/* * drivers/mtd/nand.c * * Overview: * This is the generic MTD driver for NAND flash devices. It should be * capable of working with almost all NAND chips currently available. * Basic support for AG-AND chips is provided. * * Additional technical information is available on * http://www.linux-mtd.infradead.org/doc/nand.html * * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) * 2002-2006 Thomas Gleixner (tglx@linutronix.de) * * Credits: * David Woodhouse for adding multichip support * * Aleph One Ltd. and Toby Churchill Ltd. for supporting the * rework for 2K page size chips * * TODO: * Enable cached programming for 2k page size chips * Check, if mtd->ecctype should be set to MTD_ECC_HW * if we have HW ECC support. * The AG-AND chips have nice features for speed improvement, * which are not supported yet. Read / program 4 pages in one go. * BBT table is not serialized, has to be fixed * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include <linux/module.h> #include <linux/delay.h> #include <linux/errno.h> #include <linux/err.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> #include <linux/mtd/nand_ecc.h> #include <linux/mtd/nand_bch.h> #include <linux/interrupt.h> #include <linux/bitops.h> #include <linux/leds.h> #include <linux/io.h> #include <linux/mtd/partitions.h> /* Define default oob placement schemes for large and small page devices */ static struct nand_ecclayout nand_oob_8 = { .eccbytes = 3, .eccpos = {0, 1, 2}, .oobfree = { {.offset = 3, .length = 2}, {.offset = 6, .length = 2} } }; static struct nand_ecclayout nand_oob_16 = { .eccbytes = 6, .eccpos = {0, 1, 2, 3, 6, 7}, .oobfree = { {.offset = 8, . length = 8} } }; static struct nand_ecclayout nand_oob_64 = { .eccbytes = 24, .eccpos = { 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63}, .oobfree = { {.offset = 2, .length = 38} } }; static struct nand_ecclayout nand_oob_128 = { .eccbytes = 48, .eccpos = { 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127}, .oobfree = { {.offset = 2, .length = 78} } }; static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state); static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops); /* * For devices which display every fart in the system on a separate LED. Is * compiled away when LED support is disabled. */ DEFINE_LED_TRIGGER(nand_led_trigger); static int check_offs_len(struct mtd_info *mtd, loff_t ofs, uint64_t len) { struct nand_chip *chip = mtd->priv; int ret = 0; /* Start address must align on block boundary */ if (ofs & ((1 << chip->phys_erase_shift) - 1)) { pr_debug("%s: unaligned address\n", __func__); ret = -EINVAL; } /* Length must align on block boundary */ if (len & ((1 << chip->phys_erase_shift) - 1)) { pr_debug("%s: length not block aligned\n", __func__); ret = -EINVAL; } /* Do not allow past end of device */ if (ofs + len > mtd->size) { pr_debug("%s: past end of device\n", __func__); ret = -EINVAL; } return ret; } /** * nand_release_device - [GENERIC] release chip * @mtd: MTD device structure * * Deselect, release chip lock and wake up anyone waiting on the device. */ static void nand_release_device(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; /* De-select the NAND device */ chip->select_chip(mtd, -1); /* Release the controller and the chip */ spin_lock(&chip->controller->lock); chip->controller->active = NULL; chip->state = FL_READY; wake_up(&chip->controller->wq); spin_unlock(&chip->controller->lock); } /** * nand_read_byte - [DEFAULT] read one byte from the chip * @mtd: MTD device structure * * Default read function for 8bit buswidth */ static uint8_t nand_read_byte(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; return readb(chip->IO_ADDR_R); } /** * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip * @mtd: MTD device structure * * Default read function for 16bit buswidth with endianness conversion. * */ static uint8_t nand_read_byte16(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R)); } /** * nand_read_word - [DEFAULT] read one word from the chip * @mtd: MTD device structure * * Default read function for 16bit buswidth without endianness conversion. */ static u16 nand_read_word(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; return readw(chip->IO_ADDR_R); } /** * nand_select_chip - [DEFAULT] control CE line * @mtd: MTD device structure * @chipnr: chipnumber to select, -1 for deselect * * Default select function for 1 chip devices. */ static void nand_select_chip(struct mtd_info *mtd, int chipnr) { struct nand_chip *chip = mtd->priv; switch (chipnr) { case -1: chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); break; case 0: break; default: BUG(); } } /** * nand_write_buf - [DEFAULT] write buffer to chip * @mtd: MTD device structure * @buf: data buffer * @len: number of bytes to write * * Default write function for 8bit buswidth. */ static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { int i; struct nand_chip *chip = mtd->priv; for (i = 0; i < len; i++) writeb(buf[i], chip->IO_ADDR_W); } /** * nand_read_buf - [DEFAULT] read chip data into buffer * @mtd: MTD device structure * @buf: buffer to store date * @len: number of bytes to read * * Default read function for 8bit buswidth. */ static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { int i; struct nand_chip *chip = mtd->priv; for (i = 0; i < len; i++) buf[i] = readb(chip->IO_ADDR_R); } /** * nand_verify_buf - [DEFAULT] Verify chip data against buffer * @mtd: MTD device structure * @buf: buffer containing the data to compare * @len: number of bytes to compare * * Default verify function for 8bit buswidth. */ static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { int i; struct nand_chip *chip = mtd->priv; for (i = 0; i < len; i++) if (buf[i] != readb(chip->IO_ADDR_R)) return -EFAULT; return 0; } /** * nand_write_buf16 - [DEFAULT] write buffer to chip * @mtd: MTD device structure * @buf: data buffer * @len: number of bytes to write * * Default write function for 16bit buswidth. */ static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) { int i; struct nand_chip *chip = mtd->priv; u16 *p = (u16 *) buf; len >>= 1; for (i = 0; i < len; i++) writew(p[i], chip->IO_ADDR_W); } /** * nand_read_buf16 - [DEFAULT] read chip data into buffer * @mtd: MTD device structure * @buf: buffer to store date * @len: number of bytes to read * * Default read function for 16bit buswidth. */ static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len) { int i; struct nand_chip *chip = mtd->priv; u16 *p = (u16 *) buf; len >>= 1; for (i = 0; i < len; i++) p[i] = readw(chip->IO_ADDR_R); } /** * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer * @mtd: MTD device structure * @buf: buffer containing the data to compare * @len: number of bytes to compare * * Default verify function for 16bit buswidth. */ static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) { int i; struct nand_chip *chip = mtd->priv; u16 *p = (u16 *) buf; len >>= 1; for (i = 0; i < len; i++) if (p[i] != readw(chip->IO_ADDR_R)) return -EFAULT; return 0; } /** * nand_block_bad - [DEFAULT] Read bad block marker from the chip * @mtd: MTD device structure * @ofs: offset from device start * @getchip: 0, if the chip is already selected * * Check, if the block is bad. */ static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) { int page, chipnr, res = 0; struct nand_chip *chip = mtd->priv; u16 bad; if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) ofs += mtd->erasesize - mtd->writesize; page = (int)(ofs >> chip->page_shift) & chip->pagemask; if (getchip) { chipnr = (int)(ofs >> chip->chip_shift); nand_get_device(chip, mtd, FL_READING); /* Select the NAND device */ chip->select_chip(mtd, chipnr); } if (chip->options & NAND_BUSWIDTH_16) { chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE, page); bad = cpu_to_le16(chip->read_word(mtd)); if (chip->badblockpos & 0x1) bad >>= 8; else bad &= 0xFF; } else { chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page); bad = chip->read_byte(mtd); } if (likely(chip->badblockbits == 8)) res = bad != 0xFF; else res = hweight8(bad) < chip->badblockbits; if (getchip) nand_release_device(mtd); return res; } /** * nand_default_block_markbad - [DEFAULT] mark a block bad * @mtd: MTD device structure * @ofs: offset from device start * * This is the default implementation, which can be overridden by a hardware * specific driver. */ static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) { struct nand_chip *chip = mtd->priv; uint8_t buf[2] = { 0, 0 }; int block, ret, i = 0; if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) ofs += mtd->erasesize - mtd->writesize; /* Get block number */ block = (int)(ofs >> chip->bbt_erase_shift); if (chip->bbt) chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); /* Do we have a flash based bad block table? */ if (chip->bbt_options & NAND_BBT_USE_FLASH) ret = nand_update_bbt(mtd, ofs); else { struct mtd_oob_ops ops; nand_get_device(chip, mtd, FL_WRITING); /* * Write to first two pages if necessary. If we write to more * than one location, the first error encountered quits the * procedure. We write two bytes per location, so we dont have * to mess with 16 bit access. */ ops.len = ops.ooblen = 2; ops.datbuf = NULL; ops.oobbuf = buf; ops.ooboffs = chip->badblockpos & ~0x01; ops.mode = MTD_OPS_PLACE_OOB; do { ret = nand_do_write_oob(mtd, ofs, &ops); i++; ofs += mtd->writesize; } while (!ret && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2); nand_release_device(mtd); } if (!ret) mtd->ecc_stats.badblocks++; return ret; } /** * nand_check_wp - [GENERIC] check if the chip is write protected * @mtd: MTD device structure * * Check, if the device is write protected. The function expects, that the * device is already selected. */ static int nand_check_wp(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; /* Broken xD cards report WP despite being writable */ if (chip->options & NAND_BROKEN_XD) return 0; /* Check the WP bit */ chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1; } /** * nand_block_checkbad - [GENERIC] Check if a block is marked bad * @mtd: MTD device structure * @ofs: offset from device start * @getchip: 0, if the chip is already selected * @allowbbt: 1, if its allowed to access the bbt area * * Check, if the block is bad. Either by reading the bad block table or * calling of the scan function. */ static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt) { struct nand_chip *chip = mtd->priv; if (!chip->bbt) return chip->block_bad(mtd, ofs, getchip); /* Return info from the table */ return nand_isbad_bbt(mtd, ofs, allowbbt); } /** * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands. * @mtd: MTD