offset++, val);
			pcinfo->pwr[2][0] = (val >> 0) & 0xf;
			pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
			pcinfo->pwr[2][1] = (val >> 10) & 0xf;

			pcinfo->pddac[2][1] = (val >> 14) & 0x3;
			AR5K_EEPROM_READ(offset++, val);
			pcinfo->pddac[2][1] |= (val & 0xF) << 2;

			pcinfo->pwr[2][2] = (val >> 4) & 0xf;
			pcinfo->pddac[2][2] = (val >> 8) & 0x3f;

			pcinfo->pwr[2][3] = 0;
			pcinfo->pddac[2][3] = 0;
		} else if (pd_gains == 2) {
			pcinfo->pwr[1][3] = (val >> 4) & 0xf;
			pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
		}

		if (pd_gains > 3) {
			pcinfo->pwr_i[3] = (val >> 14) & 0x3;
			AR5K_EEPROM_READ(offset++, val);
			pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;

			pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
			pcinfo->pwr[3][0] = (val >> 10) & 0xf;
			pcinfo->pddac[3][0] = (val >> 14) & 0x3;

			AR5K_EEPROM_READ(offset++, val);
			pcinfo->pddac[3][0] |= (val & 0xF) << 2;
			pcinfo->pwr[3][1] = (val >> 4) & 0xf;
			pcinfo->pddac[3][1] = (val >> 8) & 0x3f;

			pcinfo->pwr[3][2] = (val >> 14) & 0x3;
			AR5K_EEPROM_READ(offset++, val);
			pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;

			pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
			pcinfo->pwr[3][3] = (val >> 8) & 0xf;

			pcinfo->pddac[3][3] = (val >> 12) & 0xF;
			AR5K_EEPROM_READ(offset++, val);
			pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
		} else if (pd_gains == 3) {
			pcinfo->pwr[2][3] = (val >> 14) & 0x3;
			AR5K_EEPROM_READ(offset++, val);
			pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;

			pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
		}
	}

	return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
}


/*
 * Read per rate target power (this is the maximum tx power
 * supported by the card). This info is used when setting
 * tx power, no matter the channel.
 *
 * This also works for v5 EEPROMs.
 */
static int
ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
{
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	struct ath5k_rate_pcal_info *rate_pcal_info;
	u8 *rate_target_pwr_num;
	u32 offset;
	u16 val;
	int i;

	offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
	rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
	switch (mode) {
	case AR5K_EEPROM_MODE_11A:
		offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
		rate_pcal_info = ee->ee_rate_tpwr_a;
		ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
		break;
	case AR5K_EEPROM_MODE_11B:
		offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
		rate_pcal_info = ee->ee_rate_tpwr_b;
		ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
		break;
	case AR5K_EEPROM_MODE_11G:
		offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
		rate_pcal_info = ee->ee_rate_tpwr_g;
		ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
		break;
	default:
		return -EINVAL;
	}

	/* Different freq mask for older eeproms (<= v3.2) */
	if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
		for (i = 0; i < (*rate_target_pwr_num); i++) {
			AR5K_EEPROM_READ(offset++, val);
			rate_pcal_info[i].freq =
			    ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);

			rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
			rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;

			AR5K_EEPROM_READ(offset++, val);

			if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
			    val == 0) {
				(*rate_target_pwr_num) = i;
				break;
			}

			rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
			rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
			rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
		}
	} else {
		for (i = 0; i < (*rate_target_pwr_num); i++) {
			AR5K_EEPROM_READ(offset++, val);
			rate_pcal_info[i].freq =
			    ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);

			rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
			rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;

			AR5K_EEPROM_READ(offset++, val);

			if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
			    val == 0) {
				(*rate_target_pwr_num) = i;
				break;
			}

			rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
			rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
			rate_pcal_info[i].target_power_54 = (val & 0x3f);
		}
	}

	return 0;
}


/*
 * Read per channel calibration info from EEPROM
 *
 * This info is used to calibrate the baseband power table. Imagine
 * that for each channel there is a power curve that's hw specific
 * (depends on amplifier etc) and we try to "correct" this curve using
 * offsets we pass on to phy chip (baseband -> before amplifier) so that
 * it can use accurate power values when setting tx power (takes amplifier's
 * performance on each channel into account).
 *
 * EEPROM provides us with the offsets for some pre-calibrated channels
 * and we have to interpolate to create the full table for these channels and
 * also the table for any channel.
 */
static int
ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
{
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	int (*read_pcal)(struct ath5k_hw *hw, int mode);
	int mode;
	int err;

	if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
			(AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
		read_pcal = ath5k_eeprom_read_pcal_info_5112;
	else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
			(AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
		read_pcal = ath5k_eeprom_read_pcal_info_2413;
	else
		read_pcal = ath5k_eeprom_read_pcal_info_5111;


	for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
	mode++) {
		err = read_pcal(ah, mode);
		if (err)
			return err;

		err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
		if (err < 0)
			return err;
	}

	return 0;
}

/* Read conformance test limits used for regulatory control */
static int
ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
{
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	struct ath5k_edge_power *rep;
	unsigned int fmask, pmask;
	unsigned int ctl_mode;
	int i, j;
	u32 offset;
	u16 val;

