/* * Intel GTT (Graphics Translation Table) routines * * Caveat: This driver implements the linux agp interface, but this is far from * a agp driver! GTT support ended up here for purely historical reasons: The * old userspace intel graphics drivers needed an interface to map memory into * the GTT. And the drm provides a default interface for graphic devices sitting * on an agp port. So it made sense to fake the GTT support as an agp port to * avoid having to create a new api. * * With gem this does not make much sense anymore, just needlessly complicates * the code. But as long as the old graphics stack is still support, it's stuck * here. * * /fairy-tale-mode off */ #include <linux/module.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/pagemap.h> #include <linux/agp_backend.h> #include <linux/delay.h> #include <asm/smp.h> #include "agp.h" #include "intel-agp.h" #include <drm/intel-gtt.h> /* * If we have Intel graphics, we're not going to have anything other than * an Intel IOMMU. So make the correct use of the PCI DMA API contingent * on the Intel IOMMU support (CONFIG_INTEL_IOMMU). * Only newer chipsets need to bother with this, of course. */ #ifdef CONFIG_INTEL_IOMMU #define USE_PCI_DMA_API 1 #else #define USE_PCI_DMA_API 0 #endif struct intel_gtt_driver { unsigned int gen : 8; unsigned int is_g33 : 1; unsigned int is_pineview : 1; unsigned int is_ironlake : 1; unsigned int has_pgtbl_enable : 1; unsigned int dma_mask_size : 8; /* Chipset specific GTT setup */ int (*setup)(void); /* This should undo anything done in ->setup() save the unmapping * of the mmio register file, that's done in the generic code. */ void (*cleanup)(void); void (*write_entry)(dma_addr_t addr, unsigned int entry, unsigned int flags); /* Flags is a more or less chipset specific opaque value. * For chipsets that need to support old ums (non-gem) code, this * needs to be identical to the various supported agp memory types! */ bool (*check_flags)(unsigned int flags); void (*chipset_flush)(void); }; static struct _intel_private { struct intel_gtt base; const struct intel_gtt_driver *driver; struct pci_dev *pcidev; /* device one */ struct pci_dev *bridge_dev; u8 __iomem *registers; phys_addr_t gtt_bus_addr; phys_addr_t gma_bus_addr; u32 PGETBL_save; u32 __iomem *gtt; /* I915G */ bool clear_fake_agp; /* on first access via agp, fill with scratch */ int num_dcache_entries; void __iomem *i9xx_flush_page; char *i81x_gtt_table; struct resource ifp_resource; int resource_valid; struct page *scratch_page; dma_addr_t scratch_page_dma; } intel_private; #define INTEL_GTT_GEN intel_private.driver->gen #define IS_G33 intel_private.driver->is_g33 #define IS_PINEVIEW intel_private.driver->is_pineview #define IS_IRONLAKE intel_private.driver->is_ironlake #define HAS_PGTBL_EN intel_private.driver->has_pgtbl_enable int intel_gtt_map_memory(struct page **pages, unsigned int num_entries, struct scatterlist **sg_list, int *num_sg) { struct sg_table st; struct scatterlist *sg; int i; if (*sg_list) return 0; /* already mapped (for e.g. resume */ DBG("try mapping %lu pages\n", (unsigned long)num_entries); if (sg_alloc_table(&st, num_entries, GFP_KERNEL)) goto err; *sg_list = sg = st.sgl; for (i = 0 ; i < num_entries; i++, sg = sg_next(sg)) sg_set_page(sg, pages[i], PAGE_SIZE, 0); *num_sg = pci_map_sg(intel_private.pcidev, *sg_list, num_entries, PCI_DMA_BIDIRECTIONAL); if (unlikely(!