device structure * @timeo: Timeout * * Helper function for nand_wait_ready used when needing to wait in interrupt * context. */ static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo) { struct nand_chip *chip = mtd->priv; int i; /* Wait for the device to get ready */ for (i = 0; i < timeo; i++) { if (chip->dev_ready(mtd)) break; touch_softlockup_watchdog(); mdelay(1); } } /* Wait for the ready pin, after a command. The timeout is caught later. */ void nand_wait_ready(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; unsigned long timeo = jiffies + 2; /* 400ms timeout */ if (in_interrupt() || oops_in_progress) return panic_nand_wait_ready(mtd, 400); led_trigger_event(nand_led_trigger, LED_FULL); /* Wait until command is processed or timeout occurs */ do { if (chip->dev_ready(mtd)) break; touch_softlockup_watchdog(); } while (time_before(jiffies, timeo)); led_trigger_event(nand_led_trigger, LED_OFF); } EXPORT_SYMBOL_GPL(nand_wait_ready); /** * nand_command - [DEFAULT] Send command to NAND device * @mtd: MTD device structure * @command: the command to be sent * @column: the column address for this command, -1 if none * @page_addr: the page address for this command, -1 if none * * Send command to NAND device. This function is used for small page devices * (256/512 Bytes per page). */ static void nand_command(struct mtd_info *mtd, unsigned int command, int column, int page_addr) { register struct nand_chip *chip = mtd->priv; int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE; /* Write out the command to the device */ if (command == NAND_CMD_SEQIN) { int readcmd; if (column >= mtd->writesize) { /* OOB area */ column -= mtd->writesize; readcmd = NAND_CMD_READOOB; } else if (column < 256) { /* First 256 bytes --> READ0 */ readcmd = NAND_CMD_READ0; } else { column -= 256; readcmd = NAND_CMD_READ1; } chip->cmd_ctrl(mtd, readcmd, ctrl); ctrl &= ~NAND_CTRL_CHANGE; } chip->cmd_ctrl(mtd, command, ctrl); /* Address cycle, when necessary */ ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE; /* Serially input address */ if (column != -1) { /* Adjust columns for 16 bit buswidth */ if (chip->options & NAND_BUSWIDTH_16) column >>= 1; chip->cmd_ctrl(mtd, column, ctrl); ctrl &= ~NAND_CTRL_CHANGE; } if (page_addr != -1) { chip->cmd_ctrl(mtd, page_addr, ctrl); ctrl &= ~NAND_CTRL_CHANGE; chip->cmd_ctrl(mtd, page_addr >> 8, ctrl); /* One more address cycle for devices > 32MiB */ if (chip->chipsize > (32 << 20)) chip->cmd_ctrl(mtd, page_addr >> 16, ctrl); } chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); /* * Program and erase have their own busy handlers status and sequential * in needs no delay */ switch (command) { case NAND_CMD_PAGEPROG: case NAND_CMD_ERASE1: case NAND_CMD_ERASE2: case NAND_CMD_SEQIN: case NAND_CMD_STATUS: return; case NAND_CMD_RESET: if (chip->dev_ready) break; udelay(chip->chip_delay); chip->cmd_ctrl(mtd, NAND_CMD_STATUS, NAND_CTRL_CLE | NAND_CTRL_CHANGE); chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ; return; /* This applies to read commands */ default: /* * If we don't have access to the busy pin, we apply the given * command delay */ if (!chip->dev_ready) { udelay(chip->chip_delay); return; } } /* * Apply this short delay always to ensure that we do wait tWB in * any case on any machine. */ ndelay(100); nand_wait_ready(mtd); } /** * nand_command_lp - [DEFAULT] Send command to NAND large page device * @mtd: MTD device structure * @command: the command to be sent * @column: the column address for this command, -1 if none * @page_addr: the page address for this command, -1 if none * * Send command to NAND device. This is the version for the new large page * devices. We don't have the separate regions as we have in the small page * devices. We must emulate NAND_CMD_READOOB to keep the code compatible. */ static void nand_command_lp(struct mtd_info *mtd, unsigned int command, int column, int page_addr) { register struct nand_chip *chip = mtd->priv; /* Emulate NAND_CMD_READOOB */ if (command == NAND_CMD_READOOB) { column += mtd->writesize; command = NAND_CMD_READ0; } /* Command latch cycle */ chip->cmd_ctrl(mtd, command & 0xff, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); if (column != -1 || page_addr != -1) { int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE; /* Serially input address */ if (column != -1) { /* Adjust columns for 16 bit buswidth */ if (chip->options & NAND_BUSWIDTH_16) column >>= 1; chip->cmd_ctrl(mtd, column, ctrl); ctrl &= ~NAND_CTRL_CHANGE; chip->cmd_ctrl(mtd, column >> 8, ctrl); } if (page_addr != -1) { chip->cmd_ctrl(mtd, page_addr, ctrl); chip->cmd_ctrl(mtd, page_addr >> 8, NAND_NCE | NAND_ALE); /* One more address cycle for devices > 128MiB */ if (chip->chipsize > (128 << 20)) chip->cmd_ctrl(mtd, page_addr >> 16, NAND_NCE | NAND_ALE); } } chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); /* * Program and erase have their own busy handlers status, sequential * in, and deplete1 need no delay. */ switch (command) { case NAND_CMD_CACHEDPROG: case NAND_CMD_PAGEPROG: case NAND_CMD_ERASE1: case NAND_CMD_ERASE2: case NAND_CMD_SEQIN: case NAND_CMD_RNDIN: case NAND_CMD_STATUS: case NAND_CMD_DEPLETE1: return; case NAND_CMD_STATUS_ERROR: case NAND_CMD_STATUS_ERROR0: case NAND_CMD_STATUS_ERROR1: case NAND_CMD_STATUS_ERROR2: case NAND_CMD_STATUS_ERROR3: /* Read error status commands require only a short delay */ udelay(chip->chip_delay); return; case NAND_CMD_RESET: if (chip->dev_ready) break; udelay(chip->chip_delay); chip->cmd_ctrl(mtd, NAND_CMD_STATUS, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ; return; case NAND_CMD_RNDOUT: /* No ready / busy check necessary */ chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); return; case NAND_CMD_READ0: chip->cmd_ctrl(mtd, NAND_CMD_READSTART, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); /* This applies to read commands */ default: /* * If we don't have access to the busy pin, we apply the given * command delay. */ if (!chip->dev_ready) { udelay(chip->chip_delay); return; } } /* * Apply this short delay always to ensure that we do wait tWB in * any case on any machine. */ ndelay(100); nand_wait_ready(mtd); } /** * panic_nand_get_device - [GENERIC] Get chip for selected access * @chip: the nand chip descriptor * @mtd: MTD device structure * @new_state: the state which is requested * * Used when in panic, no locks are taken. */ static void panic_nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state) { /* Hardware controller shared among independent devices */ chip->controller->active = chip; chip->state = new_state; } /** * nand_get_device - [GENERIC] Get chip for selected access * @chip: the nand chip descriptor * @mtd: MTD device structure * @new_state: the state which is requested * * Get the device and lock it for exclusive access */ static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state) { spinlock_t *lock = &chip->controller->lock; wait_queue_head_t *wq = &chip->controller->wq; DECLARE_WAITQUEUE(wait, current); retry: spin_lock(lock); /* Hardware controller shared among independent devices */ if (!chip->controller->active) chip->controller->active = chip; if (chip->controller->active == chip && chip->state == FL_READY) { chip->state = new_state; spin_unlock(lock); return 0; } if (new_state == FL_PM_SUSPENDED) { if (chip->controller->active->state == FL_PM_SUSPENDED) { chip->state = FL_PM_SUSPENDED; spin_unlock(lock); return 0; } } set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(wq, &wait); spin_unlock(lock); schedule(); remove_wait_queue(wq, &wait); goto retry; } /** * panic_nand_wait - [GENERIC] wait until the command is done * @mtd: MTD device structure * @chip: NAND chip structure * @timeo: timeout * * Wait for command done. This is a helper function for nand_wait used when * we are in interrupt context. May happen when in panic and trying to write * an oops through mtdoops. */ static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip, unsigned long timeo) { int i; for (i = 0; i < timeo; i++) { if (chip->dev_ready) { if (chip->dev_ready(mtd)) break; } else { if (chip->read_byte(mtd) & NAND_STATUS_READY) break; } mdelay(1); } } /** * nand_wait - [DEFAULT] wait until the command is done * @mtd: MTD device structure * @chip: NAND chip structure * * Wait for command done. This applies to erase and program only. Erase can * take up to 400ms and program up to 20ms according to general NAND and * SmartMedia specs. */ static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip) { unsigned long timeo = jiffies; int status, state = chip->state; if (state == FL_ERASING) timeo += (HZ * 400) / 1000; else timeo += (HZ * 20) / 1000; led_trigger_event(nand_led_trigger, LED_FULL); /* * Apply this short delay always to ensure that we do wait tWB in any * case on any machine. */ ndelay(100); if ((state == FL_ERASING) && (chip->options & NAND_IS_AND)) chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1); else chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); if (in_interrupt() || oops_in_progress) panic_nand_wait(mtd, chip, timeo); else { while (time_before(jiffies, timeo)) { if (chip->dev_ready) { if (chip->dev_ready(mtd)) break; } else { if (chip->read_byte(mtd) & NAND_STATUS_READY) break; } cond_resched(); } } led_trigger_event(nand_led_trigger, LED_OFF); status = (int)chip->read_byte(mtd); return status; } /** * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks * @mtd: mtd info * @ofs: offset to start unlock from * @len: length to unlock * @invert: when = 0, unlock the range of blocks within the lower and * upper boundary address * when = 1, unlock the range of blocks outside the boundaries * of the lower and upper boundary address * * Returs unlock status. */ static int __nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len, int invert) { int ret = 0; int status, page; struct nand_chip *chip = mtd->priv; /* Submit address of first page to unlock */ page = ofs >> chip->page_shift; chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask); /* Submit address of last page to unlock */ page = (ofs + len) >> chip->page_shift; chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, (page | invert) & chip->pagemask); /* Call wait ready function */ status = chip->waitfunc(mtd, chip); /* See if device thinks it succeeded */ if (status & 0x01) { pr_debug("%s: error status = 0x%08x\n", __func__, status); ret = -EIO; } return ret; } /** * nand_unlock - [REPLACEABLE] unlocks specified locked blocks * @mtd: mtd info * @ofs: offset to start unlock from * @len: length to unlock * * Returns unlock status. */ int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { int ret = 0; int chipnr; struct nand_chip *chip = mtd->priv; pr_debug("%s: start = 0x%012llx, len = %llu\n", __func__, (unsigned long long)ofs, len); if (check_offs_len(mtd, ofs, len)) ret = -EINVAL; /* Align to last block address if size addresses end of the device */ if (ofs + len == mtd->size) len -= mtd->erasesize; nand_get_device(chip, mtd, FL_UNLOCKING); /* Shift to get chip number */ chipnr = ofs >> chip->chip_shift; chip->select_chip(mtd, chipnr); /* Check, if it is write protected */ if (nand_check_wp(mtd)) { pr_debug("%s: device is write protected!