	pmask = AR5K_EEPROM_POWER_M;
	fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
	offset = AR5K_EEPROM_CTL(ee->ee_version);
	ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
	for (i = 0; i < ee->ee_ctls; i += 2) {
		AR5K_EEPROM_READ(offset++, val);
		ee->ee_ctl[i] = (val >> 8) & 0xff;
		ee->ee_ctl[i + 1] = val & 0xff;
	}

	offset = AR5K_EEPROM_GROUP8_OFFSET;
	if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
		offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
			AR5K_EEPROM_GROUP5_OFFSET;
	else
		offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);

	rep = ee->ee_ctl_pwr;
	for (i = 0; i < ee->ee_ctls; i++) {
		switch (ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
		case AR5K_CTL_11A:
		case AR5K_CTL_TURBO:
			ctl_mode = AR5K_EEPROM_MODE_11A;
			break;
		default:
			ctl_mode = AR5K_EEPROM_MODE_11G;
			break;
		}
		if (ee->ee_ctl[i] == 0) {
			if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
				offset += 8;
			else
				offset += 7;
			rep += AR5K_EEPROM_N_EDGES;
			continue;
		}
		if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
			for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
				AR5K_EEPROM_READ(offset++, val);
				rep[j].freq = (val >> 8) & fmask;
				rep[j + 1].freq = val & fmask;
			}
			for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
				AR5K_EEPROM_READ(offset++, val);
				rep[j].edge = (val >> 8) & pmask;
				rep[j].flag = (val >> 14) & 1;
				rep[j + 1].edge = val & pmask;
				rep[j + 1].flag = (val >> 6) & 1;
			}
		} else {
			AR5K_EEPROM_READ(offset++, val);
			rep[0].freq = (val >> 9) & fmask;
			rep[1].freq = (val >> 2) & fmask;
			rep[2].freq = (val << 5) & fmask;

			AR5K_EEPROM_READ(offset++, val);
			rep[2].freq |= (val >> 11) & 0x1f;
			rep[3].freq = (val >> 4) & fmask;
			rep[4].freq = (val << 3) & fmask;

			AR5K_EEPROM_READ(offset++, val);
			rep[4].freq |= (val >> 13) & 0x7;
			rep[5].freq = (val >> 6) & fmask;
			rep[6].freq = (val << 1) & fmask;

			AR5K_EEPROM_READ(offset++, val);
			rep[6].freq |= (val >> 15) & 0x1;
			rep[7].freq = (val >> 8) & fmask;

			rep[0].edge = (val >> 2) & pmask;
			rep[1].edge = (val << 4) & pmask;

			AR5K_EEPROM_READ(offset++, val);
			rep[1].edge |= (val >> 12) & 0xf;
			rep[2].edge = (val >> 6) & pmask;
			rep[3].edge = val & pmask;

			AR5K_EEPROM_READ(offset++, val);
			rep[4].edge = (val >> 10) & pmask;
			rep[5].edge = (val >> 4) & pmask;
			rep[6].edge = (val << 2) & pmask;

			AR5K_EEPROM_READ(offset++, val);
			rep[6].edge |= (val >> 14) & 0x3;
			rep[7].edge = (val >> 8) & pmask;
		}
		for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
			rep[j].freq = ath5k_eeprom_bin2freq(ee,
				rep[j].freq, ctl_mode);
		}
		rep += AR5K_EEPROM_N_EDGES;
	}

	return 0;
}

static int
ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
{
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	u32 offset;
	u16 val;
	int ret = 0, i;

	offset = AR5K_EEPROM_CTL(ee->ee_version) +
				AR5K_EEPROM_N_CTLS(ee->ee_version);

	if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
		/* No spur info for 5GHz */
		ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
		/* 2 channels for 2GHz (2464/2420) */
		ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
		ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
		ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
	} else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
		for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
			AR5K_EEPROM_READ(offset, val);
			ee->ee_spur_chans[i][0] = val;
			AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
									val);
			ee->ee_spur_chans[i][1] = val;
			offset++;
		}
	}

	return ret;
}


/***********************\
* Init/Detach functions *
\***********************/

/*
 * Initialize eeprom data structure
 */
int
ath5k_eeprom_init(struct ath5k_hw *ah)
{
	int err;

	err = ath5k_eeprom_init_header(ah);
	if (err < 0)
		return err;

	err = ath5k_eeprom_init_modes(ah);
	if (err < 0)
		return err;

	err = ath5k_eeprom_read_pcal_info(ah);
	if (err < 0)
		return err;

	err = ath5k_eeprom_read_ctl_info(ah);
	if (err < 0)
		return err;

	err = ath5k_eeprom_read_spur_chans(ah);
	if (err < 0)
		return err;

	return 0;
}

void
ath5k_eeprom_detach(struct ath5k_hw *ah)
{
	u8 mode;

	for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
		ath5k_eeprom_free_pcal_info(ah, mode);
}

int
ath5k_eeprom_mode_from_channel(struct ieee80211_channel *channel)
{
	switch (channel->hw_value) {
	case AR5K_MODE_11A:
		return AR5K_EEPROM_MODE_11A;
	case AR5K_MODE_11G:
		return AR5K_EEPROM_MODE_11G;
	case AR5K_MODE_11B:
		return AR5K_EEPROM_MODE_11B;
	default:
		return -1;
	}
}