*num_sg)) goto err; return 0; err: sg_free_table(&st); return -ENOMEM; } EXPORT_SYMBOL(intel_gtt_map_memory); void intel_gtt_unmap_memory(struct scatterlist *sg_list, int num_sg) { struct sg_table st; DBG("try unmapping %lu pages\n", (unsigned long)mem->page_count); pci_unmap_sg(intel_private.pcidev, sg_list, num_sg, PCI_DMA_BIDIRECTIONAL); st.sgl = sg_list; st.orig_nents = st.nents = num_sg; sg_free_table(&st); } EXPORT_SYMBOL(intel_gtt_unmap_memory); static void intel_fake_agp_enable(struct agp_bridge_data *bridge, u32 mode) { return; } /* Exists to support ARGB cursors */ static struct page *i8xx_alloc_pages(void) { struct page *page; page = alloc_pages(GFP_KERNEL | GFP_DMA32, 2); if (page == NULL) return NULL; if (set_pages_uc(page, 4) < 0) { set_pages_wb(page, 4); __free_pages(page, 2); return NULL; } get_page(page); atomic_inc(&agp_bridge->current_memory_agp); return page; } static void i8xx_destroy_pages(struct page *page) { if (page == NULL) return; set_pages_wb(page, 4); put_page(page); __free_pages(page, 2); atomic_dec(&agp_bridge->current_memory_agp); } #define I810_GTT_ORDER 4 static int i810_setup(void) { u32 reg_addr; char *gtt_table; /* i81x does not preallocate the gtt. It's always 64kb in size. */ gtt_table = alloc_gatt_pages(I810_GTT_ORDER); if (gtt_table == NULL) return -ENOMEM; intel_private.i81x_gtt_table = gtt_table; pci_read_config_dword(intel_private.pcidev, I810_MMADDR, ®_addr); reg_addr &= 0xfff80000; intel_private.registers = ioremap(reg_addr, KB(64)); if (!intel_private.registers) return -ENOMEM; writel(virt_to_phys(gtt_table) | I810_PGETBL_ENABLED, intel_private.registers+I810_PGETBL_CTL); intel_private.gtt_bus_addr = reg_addr + I810_PTE_BASE; if ((readl(intel_private.registers+I810_DRAM_CTL) & I810_DRAM_ROW_0) == I810_DRAM_ROW_0_SDRAM) { dev_info(&intel_private.pcidev->dev, "detected 4MB dedicated video ram\n"); intel_private.num_dcache_entries = 1024; } return 0; } static void i810_cleanup(void) { writel(0, intel_private.registers+I810_PGETBL_CTL); free_gatt_pages(intel_private.i81x_gtt_table, I810_GTT_ORDER); } static int i810_insert_dcache_entries(struct agp_memory *mem, off_t pg_start, int type) { int i; if ((pg_start + mem->page_count) > intel_private.num_dcache_entries) return -EINVAL; if (!mem->is_flushed) global_cache_flush(); for (i = pg_start; i < (pg_start + mem->page_count); i++) { dma_addr_t addr = i << PAGE_SHIFT; intel_private.driver->write_entry(addr, i, type); } readl(intel_private.gtt+i-1); return 0; } /* * The i810/i830 requires a physical address to program its mouse * pointer into hardware. * However the Xserver still writes to it through the agp aperture. */ static struct agp_memory *alloc_agpphysmem_i8xx(size_t pg_count, int type) { struct agp_memory *new; struct page *page; switch (pg_count) { case 1: page = agp_bridge->driver->agp_alloc_page(agp_bridge); break; case 4: /* kludge to get 4 physical pages for ARGB cursor */ page = i8xx_alloc_pages(); break; default: return NULL; } if (page == NULL) return NULL; new = agp_create_memory(pg_count); if (new == NULL) return NULL; new->pages[0] = page; if (pg_count == 4) { /* kludge to get 4 physical pages for ARGB cursor */ new->pages[1] = new->pages[0] + 1; new->pages[2] = new->pages[1] + 1; new->pages[3] = new->pages[2] + 1; } new->page_count = pg_count; new->num_scratch_pages = pg_count; new->type = AGP_PHYS_MEMORY; new->physical = page_to_phys(new->pages[0]); return new; } static void intel_i810_free_by_type(struct agp_memory *curr) { agp_free_key(curr->key); if (curr->type == AGP_PHYS_MEMORY) { if (curr->page_count == 4) i8xx_destroy_pages(curr->pages[0]); else { agp_bridge->driver->agp_destroy_page(curr->pages[0], AGP_PAGE_DESTROY_UNMAP); agp_bridge->driver->agp_destroy_page(curr->pages[0], AGP_PAGE_DESTROY_FREE); } agp_free_page_array(curr); } kfree(curr); } static int intel_gtt_setup_scratch_page(void) { struct page *page; dma_addr_t dma_addr; page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO); if (page == NULL) return -ENOMEM; get_page(page); set_pages_uc(page, 1); if (intel_private.base.needs_dmar) { dma_addr = pci_map_page(intel_private.pcidev, page, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); if (pci_dma_mapping_error(intel_private.pcidev, dma_addr)) return -EINVAL; intel_private.scratch_page_dma = dma_addr; } else intel_private.scratch_page_dma = page_to_phys(page); intel_private.scratch_page = page; return 0; } static void i810_write_entry(dma_addr_t addr, unsigned int entry, unsigned int flags) { u32 pte_flags = I810_PTE_VALID; switch (flags) { case AGP_DCACHE_MEMORY: pte_flags |= I810_PTE_LOCAL; break; case AGP_USER_CACHED_MEMORY: pte_flags |= I830_PTE_SYSTEM_CACHED; break; } writel(addr | pte_flags, intel_private.gtt + entry); } static const struct aper_size_info_fixed intel_fake_agp_sizes[] = { {32, 8192, 3}, {64, 16384, 4}, {128, 32768, 5}, {256, 65536, 6}, {512, 131072, 7}, }; static unsigned int intel_gtt_stolen_size(void) { u16 gmch_ctrl; u8 rdct; int local = 0; static const int ddt[4] = { 0, 16, 32, 64 }; unsigned int stolen_size = 0; if (INTEL_GTT_GEN == 1) return 0; /* no stolen mem on i81x */ pci_read_config_word(intel_private.bridge_dev, I830_GMCH_CTRL, &gmch_ctrl); if (intel_private.bridge_dev->device == PCI_DEVICE_ID_INTEL_82830_HB || intel_private.bridge_dev->device == PCI_DEVICE_ID_INTEL_82845G_HB) { switch (gmch_ctrl & I830_GMCH_GMS_MASK) { case I830_GMCH_GMS_STOLEN_512: stolen_size = KB(512); break; case I830_GMCH_GMS_STOLEN_1024: stolen_size = MB(1); break; case I830_GMCH_GMS_STOLEN_8192: stolen_size = MB(8); break; case I830_GMCH_GMS_LOCAL: rdct = readb(intel_private.registers+I830_RDRAM_CHANNEL_TYPE); stolen_size = (I830_RDRAM_ND(rdct) + 1) * MB(ddt[I830_RDRAM_DDT(rdct)]); local = 1; break; default: stolen_size = 0; break; } } else if (INTEL_GTT_GEN == 6) { /* * SandyBridge has new memory control reg at 0x50.w */ u16 snb_gmch_ctl; pci_read_config_word(intel_private.pcidev, SNB_GMCH_CTRL, &snb_gmch_ctl); switch (snb_gmch_ctl & SNB_GMCH_GMS_STOLEN_MASK) { case SNB_GMCH_GMS_STOLEN_32M: stolen_size = MB(32); break; case SNB_GMCH_GMS_STOLEN_64M: stolen_size = MB(64); break; case SNB_GMCH_GMS_STOLEN_96M: stolen_size = MB(96); break; case SNB_GMCH_GMS_STOLEN_128M: stolen_size = MB(128); break; case SNB_GMCH_GMS_STOLEN_160M: stolen_size = MB(160); break; case SNB_GMCH_GMS_STOLEN_192M: stolen_size = MB(192); break; case SNB_GMCH_GMS_STOLEN_224M: stolen_size = MB(224); break; case SNB_GMCH_GMS_STOLEN_256M: stolen_size = MB(256); break; case SNB_GMCH_GMS_STOLEN_288M: stolen_size = MB(288); break; case SNB_GMCH_GMS_STOLEN_320M: stolen_size = MB(320); break; case SNB_GMCH_GMS_STOLEN_352M: stolen_size = MB(352); break; case SNB_GMCH_GMS_STOLEN_384M: stolen_size = MB(384); break; case SNB_GMCH_GMS_STOLEN_416M: stolen_size = MB(416); break; case SNB_GMCH_GMS_STOLEN_448M: stolen_size = MB(448); break; case SNB_GMCH_GMS_STOLEN_480M: stolen_size = MB(480); break; case SNB_GMCH_GMS_STOLEN_512M: stolen_size = MB(512); break; } } else { switch (gmch_ctrl & I855_GMCH_GMS_MASK) { case I855_GMCH_GMS_STOLEN_1M: stolen_size = MB(1); break; case I855_GMCH_GMS_STOLEN_4M: stolen_size = MB(4); break; case I855_GMCH_GMS_STOLEN_8M: stolen_size = MB(8); break; case I855_GMCH_GMS_STOLEN_16M: stolen_size = MB(16); break; case I855_GMCH_GMS_STOLEN_32M: stolen_size = MB(32); break; case I915_GMCH_GMS_STOLEN_48M: stolen_size = MB(48); break; case I915_GMCH_GMS_STOLEN_64M: stolen_size = MB(64); break; case G33_GMCH_GMS_STOLEN_128M: stolen_size = MB(128); break; case G33_GMCH_GMS_STOLEN_256M: stolen_size = MB(256); break; case INTEL_GMCH_GMS_STOLEN_96M: stolen_size = MB(96); break; case INTEL_GMCH_GMS_STOLEN_160M: stolen_size = MB(160); break; case INTEL_GMCH_GMS_STOLEN_224M: stolen_size = MB(224); break; case INTEL_GMCH_GMS_STOLEN_352M: stolen_size = MB(352); break; default: stolen_size = 0; break; } } if (stolen_size > 0) { dev_info(&intel_private.bridge_dev->dev, "detected %dK %s memory\n", stolen_size / KB(1), local ? "local" : "stolen"); } else { dev_info(&intel_private.bridge_dev->dev, "no pre-allocated video memory detected\n"); stolen_size = 0; } return stolen_size; } static void i965_adjust_pgetbl_size(unsigned int size_flag) { u32 pgetbl_ctl, pgetbl_ctl2; /* ensure that ppgtt is disabled */ pgetbl_ctl2 = readl(intel_private.registers+I965_PGETBL_CTL2); pgetbl_ctl2 &= ~I810_PGETBL_ENABLED; writel(pgetbl_ctl2, intel_private.registers+I965_PGETBL_CTL2); /* write the new ggtt size */ pgetbl_ctl = readl(intel_private.registers+I810_PGETBL_CTL); pgetbl_ctl &= ~I965_PGETBL_SIZE_MASK; pgetbl_ctl |= size_flag; writel(pgetbl_ctl, intel_private.registers+I810_PGETBL_CTL); } static unsigned int i965_gtt_total_entries(void) { int size; u32 pgetbl_ctl; u16 gmch_ctl; pci_read_config_word(intel_private.bridge_dev, I830_GMCH_CTRL, &gmch_ctl); if (INTEL_GTT_GEN == 5) { switch (gmch_ctl & G4x_GMCH_SIZE_MASK) { case G4x_GMCH_SIZE_1M: case G4x_GMCH_SIZE_VT_1M: i965_adjust_pgetbl_size(I965_PGETBL_SIZE_1MB); break; case G4x_GMCH_SIZE_VT_1_5M: i965_adjust_pgetbl_size(I965_PGETBL_SIZE_1_5MB); break; case G4x_GMCH_SIZE_2M: case G4x_GMCH_SIZE_VT_2M: i965_adjust_pgetbl_size(I965_PGETBL_SIZE_2MB); break; } } pgetbl_ctl = readl(intel_private.registers+I810_PGETBL_CTL); switch (pgetbl_ctl & I965_PGETBL_SIZE_MASK) { case I965_PGETBL_SIZE_128KB: size = KB(128); break; case I965_PGETBL_SIZE_256KB: size = KB(256); break; case I965_PGETBL_SIZE_512KB: size = KB(512); break; /* GTT pagetable sizes bigger than 512KB are not possible on G33! */ case I965_PGETBL_SIZE_1MB: size = KB(1024); break; case I965_PGETBL_SIZE_2MB: size = KB(2048); break; case I965_PGETBL_SIZE_1_5MB: size = KB(1024 + 512); break; default: dev_info(&intel_private.pcidev->dev, "unknown page table size, assuming 512KB\n"); size = KB(512); } return size/4; } static unsigned int intel_gtt_total_entries(void) { int size; if (IS_G33 || INTEL_GTT_GEN == 4 || INTEL_GTT_GEN == 5) return i965_gtt_total_entries(); else if (INTEL_GTT_GEN == 6) { u16 snb_gmch_ctl; pci_read_config_word(intel_private.pcidev, SNB_GMCH_CTRL, &snb_gmch_ctl); switch (snb_gmch_ctl & SNB_GTT_SIZE_MASK) { default: case SNB_GTT_SIZE_0M: printk(KERN_ERR "Bad GTT size mask: 0x%04x.