\n", __func__); ret = -EIO; goto out; } ret = __nand_unlock(mtd, ofs, len, 0); out: nand_release_device(mtd); return ret; } EXPORT_SYMBOL(nand_unlock); /** * nand_lock - [REPLACEABLE] locks all blocks present in the device * @mtd: mtd info * @ofs: offset to start unlock from * @len: length to unlock * * This feature is not supported in many NAND parts. 'Micron' NAND parts do * have this feature, but it allows only to lock all blocks, not for specified * range for block. Implementing 'lock' feature by making use of 'unlock', for * now. * * Returns lock status. */ int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { int ret = 0; int chipnr, status, page; struct nand_chip *chip = mtd->priv; pr_debug("%s: start = 0x%012llx, len = %llu\n", __func__, (unsigned long long)ofs, len); if (check_offs_len(mtd, ofs, len)) ret = -EINVAL; nand_get_device(chip, mtd, FL_LOCKING); /* Shift to get chip number */ chipnr = ofs >> chip->chip_shift; chip->select_chip(mtd, chipnr); /* Check, if it is write protected */ if (nand_check_wp(mtd)) { pr_debug("%s: device is write protected!\n", __func__); status = MTD_ERASE_FAILED; ret = -EIO; goto out; } /* Submit address of first page to lock */ page = ofs >> chip->page_shift; chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask); /* Call wait ready function */ status = chip->waitfunc(mtd, chip); /* See if device thinks it succeeded */ if (status & 0x01) { pr_debug("%s: error status = 0x%08x\n", __func__, status); ret = -EIO; goto out; } ret = __nand_unlock(mtd, ofs, len, 0x1); out: nand_release_device(mtd); return ret; } EXPORT_SYMBOL(nand_lock); /** * nand_read_page_raw - [INTERN] read raw page data without ecc * @mtd: mtd info structure * @chip: nand chip info structure * @buf: buffer to store read data * @page: page number to read * * Not for syndrome calculating ECC controllers, which use a special oob layout. */ static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int page) { chip->read_buf(mtd, buf, mtd->writesize); chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); return 0; } /** * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc * @mtd: mtd info structure * @chip: nand chip info structure * @buf: buffer to store read data * @page: page number to read * * We need a special oob layout and handling even when OOB isn't used. */ static int nand_read_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int page) { int eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; uint8_t *oob = chip->oob_poi; int steps, size; for (steps = chip->ecc.steps; steps > 0; steps--) { chip->read_buf(mtd, buf, eccsize); buf += eccsize; if (chip->ecc.prepad) { chip->read_buf(mtd, oob, chip->ecc.prepad); oob += chip->ecc.prepad; } chip->read_buf(mtd, oob, eccbytes); oob += eccbytes; if (chip->ecc.postpad) { chip->read_buf(mtd, oob, chip->ecc.postpad); oob += chip->ecc.postpad; } } size = mtd->oobsize - (oob - chip->oob_poi); if (size) chip->read_buf(mtd, oob, size); return 0; } /** * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function * @mtd: mtd info structure * @chip: nand chip info structure * @buf: buffer to store read data * @page: page number to read */ static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int page) { int i, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; uint8_t *p = buf; uint8_t *ecc_calc = chip->buffers->ecccalc; uint8_t *ecc_code = chip->buffers->ecccode; uint32_t *eccpos = chip->ecc.layout->eccpos; chip->ecc.read_page_raw(mtd, chip, buf, page); for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) chip->ecc.calculate(mtd, p, &ecc_calc[i]); for (i = 0; i < chip->ecc.total; i++) ecc_code[i] = chip->oob_poi[eccpos[i]]; eccsteps = chip->ecc.steps; p = buf; for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { int stat; stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); if (stat < 0) mtd->ecc_stats.failed++; else mtd->ecc_stats.corrected += stat; } return 0; } /** * nand_read_subpage - [REPLACEABLE] software ECC based sub-page read function * @mtd: mtd info structure * @chip: nand chip info structure * @data_offs: offset of requested data within the page * @readlen: data length * @bufpoi: buffer to store read data */ static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi) { int start_step, end_step, num_steps; uint32_t *eccpos = chip->ecc.layout->eccpos; uint8_t *p; int data_col_addr, i, gaps = 0; int datafrag_len, eccfrag_len, aligned_len, aligned_pos; int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1; int index = 0; /* Column address within the page aligned to ECC size (256bytes) */ start_step = data_offs / chip->ecc.size; end_step = (data_offs + readlen - 1) / chip->ecc.size; num_steps = end_step - start_step + 1; /* Data size aligned to ECC ecc.size */ datafrag_len = num_steps * chip->ecc.size; eccfrag_len = num_steps * chip->ecc.bytes; data_col_addr = start_step * chip->ecc.size; /* If we read not a page aligned data */ if (data_col_addr != 0) chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1); p = bufpoi + data_col_addr; chip->read_buf(mtd, p, datafrag_len); /* Calculate ECC */ for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]); /* * The performance is faster if we position offsets according to * ecc.pos. Let's make sure that there are no gaps in ECC positions. */ for (i = 0; i < eccfrag_len - 1; i++) { if (eccpos[i + start_step * chip->ecc.bytes] + 1 != eccpos[i + start_step * chip->ecc.bytes + 1]) { gaps = 1; break; } } if (gaps) { chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1); chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); } else { /* * Send the command to read the particular ECC bytes take care * about buswidth alignment in read_buf. */ index = start_step * chip->ecc.bytes; aligned_pos = eccpos[index] & ~(busw - 1); aligned_len = eccfrag_len; if (eccpos[index] & (busw - 1)) aligned_len++; if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1)) aligned_len++; chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize + aligned_pos, -1); chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len); } for (i = 0; i < eccfrag_len; i++) chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]]; p = bufpoi + data_col_addr; for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) { int stat; stat = chip->ecc.correct(mtd, p, &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]); if (stat < 0) mtd->ecc_stats.failed++; else mtd->ecc_stats.corrected += stat; } return 0; } /** * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function * @mtd: mtd info structure * @chip: nand chip info structure * @buf: buffer to store read data * @page: page number to read * * Not for syndrome calculating ECC controllers which need a special oob layout. */ static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int page) { int i, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; uint8_t *p = buf; uint8_t *ecc_calc = chip->buffers->ecccalc; uint8_t *ecc_code = chip->buffers->ecccode; uint32_t *eccpos = chip->ecc.layout->eccpos; for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { chip->ecc.hwctl(mtd, NAND_ECC_READ); chip->read_buf(mtd, p, eccsize); chip->ecc.calculate(mtd, p, &ecc_calc[i]); } chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); for (i = 0; i < chip->ecc.total; i++) ecc_code[i] = chip->oob_poi[eccpos[i]]; eccsteps = chip->ecc.steps; p = buf; for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { int stat; stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); if (stat < 0) mtd->ecc_stats.failed++; else mtd->ecc_stats.corrected += stat; } return 0; } /** * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first * @mtd: mtd info structure * @chip: nand chip info structure * @buf: buffer to store read data * @page: page number to read * * Hardware ECC for large page chips, require OOB to be read first. For this * ECC mode, the write_page method is re-used from ECC_HW. These methods * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from * the data area, by overwriting the NAND manufacturer bad block markings. */ static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int page) { int i, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; uint8_t *p = buf; uint8_t *ecc_code = chip->buffers->ecccode; uint32_t *eccpos = chip->ecc.layout->eccpos; uint8_t *ecc_calc = chip->buffers->ecccalc; /* Read the OOB area first */ chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); for (i = 0; i < chip->ecc.total; i++) ecc_code[i] = chip->oob_poi[eccpos[i]]; for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { int stat; chip->ecc.hwctl(mtd, NAND_ECC_READ); chip->read_buf(mtd, p, eccsize); chip->ecc.calculate(mtd, p, &ecc_calc[i]); stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL); if (stat < 0) mtd->ecc_stats.failed++; else mtd->ecc_stats.corrected += stat; } return 0; } /** * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read * @mtd: mtd info structure * @chip: nand chip info structure * @buf: buffer to store read data * @page: page number to read * * The hw generator calculates the error syndrome automatically. Therefore we * need a special oob layout and handling. */ static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int page) { int i, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; uint8_t *p = buf; uint8_t *oob = chip->oob_poi; for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { int stat; chip->ecc.hwctl(mtd, NAND_ECC_READ); chip->read_buf(mtd, p, eccsize); if (chip->ecc.prepad) { chip->read_buf(mtd, oob, chip->ecc.prepad); oob += chip->ecc.prepad; } chip->ecc.hwctl(mtd, NAND_ECC_READSYN); chip->read_buf(mtd, oob, eccbytes); stat = chip->ecc.correct(mtd, p, oob, NULL); if (stat < 0) mtd->ecc_stats.failed++; else mtd->ecc_stats.corrected += stat; oob += eccbytes; if (chip->ecc.postpad) { chip->read_buf(mtd, oob, chip->ecc.postpad); oob += chip->ecc.postpad; } } /* Calculate remaining oob bytes */ i = mtd->oobsize - (oob - chip->oob_poi); if (i) chip->read_buf(mtd, oob, i); return 0; } /** * nand_transfer_oob - [INTERN] Transfer oob to client buffer * @chip: nand chip structure * @oob: oob destination address * @ops: oob ops structure * @len: size of oob to transfer */ static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob, struct mtd_oob_ops *ops, size_t len) { switch (ops->mode) { case MTD_OPS_PLACE_OOB: case MTD_OPS_RAW: memcpy(oob, chip->oob_poi + ops->ooboffs, len); return oob + len; case MTD_OPS_AUTO_OOB: { struct nand_oobfree *free = chip->ecc.layout->oobfree; uint32_t boffs = 0, roffs = ops->ooboffs; size_t bytes = 0; for (; free->length && len; free++, len -= bytes) { /* Read request not from offset 0? */ if (unlikely(roffs)) { if (roffs >= free->length) { roffs -= free->length; continue; } boffs = free->offset + roffs; bytes = min_t(size_t, len, (free->length - roffs)); roffs = 0; } else { bytes = min_t(size_t, len, free->length); boffs = free->offset; } memcpy(oob, chip->oob_poi + boffs, bytes); oob += bytes; } return oob; } default: BUG(); } return NULL; } /** * nand_do_read_ops - [INTERN] Read data with ECC * @mtd: MTD device structure * @from: offset to read from * @ops: oob ops structure * * Internal function. Called with chip held. */ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { int chipnr, page, realpage, col, bytes, aligned; struct nand_chip *chip = mtd->priv; struct mtd_ecc_stats stats; int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1; int sndcmd = 1; int ret = 0; uint32_t readlen = ops->len; uint32_t oobreadlen = ops->ooblen; uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize; uint8_t *bufpoi, *oob, *buf; stats = mtd->ecc_stats; chipnr = (int)(from >> chip->chip_shift); chip->select_chip(mtd, chipnr); realpage = (int)(from >> chip->page_shift); page = realpage & chip->pagemask; col = (int)(from & (mtd->writesize - 1)); buf = ops->datbuf; oob = ops->oobbuf; while (1) { bytes = min(mtd->writesize - col, readlen); aligned = (bytes == mtd->writesize); /* Is the current page in the buffer? */ if (realpage != chip->pagebuf || oob) { bufpoi = aligned ? buf : chip->buffers->databuf; if (likely(sndcmd)) { chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page); sndcmd = 0; } /* Now read the page into the buffer */ if (unlikely(ops->mode == MTD_OPS_RAW)) ret = chip->ecc.read_page_raw(mtd, chip, bufpoi, page); else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob) ret = chip->ecc.read_subpage(mtd, chip, col, bytes, bufpoi); else ret = chip->ecc.read_page(mtd, chip, bufpoi, page); if (ret < 0) { if (!aligned) /* Invalidate page cache */ chip->pagebuf = -1; break; } /* Transfer not aligned data */ if (!aligned) { if (!NAND_SUBPAGE_READ(chip) && !oob && !(mtd->ecc_stats.failed - stats.failed) && (ops->mode != MTD_OPS_RAW)) chip->pagebuf = realpage; else /* Invalidate page cache */ chip->pagebuf = -1; memcpy(buf, chip->buffers->databuf + col, bytes); } buf += bytes; if (unlikely(oob)) { int toread = min(oobreadlen, max_oobsize); if (toread) { oob = nand_transfer_oob(chip, oob, ops, toread); oobreadlen -= toread; } } if (!(chip->options & NAND_NO_READRDY)) { /* * Apply delay or wait for ready/busy pin. Do * this before the AUTOINCR check, so no * problems arise if a chip which does auto * increment is marked as NOAUTOINCR by the * board driver. */ if (!chip->dev_ready) udelay(chip->chip_delay); else nand_wait_ready(mtd); } } else { memcpy(buf, chip->buffers->databuf + col, bytes); buf += bytes; } readlen -= bytes; if (!readlen) break; /* For subsequent reads align to page boundary */ col = 0; /* Increment page address */ realpage++; page = realpage & chip->pagemask; /* Check, if we cross a chip boundary */ if (!page) { chipnr++; chip->select_chip(mtd, -1); chip->select_chip(mtd, chipnr); } /* * Check, if the chip supports auto page increment or if we * have hit a block boundary. */ if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck)) sndcmd = 1; } ops->retlen = ops->len - (size_t) readlen; if (oob) ops->oobretlen = ops->ooblen - oobreadlen; if (ret) return ret; if (mtd->ecc_stats.failed - stats.failed) return -EBADMSG; return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0; } /** * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc * @mtd: MTD device structure * @from: offset to read from * @len: number of bytes to read * @retlen: pointer to variable to store the number of read bytes * @buf: the databuffer to put data * * Get hold of the chip and call nand_do_read. */ static int nand_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, uint8_t *buf) { struct nand_chip *chip = mtd->priv; struct mtd_oob_ops ops; int ret; /* Do not allow reads past end of device */ if ((from + len) > mtd->size) return -EINVAL; if (!len) return 0; nand_get_device(chip, mtd, FL_READING); ops.len = len; ops.datbuf = buf; ops.oobbuf = NULL; ops.mode = 0; ret = nand_do_read_ops(mtd, from, &ops); *retlen = ops.retlen; nand_release_device(mtd); return ret; } /** * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function * @mtd: mtd info structure * @chip: nand chip info structure * @page: page number to read * @sndcmd: flag whether to issue read command or not */ static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page, int sndcmd) { if (sndcmd) { chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); sndcmd = 0; } chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); return sndcmd; } /** * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC * with syndromes * @mtd: mtd info structure * @chip: nand chip info structure * @page: page number to read * @sndcmd: flag whether to issue read command or not */ static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, int page, int sndcmd) { uint8_t *buf = chip->oob_poi; int length = mtd->oobsize; int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; int eccsize = chip->ecc.size; uint8_t *bufpoi = buf; int i, toread, sndrnd = 0, pos; chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page); for (i = 0; i < chip->ecc.steps; i++) { if (sndrnd) { pos = eccsize + i * (eccsize + chunk); if (mtd->writesize > 512) chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1); else chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page); } else sndrnd = 1; toread = min_t(int, length, chunk); chip->read_buf(mtd, bufpoi, toread); bufpoi += toread; length -= toread; } if (length > 0) chip->read_buf(mtd, bufpoi, length); return 1; } /** * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function * @mtd: mtd info structure * @chip: nand chip info structure * @page: page number to write */ static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page) { int status = 0; const uint8_t *buf = chip->oob_poi; int length = mtd->oobsize; chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); chip->write_buf(mtd, buf, length); /* Send command to program the OOB data */ chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); status = chip->waitfunc(mtd, chip); return status & NAND_STATUS_FAIL ? -EIO : 0; } /** * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC * with syndrome - only for large page flash * @mtd: mtd info structure * @chip: nand chip info structure * @page: page number to write */ static int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, int page) { int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; int eccsize = chip->ecc.size, length = mtd->oobsize; int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps; const uint8_t *bufpoi = chip->oob_poi; /* * data-ecc-data-ecc ... ecc-oob * or * data-pad-ecc-pad-data-pad .... ecc-pad-oob */ if (!chip->ecc.prepad && !chip->ecc.postpad) { pos = steps * (eccsize + chunk); steps = 0; } else pos = eccsize; chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page); for (i = 0; i < steps; i++) { if (sndcmd) { if (mtd->writesize <= 512) { uint32_t fill = 0xFFFFFFFF; len = eccsize; while (len > 0) { int num = min_t(int, len, 4); chip->write_buf(mtd, (uint8_t *)&fill, num); len -= num; } } else { pos = eccsize + i * (eccsize + chunk); chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1); } } else sndcmd = 1; len = min_t(int, length, chunk); chip->write_buf(mtd, bufpoi, len); bufpoi += len; length -= len; } if (length > 0) chip->write_buf(mtd, bufpoi, length); chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); status = chip->waitfunc(mtd, chip); return status & NAND_STATUS_FAIL ? -EIO : 0; } /** * nand_do_read_oob - [INTERN] NAND read out-of-band * @mtd: MTD device structure * @from: offset to read from * @ops: oob operations description structure * * NAND read out-of-band data from the spare area. */ static int nand_do_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { int page, realpage, chipnr, sndcmd = 1; struct nand_chip *chip = mtd->priv; struct mtd_ecc_stats stats; int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1; int readlen = ops->ooblen; int len; uint8_t *buf = ops->oobbuf; pr_debug("%s: from = 0x%08Lx, len = %i\n", __func__, (unsigned long long)from, readlen); stats = mtd->ecc_stats; if (ops->mode == MTD_OPS_AUTO_OOB) len = chip->ecc.layout->oobavail; else len = mtd->oobsize; if (unlikely(ops->ooboffs >= len)) { pr_debug("%s: attempt to start read outside oob\n", __func__); return -EINVAL; } /* Do not allow reads past end of device */ if (unlikely(from >= mtd->size || ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) - (from >> chip->page_shift)) * len)) { pr_debug("%s: attempt to read beyond end of device\n", __func__); return -EINVAL; } chipnr = (int)(from >> chip->chip_shift); chip->select_chip(mtd, chipnr); /* Shift to get page */ realpage = (int)(from >> chip->page_shift); page = realpage & chip->pagemask; while (1) { if (ops->mode == MTD_OPS_RAW) sndcmd = chip->ecc.read_oob_raw(mtd, chip, page, sndcmd); else sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd); len = min(len, readlen); buf = nand_transfer_oob(chip, buf, ops, len); if (!