\n", snb_gmch_ctl); size = MB(0); break; case SNB_GTT_SIZE_1M: size = MB(1); break; case SNB_GTT_SIZE_2M: size = MB(2); break; } return size/4; } else { /* On previous hardware, the GTT size was just what was * required to map the aperture. */ return intel_private.base.gtt_mappable_entries; } } static unsigned int intel_gtt_mappable_entries(void) { unsigned int aperture_size; if (INTEL_GTT_GEN == 1) { u32 smram_miscc; pci_read_config_dword(intel_private.bridge_dev, I810_SMRAM_MISCC, &smram_miscc); if ((smram_miscc & I810_GFX_MEM_WIN_SIZE) == I810_GFX_MEM_WIN_32M) aperture_size = MB(32); else aperture_size = MB(64); } else if (INTEL_GTT_GEN == 2) { u16 gmch_ctrl; pci_read_config_word(intel_private.bridge_dev, I830_GMCH_CTRL, &gmch_ctrl); if ((gmch_ctrl & I830_GMCH_MEM_MASK) == I830_GMCH_MEM_64M) aperture_size = MB(64); else aperture_size = MB(128); } else { /* 9xx supports large sizes, just look at the length */ aperture_size = pci_resource_len(intel_private.pcidev, 2); } return aperture_size >> PAGE_SHIFT; } static void intel_gtt_teardown_scratch_page(void) { set_pages_wb(intel_private.scratch_page, 1); pci_unmap_page(intel_private.pcidev, intel_private.scratch_page_dma, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); put_page(intel_private.scratch_page); __free_page(intel_private.scratch_page); } static void intel_gtt_cleanup(void) { intel_private.driver->cleanup(); iounmap(intel_private.gtt); iounmap(intel_private.registers); intel_gtt_teardown_scratch_page(); } static int intel_gtt_init(void) { u32 gtt_map_size; int ret; ret = intel_private.driver->setup(); if (ret != 0) return ret; intel_private.base.gtt_mappable_entries = intel_gtt_mappable_entries(); intel_private.base.gtt_total_entries = intel_gtt_total_entries(); /* save the PGETBL reg for resume */ intel_private.PGETBL_save = readl(intel_private.registers+I810_PGETBL_CTL) & ~I810_PGETBL_ENABLED; /* we only ever restore the register when enabling the PGTBL... */ if (HAS_PGTBL_EN) intel_private.PGETBL_save |= I810_PGETBL_ENABLED; dev_info(&intel_private.bridge_dev->dev, "detected gtt size: %dK total, %dK mappable\n", intel_private.base.gtt_total_entries * 4, intel_private.base.gtt_mappable_entries * 4); gtt_map_size = intel_private.base.gtt_total_entries * 4; intel_private.gtt = ioremap(intel_private.gtt_bus_addr, gtt_map_size); if (!intel_private.gtt) { intel_private.driver->cleanup(); iounmap(intel_private.registers); return -ENOMEM; } global_cache_flush(); /* FIXME: ? */ intel_private.base.stolen_size = intel_gtt_stolen_size(); intel_private.base.needs_dmar = USE_PCI_DMA_API && INTEL_GTT_GEN > 2; ret = intel_gtt_setup_scratch_page(); if (ret != 0) { intel_gtt_cleanup(); return ret; } return 0; } static int intel_fake_agp_fetch_size(void) { int num_sizes = ARRAY_SIZE(intel_fake_agp_sizes); unsigned int aper_size; int i; aper_size = (intel_private.base.gtt_mappable_entries << PAGE_SHIFT) / MB(1); for (i = 0; i < num_sizes; i++) { if (aper_size == intel_fake_agp_sizes[i].size) { agp_bridge->current_size = (void *) (intel_fake_agp_sizes + i); return aper_size; } } return 0; } static void i830_cleanup(void) { } /* The chipset_flush interface needs to get data that has already been * flushed out of the CPU all the way out to main memory, because the GPU * doesn't snoop those buffers. * * The 8xx series doesn't have the same lovely interface for flushing the * chipset write buffers that the later chips do. According to the 865 * specs, it's 64 octwords, or 1KB. So, to get those previous things in * that buffer out, we just fill 1KB and clflush it out, on the assumption * that it'll push whatever was in there out. It appears to work. */ static void i830_chipset_flush(void) { unsigned long