(chip->options & NAND_NO_READRDY)) { /* * Apply delay or wait for ready/busy pin. Do this * before the AUTOINCR check, so no problems arise if a * chip which does auto increment is marked as * NOAUTOINCR by the board driver. */ if (!chip->dev_ready) udelay(chip->chip_delay); else nand_wait_ready(mtd); } readlen -= len; if (!readlen) break; /* Increment page address */ realpage++; page = realpage & chip->pagemask; /* Check, if we cross a chip boundary */ if (!page) { chipnr++; chip->select_chip(mtd, -1); chip->select_chip(mtd, chipnr); } /* * Check, if the chip supports auto page increment or if we * have hit a block boundary. */ if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck)) sndcmd = 1; } ops->oobretlen = ops->ooblen; if (mtd->ecc_stats.failed - stats.failed) return -EBADMSG; return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0; } /** * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band * @mtd: MTD device structure * @from: offset to read from * @ops: oob operation description structure * * NAND read data and/or out-of-band data. */ static int nand_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { struct nand_chip *chip = mtd->priv; int ret = -ENOTSUPP; ops->retlen = 0; /* Do not allow reads past end of device */ if (ops->datbuf && (from + ops->len) > mtd->size) { pr_debug("%s: attempt to read beyond end of device\n", __func__); return -EINVAL; } nand_get_device(chip, mtd, FL_READING); switch (ops->mode) { case MTD_OPS_PLACE_OOB: case MTD_OPS_AUTO_OOB: case MTD_OPS_RAW: break; default: goto out; } if (!ops->datbuf) ret = nand_do_read_oob(mtd, from, ops); else ret = nand_do_read_ops(mtd, from, ops); out: nand_release_device(mtd); return ret; } /** * nand_write_page_raw - [INTERN] raw page write function * @mtd: mtd info structure * @chip: nand chip info structure * @buf: data buffer * * Not for syndrome calculating ECC controllers, which use a special oob layout. */ static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf) { chip->write_buf(mtd, buf, mtd->writesize); chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); } /** * nand_write_page_raw_syndrome - [INTERN] raw page write function * @mtd: mtd info structure * @chip: nand chip info structure * @buf: data buffer * * We need a special oob layout and handling even when ECC isn't checked. */ static void nand_write_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf) { int eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; uint8_t *oob = chip->oob_poi; int steps, size; for (steps = chip->ecc.steps; steps > 0; steps--) { chip->write_buf(mtd, buf, eccsize); buf += eccsize; if (chip->ecc.prepad) { chip->write_buf(mtd, oob, chip->ecc.prepad); oob += chip->ecc.prepad; } chip->read_buf(mtd, oob, eccbytes); oob += eccbytes; if (chip->ecc.postpad) { chip->write_buf(mtd, oob, chip->ecc.postpad); oob += chip->ecc.postpad; } } size = mtd->oobsize - (oob - chip->oob_poi); if (size) chip->write_buf(mtd, oob, size); } /** * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function * @mtd: mtd info structure * @chip: nand chip info structure * @buf: data buffer */ static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf) { int i, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; uint8_t *ecc_calc = chip->buffers->ecccalc; const uint8_t *p = buf; uint32_t *eccpos = chip->ecc.layout->eccpos; /* Software ECC calculation */ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) chip->ecc.calculate(mtd, p, &ecc_calc[i]); for (i = 0; i < chip->ecc.total; i++) chip->oob_poi[eccpos[i]] = ecc_calc[i]; chip->ecc.write_page_raw(mtd, chip, buf); } /** * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function * @mtd: mtd info structure * @chip: nand chip info structure * @buf: data buffer */ static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf) { int i, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; uint8_t *ecc_calc = chip->buffers->ecccalc; const uint8_t *p = buf; uint32_t *eccpos = chip->ecc.layout->eccpos; for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { chip->ecc.hwctl(mtd, NAND_ECC_WRITE); chip->write_buf(mtd, p, eccsize); chip->ecc.calculate(mtd, p, &ecc_calc[i]); } for (i = 0; i < chip->ecc.total; i++) chip->oob_poi[eccpos[i]] = ecc_calc[i]; chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); } /** * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write * @mtd: mtd info structure * @chip: nand chip info structure * @buf: data buffer * * The hw generator calculates the error syndrome automatically. Therefore we * need a special oob layout and handling. */ static void nand_write_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf) { int i, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; const uint8_t *p = buf; uint8_t *oob = chip->oob_poi; for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { chip->ecc.hwctl(mtd, NAND_ECC_WRITE); chip->write_buf(mtd, p, eccsize); if (chip->ecc.prepad) { chip->write_buf(mtd, oob, chip->ecc.prepad); oob += chip->ecc.prepad; } chip->ecc.calculate(mtd, p, oob); chip->write_buf(mtd, oob, eccbytes); oob += eccbytes; if (chip->ecc.postpad) { chip->write_buf(mtd, oob, chip->ecc.postpad); oob += chip->ecc.postpad; } } /* Calculate remaining oob bytes */ i = mtd->oobsize - (oob - chip->oob_poi); if (i) chip->write_buf(mtd, oob, i); } /** * nand_write_page - [REPLACEABLE] write one page * @mtd: MTD device structure * @chip: NAND chip descriptor * @buf: the data to write * @page: page number to write * @cached: cached programming * @raw: use _raw version of write_page */ static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int page, int cached, int raw) { int status; chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); if (unlikely(raw)) chip->ecc.write_page_raw(mtd, chip, buf); else chip->ecc.write_page(mtd, chip, buf); /* * Cached progamming disabled for now. Not sure if it's worth the * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s). */ cached = 0; if (!cached || !(chip->options & NAND_CACHEPRG)) { chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); status = chip->waitfunc(mtd, chip); /* * See if operation failed and additional status checks are * available. */ if ((status & NAND_STATUS_FAIL) && (chip->errstat)) status = chip->errstat(mtd, chip, FL_WRITING, status, page); if (status & NAND_STATUS_FAIL) return -EIO; } else { chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1); status = chip->waitfunc(mtd, chip); } #ifdef CONFIG_MTD_NAND_VERIFY_WRITE /* Send command to read back the data */ chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); if (chip->verify_buf(mtd, buf, mtd->writesize)) return -EIO; #endif return 0; } /** * nand_fill_oob - [INTERN] Transfer client buffer to oob * @mtd: MTD device structure * @oob: oob data buffer * @len: oob data write length * @ops: oob ops structure */ static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len, struct mtd_oob_ops *ops) { struct nand_chip *chip = mtd->priv; /* * Initialise to all 0xFF, to avoid the possibility of left over OOB * data from a previous OOB read. */ memset(chip->oob_poi, 0xff, mtd->oobsize); switch (ops->mode) { case MTD_OPS_PLACE_OOB: case MTD_OPS_RAW: memcpy(chip->oob_poi + ops->ooboffs, oob, len); return oob + len; case MTD_OPS_AUTO_OOB: { struct nand_oobfree *free = chip->ecc.layout->oobfree; uint32_t boffs = 0, woffs = ops->ooboffs; size_t bytes = 0; for (; free->length && len; free++, len -= bytes) { /* Write request not from offset 0? */ if (unlikely(woffs)) { if (woffs >= free->length) { woffs -= free->length; continue; } boffs = free->offset + woffs; bytes = min_t(size_t, len, (free->length - woffs)); woffs = 0; } else { bytes = min_t(size_t, len, free->length); boffs = free->offset; } memcpy(chip->oob_poi + boffs, oob, bytes); oob += bytes; } return oob; } default: BUG(); } return NULL; } #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0) /** * nand_do_write_ops - [INTERN] NAND write with ECC * @mtd: MTD device structure * @to: offset to write to * @ops: oob operations description structure * * NAND write with ECC. */ static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) { int chipnr, realpage, page, blockmask, column; struct nand_chip *chip = mtd->priv; uint32_t writelen = ops->len; uint32_t oobwritelen = ops->ooblen; uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize; uint8_t *oob = ops->oobbuf; uint8_t *buf = ops->datbuf; int ret, subpage; ops->retlen = 0; if (!writelen) return 0; /* Reject writes, which are not page aligned */ if (NOTALIGNED(to) || NOTALIGNED(ops->len)) { pr_notice("%s: attempt to write non page aligned data\n", __func__); return -EINVAL; } column = to & (mtd->writesize - 1); subpage = column || (writelen & (mtd->writesize - 1)); if (subpage && oob) return -EINVAL; chipnr = (int)(to >> chip->chip_shift); chip->select_chip(mtd, chipnr); /* Check, if it is write protected */ if (nand_check_wp(mtd)) return -EIO; realpage = (int)(to >> chip->page_shift); page = realpage & chip->pagemask; blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1; /* Invalidate the page cache, when we write to the cached page */ if (to <= (chip->pagebuf << chip->page_shift) && (chip->pagebuf << chip->page_shift) < (to + ops->len)) chip->pagebuf = -1; /* Don't allow multipage oob writes with offset */ if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) return -EINVAL; while (1) { int bytes = mtd->writesize; int cached = writelen > bytes && page != blockmask; uint8_t *wbuf = buf; /* Partial page write? */ if (unlikely(column || writelen < (mtd->writesize - 1))) { cached = 0; bytes = min_t(int, bytes - column, (int) writelen); chip->pagebuf = -1; memset(chip->buffers->databuf, 0xff, mtd->writesize); memcpy(&chip->buffers->databuf[column], buf, bytes); wbuf = chip->buffers->databuf; } if (unlikely(oob)) { size_t len = min(oobwritelen, oobmaxlen); oob = nand_fill_oob(mtd, oob, len, ops); oobwritelen -= len; } else { /* We still need to erase leftover OOB data */ memset(chip->oob_poi, 0xff, mtd->oobsize); } ret = chip->write_page(mtd, chip, wbuf, page, cached, (ops->mode == MTD_OPS_RAW)); if (ret) break; writelen -= bytes; if (!writelen) break; column = 0; buf += bytes; realpage++; page = realpage & chip->pagemask; /* Check, if we cross a chip boundary */ if (!page) { chipnr++; chip->select_chip(mtd, -1); chip->select_chip(mtd, chipnr); } } ops->retlen = ops->len - writelen; if (unlikely(oob)) ops->oobretlen = ops->ooblen; return ret; } /** * panic_nand_write - [MTD Interface] NAND write with ECC * @mtd: MTD device structure * @to: offset to write to * @len: number of bytes to write * @retlen: pointer to variable to store the number of written bytes * @buf: the data to write * * NAND write with ECC. Used when performing writes in interrupt context, this * may for example be called by mtdoops when writing an oops while in panic. */ static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const uint8_t *buf) { struct nand_chip *chip = mtd->priv; struct mtd_oob_ops ops; int ret; /* Do not allow reads past end of device */ if ((to + len) > mtd->size) return -EINVAL; if (!len) return 0; /* Wait for the device to get ready */ panic_nand_wait(mtd, chip, 400); /* Grab the device */ panic_nand_get_device(chip, mtd, FL_WRITING); ops.len = len; ops.datbuf = (uint8_t *)buf; ops.oobbuf = NULL; ops.mode = 0; ret = nand_do_write_ops(mtd, to, &ops); *retlen = ops.retlen; return ret; } /** * nand_write - [MTD Interface] NAND write with ECC * @mtd: MTD device structure * @to: offset to write to * @len: number of bytes to write * @retlen: pointer to variable to store the number of written bytes * @buf: the data to write * * NAND write with ECC. */ static int nand_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const uint8_t *buf) { struct nand_chip *chip = mtd->priv; struct mtd_oob_ops ops; int ret; /* Do not allow reads past end of device */ if ((to + len) > mtd->size) return -EINVAL; if (!len) return 0; nand_get_device(chip, mtd, FL_WRITING); ops.len = len; ops.datbuf = (uint8_t *)buf; ops.oobbuf = NULL; ops.mode = 0; ret = nand_do_write_ops(mtd, to, &ops); *retlen = ops.retlen; nand_release_device(mtd); return ret; } /** * nand_do_write_oob - [MTD Interface] NAND write out-of-band * @mtd: MTD device structure * @to: offset to write to * @ops: oob operation description structure * * NAND write out-of-band. */ static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) { int chipnr, page, status, len; struct nand_chip *chip = mtd->priv; pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to, (int)ops->ooblen); if (ops->mode == MTD_OPS_AUTO_OOB) len = chip->ecc.layout->oobavail; else len = mtd->oobsize; /* Do not allow write past end of page */ if ((ops->ooboffs + ops->ooblen) > len) { pr_debug("%s: attempt to write past end of page\n", __func__); return -EINVAL; } if (unlikely(ops->ooboffs >= len)) { pr_debug("%s: attempt to start write outside oob\n", __func__); return -EINVAL; } /* Do not allow write past end of device */ if (unlikely(to >= mtd->size || ops->ooboffs + ops->ooblen > ((mtd->size >> chip->page_shift) - (to >> chip->page_shift)) * len)) { pr_debug("%s: attempt to write beyond end of device\n", __func__); return -EINVAL; } chipnr = (int)(to >> chip->chip_shift); chip->select_chip(mtd, chipnr); /* Shift to get page */ page = (int)(to >> chip->page_shift); /* * Reset the chip. Some chips (like the Toshiba TC5832DC found in one * of my DiskOnChip 2000 test units) will clear the whole data page too * if we don't do this. I have no clue why, but I seem to have 'fixed' * it in the doc2000 driver in August 1999. dwmw2. */ chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); /* Check, if it is write protected */ if (nand_check_wp(mtd)) return -EROFS; /* Invalidate the page cache, if we write to the cached page */ if (page == chip->pagebuf) chip->pagebuf = -1; nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops); if (ops->mode == MTD_OPS_RAW) status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask); else status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask); if (status) return status; ops->oobretlen = ops->ooblen; return 0; } /** * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band * @mtd: MTD device structure * @to: offset to write to * @ops: oob operation description structure */ static int nand_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) { struct nand_chip *chip = mtd->priv; int ret = -ENOTSUPP; ops->retlen = 0; /* Do not allow writes past end of device */ if (ops->datbuf && (to + ops->len) > mtd->size) { pr_debug("%s: attempt to write beyond end of device\n", __func__); return -EINVAL; } nand_get_device(chip, mtd, FL_WRITING); switch (ops->mode) { case MTD_OPS_PLACE_OOB: case MTD_OPS_AUTO_OOB: case MTD_OPS_RAW: break; default: goto out; } if (!ops->datbuf) ret = nand_do_write_oob(mtd, to, ops); else ret = nand_do_write_ops(mtd, to, ops); out: nand_release_device(mtd); return ret; } /** * single_erase_cmd - [GENERIC] NAND standard block erase command function * @mtd: MTD device structure * @page: the page address of the block which will be erased * * Standard erase command for NAND chips. */ static void single_erase_cmd(struct mtd_info *mtd, int page) { struct nand_chip *chip = mtd->priv; /* Send commands to erase a block */ chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); } /** * multi_erase_cmd - [GENERIC] AND specific block erase command function * @mtd: MTD device structure * @page: the page address of the block which will be erased * * AND multi block erase command function. Erase 4 consecutive blocks. */ static void multi_erase_cmd(struct mtd_info *mtd, int page) { struct nand_chip *chip = mtd->priv; /* Send commands to erase a block */ chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++); chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++); chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++); chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); } /** * nand_erase - [MTD Interface] erase block(s) * @mtd: MTD device structure * @instr: erase instruction * * Erase one ore more blocks. */ static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) { return nand_erase_nand(mtd, instr, 0); } #define BBT_PAGE_MASK 0xffffff3f /** * nand_erase_nand - [INTERN] erase block(s) * @mtd: MTD device structure * @instr: erase instruction * @allowbbt: allow erasing the bbt area * * Erase one ore more blocks. */ int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, int allowbbt) { int page, status, pages_per_block, ret, chipnr; struct nand_chip *chip = mtd->priv; loff_t rewrite_bbt[NAND_MAX_CHIPS] = {0}; unsigned int bbt_masked_page = 0xffffffff; loff_t len; pr_debug("%s: start = 0x%012llx, len = %llu\n", __func__, (unsigned long long)instr->addr, (unsigned long long)instr->len); if (check_offs_len(mtd, instr->addr, instr->len)) return -EINVAL; instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; /* Grab the lock and see if the device is available */ nand_get_device(chip, mtd, FL_ERASING); /* Shift to get first page */ page = (int)(instr->addr >> chip->page_shift); chipnr = (int)(instr->addr >> chip->chip_shift); /* Calculate pages in each block */ pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift); /* Select the NAND device */ chip->select_chip(mtd, chipnr); /* Check, if it is write protected */ if (nand_check_wp(mtd)) { pr_debug("%s: device is write protected!\n", __func__); instr->state = MTD_ERASE_FAILED; goto erase_exit; } /* * If BBT requires refresh, set the BBT page mask to see if the BBT * should be rewritten. Otherwise the mask is set to 0xffffffff which * can not be matched. This is also done when the bbt is actually * erased to avoid recursive updates. */ if (chip->options & BBT_AUTO_REFRESH && !allowbbt) bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK; /* Loop through the pages */ len = instr->len; instr->state = MTD_ERASING; while (len) { /* Check if we have a bad block, we do not erase bad blocks! */ if (nand_block_checkbad(mtd, ((loff_t) page) << chip->page_shift, 0, allowbbt)) { pr_warn("%s: attempt to erase a bad block at page 0x%08x\n", __func__, page); instr->state = MTD_ERASE_FAILED; goto erase_exit; } /* * Invalidate the page cache, if we erase the block which * contains the current cached page. */ if (page <= chip->pagebuf && chip->pagebuf < (page + pages_per_block)) chip->pagebuf = -1; chip->erase_cmd(mtd, page & chip->pagemask); status = chip->waitfunc(mtd, chip); /* * See if operation failed and additional status checks are * available */ if ((status & NAND_STATUS_FAIL) && (chip->errstat)) status = chip->errstat(mtd, chip, FL_ERASING, status, page); /* See if block erase succeeded */ if (status & NAND_STATUS_FAIL) { pr_debug("%s: failed erase, page 0x%08x\n", __func__, page); instr->state = MTD_ERASE_FAILED; instr->fail_addr = ((loff_t)page << chip->page_shift); goto erase_exit; } /* * If BBT requires refresh, set the BBT rewrite flag to the * page being erased. */ if (bbt_masked_page != 0xffffffff && (page & BBT_PAGE_MASK) == bbt_masked_page) rewrite_bbt[chipnr] = ((loff_t)page << chip->page_shift); /* Increment page address and decrement length */ len -= (1 << chip->phys_erase_shift); page += pages_per_block; /* Check, if we cross a chip boundary */ if (len && !(page & chip->pagemask)) { chipnr++; chip->select_chip(mtd, -1); chip->select_chip(mtd, chipnr); /* * If BBT requires refresh and BBT-PERCHIP, set the BBT * page mask to see if this BBT should be rewritten. */ if (bbt_masked_page != 0xffffffff && (chip->bbt_td->options & NAND_BBT_PERCHIP)) bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK; } } instr->state = MTD_ERASE_DONE; erase_exit: ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO; /* Deselect and wake up anyone waiting on the device */ nand_release_device(mtd); /* Do call back function */ if (!ret) mtd_erase_callback(instr); /* * If BBT requires refresh and erase was successful, rewrite any * selected bad block tables. */ if (bbt_masked_page == 0xffffffff || ret) return ret; for (chipnr = 0; chipnr < chip->numchips; chipnr++) { if (!rewrite_bbt[chipnr]) continue; /* Update the BBT for chip */ pr_debug("%s: nand_update_bbt (%d:0x%0llx 0x%0x)\n", __func__, chipnr, rewrite_bbt[chipnr], chip->bbt_td->pages[chipnr]); nand_update_bbt(mtd, rewrite_bbt[chipnr]); } /* Return more or less happy */ return ret; } /** * nand_sync - [MTD Interface] sync * @mtd: MTD device structure * * Sync is actually a wait for chip ready function. */ static void nand_sync(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; pr_debug("%s: called\n", __func__); /* Grab the lock and see if the device is available */ nand_get_device(chip, mtd, FL_SYNCING); /* Release it and go back */ nand_release_device(mtd); } /** * nand_block_isbad - [MTD Interface] Check if block at offset is bad * @mtd: MTD device structure * @offs: offset relative to mtd start */ static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) { /* Check for invalid offset */ if (offs > mtd->size) return -EINVAL; return nand_block_checkbad(mtd, offs, 1, 0); } /** * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad * @mtd: MTD device structure * @ofs: offset relative to mtd start */ static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) { struct nand_chip *chip = mtd->priv; int ret; ret = nand_block_isbad(mtd, ofs); if (ret) { /* If it was bad already, return success and do nothing */ if (ret > 0) return 0; return ret; } return chip->block_markbad(mtd, ofs); } /** * nand_suspend - [MTD Interface] Suspend the NAND flash * @mtd: MTD device structure */ static int nand_suspend(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; return nand_get_device(chip, mtd, FL_PM_SUSPENDED); } /** * nand_resume - [MTD Interface] Resume the NAND flash * @mtd: MTD device structure */ static void nand_resume(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; if (chip->state == FL_PM_SUSPENDED) nand_release_device(mtd); else pr_err("%s called for a chip which is not in suspended state\n", __func__); } /* Set default functions */ static void nand_set_defaults(struct nand_chip *chip, int busw) { /* check for proper chip_delay setup, set 20us if not */ if (!chip->chip_delay) chip->chip_delay = 20; /* check, if a user supplied command function given */ if (chip->cmdfunc == NULL) chip->cmdfunc = nand_command; /* check, if a user supplied wait function given */ if (chip->waitfunc == NULL) chip->waitfunc = nand_wait; if (!chip->select_chip) chip->select_chip = nand_select_chip; if (!chip->read_byte) chip->read_byte = busw ? nand_read_byte16 : nand_read_byte; if (!chip->read_word) chip->read_word = nand_read_word; if (!chip->block_bad) chip->block_bad = nand_block_bad; if (!chip->block_markbad) chip->block_markbad = nand_default_block_markbad; if (!chip->write_buf) chip->write_buf = busw ? nand_write_buf16 : nand_write_buf; if (!chip->read_buf) chip->read_buf = busw ? nand_read_buf16 : nand_read_buf; if (!chip->verify_buf) chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf; if (!chip->scan_bbt) chip->scan_bbt = nand_default_bbt; if (!chip->controller) { chip->controller = &chip->hwcontrol; spin_lock_init(&chip->controller->lock); init_waitqueue_head(&chip->controller->wq); } } /* Sanitize ONFI strings so we can safely print them */ static void sanitize_string(uint8_t *s, size_t len) { ssize_t i; /* Null terminate */ s[len - 1] = 0; /* Remove non printable chars */ for (i = 0; i < len - 1; i++) { if (s[i] < ' ' || s[i] > 127) s[i] = '?'; } /* Remove trailing spaces */ strim(s); } static u16 onfi_crc16(u16 crc, u8 const *p, size_t len) { int i; while (len--) { crc ^= *p++ << 8; for (i = 0; i < 8; i++) crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0); } return crc; } /* * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise. */ static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip, int *busw) { struct nand_onfi_params *p = &chip->onfi_params; int i; int val; /* Try ONFI for unknown chip or LP */ chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1); if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' || chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I') return 0; pr_info("ONFI flash detected\n"); chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1); for (i = 0; i < 3; i++) { chip->read_buf(mtd, (uint8_t *)p, sizeof(*p)); if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) == le16_to_cpu(p->crc)) { pr_info("ONFI param page %d valid\n", i); break; } } if (i == 3) return 0; /* Check version */ val = le16_to_cpu(p->revision); if (val & (1 << 5)) chip->onfi_version = 23; else if (val & (1 << 4)) chip->onfi_version = 22; else if (val & (1 << 3)) chip->onfi_version = 21; else if (val & (1 << 2)) chip->onfi_version = 20; else if (val & (1 << 1)) chip->onfi_version = 10; else chip->onfi_version = 0; if (!chip->onfi_version) { pr_info("%s: unsupported ONFI version: %d\n", __func__, val); return 0; } sanitize_string(p->manufacturer, sizeof(p->manufacturer)); sanitize_string(p->model, sizeof(p->model)); if (!mtd->name) mtd->name = p->model; mtd->writesize = le32_to_cpu(p->byte_per_page); mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize; mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page); chip->chipsize = (uint64_t)le32_to_cpu(p->blocks_per_lun) * mtd->erasesize; *busw = 0; if (le16_to_cpu(p->features) & 1) *busw = NAND_BUSWIDTH_16; chip->options &= ~NAND_CHIPOPTIONS_MSK; chip->options |= (NAND_NO_READRDY | NAND_NO_AUTOINCR) & NAND_CHIPOPTIONS_MSK; return 1; } /* * Get the flash and manufacturer id and lookup if the type is supported. */ static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, struct nand_chip *chip, int busw, int *maf_id, int *dev_id, struct nand_flash_dev *type) { int i, maf_idx; u8 id_data[8]; int ret; /* Select the device */ chip->select_chip(mtd, 0); /* * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) * after power-up. */ chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); /* Send the command for reading device ID */ chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); /* Read manufacturer and device IDs */ *maf_id = chip->read_byte(mtd); *dev_id = chip->read_byte(mtd); /* * Try again to make sure, as some systems the bus-hold or other * interface concerns can cause random data which looks like a * possibly credible NAND flash to appear. If the two results do * not match, ignore the device completely. */ chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); for (i = 0; i < 2; i++) id_data[i] = chip->read_byte(mtd); if (id_data[0] != *maf_id || id_data[1] != *dev_id) { pr_info("%s: second ID read did not match " "%02x,%02x against %02x,%02x\n", __func__, *maf_id, *dev_id, id_data[0], id_data[1]); return ERR_PTR(-ENODEV); } if (!type) type = nand_flash_ids; for (; type->name != NULL; type++) if (*dev_id == type->id) break; chip->onfi_version = 0; if (!type->name || !type->pagesize) { /* Check is chip is ONFI compliant */ ret = nand_flash_detect_onfi(mtd, chip, &busw); if (ret) goto ident_done; } chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); /* Read entire ID string */ for (i = 0; i < 8; i++) id_data[i] = chip->read_byte(mtd); if (!type->name) return ERR_PTR(-ENODEV); if (!mtd->name) mtd->name = type->name; chip->chipsize = (uint64_t)type->chipsize << 20; if (!type->pagesize && chip->init_size) { /* Set the pagesize, oobsize, erasesize by the driver */ busw = chip->init_size(mtd, chip, id_data); } else if (!type->pagesize) { int extid; /* The 3rd id byte holds MLC / multichip data */ chip->cellinfo = id_data[2]; /* The 4th id byte is the important one */ extid = id_data[3]; /* * Field definitions are in the following datasheets: * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32) * New style (6 byte ID): Samsung K9GBG08U0M (p.40) * * Check for wraparound + Samsung ID + nonzero 6th byte * to decide what to do. */ if (id_data[0] == id_data[6] && id_data[1] == id_data[7] && id_data[0] == NAND_MFR_SAMSUNG && (chip->cellinfo & NAND_CI_CELLTYPE_MSK) && id_data[5] != 0x00) { /* Calc pagesize */ mtd->writesize = 2048 << (extid & 0x03); extid >>= 2; /* Calc oobsize */ switch (extid & 0x03) { case 1: mtd->oobsize = 128; break; case 2: mtd->oobsize = 218; break; case 3: mtd->oobsize = 400; break; default: mtd->oobsize = 436; break; } extid >>= 2; /* Calc blocksize */ mtd->erasesize = (128 * 1024) << (((extid >> 1) & 0x04) | (extid & 0x03)); busw = 0; } else { /* Calc pagesize */ mtd->writesize = 1024 << (extid & 0x03); extid >>= 2; /* Calc oobsize */ mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9); extid >>= 2; /* Calc blocksize. Blocksize is multiples of 64KiB */ mtd->erasesize = (64 * 1024) << (extid & 0x03); extid >>= 2; /* Get buswidth information */ busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0; } } else { /* * Old devices have chip data hardcoded in the device id table. */ mtd->erasesize = type->erasesize; mtd->writesize = type->pagesize; mtd->oobsize = mtd->writesize / 32; busw = type->options & NAND_BUSWIDTH_16; /* * Check for Spansion/AMD ID + repeating 5th, 6th byte since * some Spansion chips have erasesize that conflicts with size * listed in nand_ids table. * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39) */ if (*maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00 && id_data[6] == 0x00 && id_data[7] == 0x00 && mtd->writesize == 512) { mtd->erasesize = 128 * 1024; mtd->erasesize <<= ((id_data[3] & 0x03) << 1); } } /* Get chip options, preserve non chip based options */ chip->options &= ~NAND_CHIPOPTIONS_MSK; chip->options |= type->options & NAND_CHIPOPTIONS_MSK; /* * Check if chip is not a Samsung device. Do not clear the * options for chips which do not have an extended id. */ if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize) chip->options &= ~NAND_SAMSUNG_LP_OPTIONS; ident_done: /* * Set chip as a default. Board drivers can override it, if necessary. */ chip->options |= NAND_NO_AUTOINCR; /* Try to identify manufacturer */ for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) { if (nand_manuf_ids[maf_idx].id == *maf_id) break; } /* * Check, if buswidth is correct. Hardware drivers should set * chip correct! */ if (busw != (chip->options & NAND_BUSWIDTH_16)) { pr_info("NAND device: Manufacturer ID:" " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, *dev_id, nand_manuf_ids[maf_idx].name, mtd->name); pr_warn("NAND bus width %d instead %d bit\n", (chip->options & NAND_BUSWIDTH_16) ? 16 : 8, busw ? 16 : 8); return ERR_PTR(-EINVAL); } /* Calculate the address shift from the page size */ chip->page_shift = ffs(mtd->writesize) - 1; /* Convert chipsize to number of pages per chip -1 */ chip->pagemask = (chip->chipsize >> chip->page_shift) - 1; chip->bbt_erase_shift = chip->phys_erase_shift = ffs(mtd->erasesize) - 1; if (chip->chipsize & 0xffffffff) chip->chip_shift = ffs((unsigned)chip->chipsize) - 1; else { chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)); chip->chip_shift += 32 - 1; } chip->badblockbits = 8; /* Set the bad block position */ if (mtd->writesize > 512 || (busw & NAND_BUSWIDTH_16)) chip->badblockpos = NAND_LARGE_BADBLOCK_POS; else chip->badblockpos = NAND_SMALL_BADBLOCK_POS; /* * Bad block marker is stored in the last page of each block * on Samsung and Hynix MLC devices; stored in first two pages * of each block on Micron devices with 2KiB pages and on * SLC Samsung, Hynix, Toshiba, AMD/Spansion, and Macronix. * All others scan only the first page. */ if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) && (*maf_id == NAND_MFR_SAMSUNG || *maf_id == NAND_MFR_HYNIX)) chip->bbt_options |= NAND_BBT_SCANLASTPAGE; else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) && (*maf_id == NAND_MFR_SAMSUNG || *maf_id == NAND_MFR_HYNIX || *maf_id == NAND_MFR_TOSHIBA || *maf_id == NAND_MFR_AMD || *maf_id == NAND_MFR_MACRONIX)) || (mtd->writesize == 2048 && *maf_id == NAND_MFR_MICRON)) chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; /* Check for AND chips with 4 page planes */ if (chip->options & NAND_4PAGE_ARRAY) chip->erase_cmd = multi_erase_cmd; else chip->erase_cmd = single_erase_cmd; /* Do not replace user supplied command function! */ if (mtd->writesize > 512 && chip->cmdfunc == nand_command) chip->cmdfunc = nand_command_lp; pr_info("NAND device: Manufacturer ID:" " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, *dev_id, nand_manuf_ids[maf_idx].name, chip->onfi_version ? chip->onfi_params.model : type->name); return type; } /** * nand_scan_ident - [NAND Interface] Scan for the NAND device * @mtd: MTD device structure * @maxchips: number of chips to scan for * @table: alternative NAND ID table * * This is the first phase of the normal nand_scan() function. It reads the * flash ID and sets up MTD fields accordingly. * * The mtd->owner field must be set to the module of the caller. */ int nand_scan_ident(struct mtd_info *mtd, int maxchips, struct nand_flash_dev *table) { int i, busw, nand_maf_id, nand_dev_id; struct nand_chip *chip = mtd->priv; struct nand_flash_dev *type; /* Get buswidth to select the correct functions */ busw = chip->options & NAND_BUSWIDTH_16; /* Set the default functions */ nand_set_defaults(chip, busw); /* Read the flash type */ type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id, &nand_dev_id, table); if (IS_ERR(type)) { if (!(chip->options & NAND_SCAN_SILENT_NODEV)) pr_warn("No NAND device found\n"); chip->select_chip(mtd, -1); return PTR_ERR(type); } /* Check for a chip array */ for (i = 1; i < maxchips; i++) { chip->select_chip(mtd, i); /* See comment in nand_get_flash_type for reset */ chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); /* Send the command for reading device ID */ chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); /* Read manufacturer and device IDs */ if (nand_maf_id != chip->read_byte(mtd) || nand_dev_id != chip->read_byte(mtd)) break; } if (i > 1) pr_info("%d NAND chips detected\n", i); /* Store the number of chips and calc total size for mtd */ chip->numchips = i; mtd->size = i * chip->chipsize; return 0; } EXPORT_SYMBOL(nand_scan_ident); /** * nand_scan_tail - [NAND Interface] Scan for the NAND device * @mtd: MTD device structure * * This is the second phase of the normal nand_scan() function. It fills out * all the uninitialized function pointers with the defaults and scans for a * bad block table if appropriate. */ int nand_scan_tail(struct mtd_info *mtd) { int i; struct nand_chip *chip = mtd->priv; if (!(chip->options & NAND_OWN_BUFFERS)) chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL); if (!chip->buffers) return -ENOMEM; /* Set the internal oob buffer location, just after the page data */ chip->oob_poi = chip->buffers->databuf + mtd->writesize; /* * If no default placement scheme is given, select an appropriate one. */ if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) { switch (mtd->oobsize) { case 8: chip->ecc.layout = &nand_oob_8; break; case 16: chip->ecc.layout = &nand_oob_16; break; case 64: chip->ecc.layout = &nand_oob_64; break; case 128: chip->ecc.layout = &nand_oob_128; break; default: pr_warn("No oob scheme defined for oobsize %d\n", mtd->oobsize); BUG(); } } if (!chip->write_page) chip->write_page = nand_write_page; /* * Check ECC mode, default to software if 3byte/512byte hardware ECC is * selected and we have 256 byte pagesize fallback to software ECC */ switch (chip->ecc.mode) { case NAND_ECC_HW_OOB_FIRST: /* Similar to NAND_ECC_HW, but a separate read_page handle */ if (!chip->ecc.calculate || !chip->ecc.correct || !chip->ecc.hwctl) { pr_warn("No ECC functions supplied; " "hardware ECC not possible\n"); BUG(); } if (!chip->ecc.read_page) chip->ecc.read_page = nand_read_page_hwecc_oob_first; case NAND_ECC_HW: /* Use standard hwecc read page function? */ if (!chip->ecc.read_page) chip->ecc.read_page = nand_read_page_hwecc; if (!chip->ecc.write_page) chip->ecc.write_page = nand_write_page_hwecc; if (!chip->ecc.read_page_raw) chip->ecc.read_page_raw = nand_read_page_raw; if (!chip->ecc.write_page_raw) chip->ecc.write_page_raw = nand_write_page_raw; if (!chip->ecc.read_oob) chip->ecc.read_oob = nand_read_oob_std; if (!chip->ecc.write_oob) chip->ecc.write_oob = nand_write_oob_std; case NAND_ECC_HW_SYNDROME: if ((!chip->ecc.calculate || !chip->ecc.correct || !chip->ecc.hwctl) && (!chip->ecc.read_page || chip->ecc.read_page == nand_read_page_hwecc || !chip->ecc.write_page || chip->ecc.write_page == nand_write_page_hwecc)) { pr_warn("No ECC functions supplied; " "hardware ECC not possible\n"); BUG(); } /* Use standard syndrome read/write page function? */ if (!chip->ecc.read_page) chip->ecc.read_page = nand_read_page_syndrome; if (!chip->ecc.write_page) chip->ecc.write_page = nand_write_page_syndrome; if (!chip->ecc.read_page_raw) chip->ecc.read_page_raw = nand_read_page_raw_syndrome; if (!chip->ecc.write_page_raw) chip->ecc.write_page_raw = nand_write_page_raw_syndrome; if (!chip->ecc.read_oob) chip->ecc.read_oob = nand_read_oob_syndrome; if (!chip->ecc.write_oob) chip->ecc.write_oob = nand_write_oob_syndrome; if (mtd->writesize >= chip->ecc.size) break; pr_warn("%d byte HW ECC not possible on " "%d byte page size, fallback to SW ECC\n", chip->ecc.size, mtd->writesize); chip->ecc.mode = NAND_ECC_SOFT; case NAND_ECC_SOFT: chip->ecc.calculate = nand_calculate_ecc; chip->ecc.correct = nand_correct_data; chip->ecc.read_page = nand_read_page_swecc; chip->ecc.read_subpage = nand_read_subpage; chip->ecc.write_page = nand_write_page_swecc; chip->ecc.read_page_raw = nand_read_page_raw; chip->ecc.write_page_raw = nand_write_page_raw; chip->ecc.read_oob = nand_read_oob_std; chip->ecc.write_oob = nand_write_oob_std; if (!chip->ecc.size) chip->ecc.size = 256; chip->ecc.bytes = 3; break; case NAND_ECC_SOFT_BCH: if (!mtd_nand_has_bch()) { pr_warn("CONFIG_MTD_ECC_BCH not enabled\n"); BUG(); } chip->ecc.calculate = nand_bch_calculate_ecc; chip->ecc.correct = nand_bch_correct_data; chip->ecc.read_page = nand_read_page_swecc; chip->ecc.read_subpage = nand_read_subpage; chip->ecc.write_page = nand_write_page_swecc; chip->ecc.read_page_raw = nand_read_page_raw; chip->ecc.write_page_raw = nand_write_page_raw; chip->ecc.read_oob = nand_read_oob_std; chip->ecc.write_oob = nand_write_oob_std; /* * Board driver should supply ecc.size and ecc.bytes values to * select how many bits are correctable; see nand_bch_init() * for details. Otherwise, default to 4 bits for large page * devices. */ if (!chip->ecc.size && (mtd->oobsize >= 64)) { chip->ecc.size = 512; chip->ecc.bytes = 7; } chip->ecc.priv = nand_bch_init(mtd, chip->ecc.size, chip->ecc.bytes, &chip->ecc.layout); if (!chip->ecc.priv) { pr_warn("BCH ECC initialization failed!\n"); BUG(); } break; case NAND_ECC_NONE: pr_warn("NAND_ECC_NONE selected by board driver. " "This is not recommended!\n"); chip->ecc.read_page = nand_read_page_raw; chip->ecc.write_page = nand_write_page_raw; chip->ecc.read_oob = nand_read_oob_std; chip->ecc.read_page_raw = nand_read_page_raw; chip->ecc.write_page_raw = nand_write_page_raw; chip->ecc.write_oob = nand_write_oob_std; chip->ecc.size = mtd->writesize; chip->ecc.bytes = 0; break; default: pr_warn("Invalid NAND_ECC_MODE %d\n", chip->ecc.mode); BUG(); } /* For many systems, the standard OOB write also works for raw */ if (!chip->ecc.read_oob_raw) chip->ecc.read_oob_raw = chip->ecc.read_oob; if (!chip->ecc.write_oob_raw) chip->ecc.write_oob_raw = chip->ecc.write_oob; /* * The number of bytes available for a client to place data into * the out of band area. */ chip->ecc.layout->oobavail = 0; for (i = 0; chip->ecc.layout->oobfree[i].length && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++) chip->ecc.layout->oobavail += chip->ecc.layout->oobfree[i].length; mtd->oobavail = chip->ecc.layout->oobavail; /* * Set the number of read / write steps for one page depending on ECC * mode. */ chip->ecc.steps = mtd->writesize / chip->ecc.size; if (chip->ecc.steps * chip->ecc.size != mtd->writesize) { pr_warn("Invalid ECC parameters\n"); BUG(); } chip->ecc.total = chip->ecc.steps * chip->ecc.bytes; /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */ if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) { switch (chip->ecc.steps) { case 2: mtd->subpage_sft = 1; break; case 4: case 8: case 16: mtd->subpage_sft = 2; break; } } chip->subpagesize = mtd->writesize >> mtd->subpage_sft; /* Initialize state */ chip->state = FL_READY; /* De-select the device */ chip->select_chip(mtd, -1); /* Invalidate the pagebuffer reference */ chip->pagebuf = -1; /* Fill in remaining MTD driver data */ mtd->type = MTD_NANDFLASH; mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM : MTD_CAP_NANDFLASH; mtd->erase = nand_erase; mtd->point = NULL; mtd->unpoint = NULL; mtd->read = nand_read; mtd->write = nand_write; mtd->panic_write = panic_nand_write; mtd->read_oob = nand_read_oob; mtd->write_oob = nand_write_oob; mtd->sync = nand_sync; mtd->lock = NULL; mtd->unlock = NULL; mtd->suspend = nand_suspend; mtd->resume = nand_resume; mtd->block_isbad = nand_block_isbad; mtd->block_markbad = nand_block_markbad; mtd->writebufsize = mtd->writesize; /* propagate ecc.layout to mtd_info */ mtd->ecclayout = chip->ecc.layout; /* Check, if we should skip the bad block table scan */ if (chip->options & NAND_SKIP_BBTSCAN) return 0; /* Build bad block table */ return chip->scan_bbt(mtd); } EXPORT_SYMBOL(nand_scan_tail); /* * is_module_text_address() isn't exported, and it's mostly a pointless * test if this is a module _anyway_ -- they'd have to try _really_ hard * to call us from in-kernel code if the core NAND support is modular. */ #ifdef MODULE #define caller_is_module() (1) #else #define caller_is_module() \ is_module_text_address((unsigned long)__builtin_return_address(0)) #endif /** * nand_scan - [NAND Interface] Scan for the NAND device * @mtd: MTD device structure * @maxchips: number of chips to scan for * * This fills out all the uninitialized function pointers with the defaults. * The flash ID is read and the mtd/chip structures are filled with the * appropriate values. The mtd->owner field must be set to the module of the * caller. */ int nand_scan(struct mtd_info *mtd, int maxchips) { int ret; /* Many callers got this wrong, so check for it for a while... */ if (!mtd->owner && caller_is_module()) { pr_crit("%s called with NULL mtd->owner!\n", __func__); BUG(); } ret = nand_scan_ident(mtd, maxchips, NULL); if (!ret) ret = nand_scan_tail(mtd); return ret; } EXPORT_SYMBOL(nand_scan); /** * nand_release - [NAND Interface] Free resources held by the NAND device * @mtd: MTD device structure */ void nand_release(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; if (chip->ecc.mode == NAND_ECC_SOFT_BCH) nand_bch_free((struct nand_bch_control *)chip->ecc.priv); mtd_device_unregister(mtd); /* Free bad block table memory */ kfree(chip->bbt); if (!(chip->options & NAND_OWN_BUFFERS)) kfree(chip->buffers); /* Free bad block descriptor memory */ if (chip->badblock_pattern && chip->badblock_pattern->options & NAND_BBT_DYNAMICSTRUCT) kfree(chip->badblock_pattern); } EXPORT_SYMBOL_GPL(nand_release); static int __init nand_base_init(void) { led_trigger_register_simple("nand-disk", &nand_led_trigger); return 0; } static void __exit nand_base_exit(void) { led_trigger_unregister_simple(nand_led_trigger); } module_init(nand_base_init); module_exit(nand_base_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>"); MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); MODULE_DESCRIPTION("Generic NAND flash driver code");