timeout = jiffies + msecs_to_jiffies(1000); /* Forcibly evict everything from the CPU write buffers. * clflush appears to be insufficient. */ wbinvd_on_all_cpus(); /* Now we've only seen documents for this magic bit on 855GM, * we hope it exists for the other gen2 chipsets... * * Also works as advertised on my 845G. */ writel(readl(intel_private.registers+I830_HIC) | (1<<31), intel_private.registers+I830_HIC); while (readl(intel_private.registers+I830_HIC) & (1<<31)) { if (time_after(jiffies, timeout)) break; udelay(50); } } static void i830_write_entry(dma_addr_t addr, unsigned int entry, unsigned int flags) { u32 pte_flags = I810_PTE_VALID; if (flags == AGP_USER_CACHED_MEMORY) pte_flags |= I830_PTE_SYSTEM_CACHED; writel(addr | pte_flags, intel_private.gtt + entry); } static bool intel_enable_gtt(void) { u32 gma_addr; u8 __iomem *reg; if (INTEL_GTT_GEN <= 2) pci_read_config_dword(intel_private.pcidev, I810_GMADDR, &gma_addr); else pci_read_config_dword(intel_private.pcidev, I915_GMADDR, &gma_addr); intel_private.gma_bus_addr = (gma_addr & PCI_BASE_ADDRESS_MEM_MASK); if (INTEL_GTT_GEN >= 6) return true; if (INTEL_GTT_GEN == 2) { u16 gmch_ctrl; pci_read_config_word(intel_private.bridge_dev, I830_GMCH_CTRL, &gmch_ctrl); gmch_ctrl |= I830_GMCH_ENABLED; pci_write_config_word(intel_private.bridge_dev, I830_GMCH_CTRL, gmch_ctrl); pci_read_config_word(intel_private.bridge_dev, I830_GMCH_CTRL, &gmch_ctrl); if ((gmch_ctrl & I830_GMCH_ENABLED) == 0) { dev_err(&intel_private.pcidev->dev, "failed to enable the GTT: GMCH_CTRL=%x\n", gmch_ctrl); return false; } } /* On the resume path we may be adjusting the PGTBL value, so * be paranoid and flush all chipset write buffers... */ if (INTEL_GTT_GEN >= 3) writel(0, intel_private.registers+GFX_FLSH_CNTL); reg = intel_private.registers+I810_PGETBL_CTL; writel(intel_private.PGETBL_save, reg); if (HAS_PGTBL_EN && (readl(reg) & I810_PGETBL_ENABLED) == 0) { dev_err(&intel_private.pcidev->dev, "failed to enable the GTT: PGETBL=%x [expected %x]\n", readl(reg), intel_private.PGETBL_save); return false; } if (INTEL_GTT_GEN >= 3) writel(0, intel_private.registers+GFX_FLSH_CNTL); return true; } static int i830_setup(void) { u32 reg_addr; pci_read_config_dword(intel_private.pcidev, I810_MMADDR, ®_addr); reg_addr &= 0xfff80000; intel_private.registers = ioremap(reg_addr, KB(64)); if (!intel_private.registers) return -ENOMEM; intel_private.gtt_bus_addr = reg_addr + I810_PTE_BASE; return 0; } static int intel_fake_agp_create_gatt_table(struct agp_bridge_data *bridge) { agp_bridge->gatt_table_real = NULL; agp_bridge->gatt_table = NULL; agp_bridge->gatt_bus_addr = 0; return 0; } static int intel_fake_agp_free_gatt_table(struct agp_bridge_data *bridge) { return 0; } static int intel_fake_agp_configure(void) { if (!intel_enable_gtt()) return -EIO; intel_private.clear_fake_agp = true; agp_bridge->gart_bus_addr = intel_private.gma_bus_addr; return 0; } static bool i830_check_flags(unsigned int flags) { switch (flags) { case 0: case AGP_PHYS_MEMORY: case AGP_USER_CACHED_MEMORY: case AGP_USER_MEMORY: return true; } return false; } void intel_gtt_insert_sg_entries(struct scatterlist *sg_list, unsigned int sg_len, unsigned int pg_start, unsigned int flags) { struct scatterlist *sg; unsigned int len, m; int i, j; j = pg_start; /* sg may merge pages, but we have to separate * per-page addr for GTT */ for_each_sg(sg_list, sg, sg_len, i) { len = sg_dma_len(sg) >> PAGE_SHIFT; for (m = 0; m < len; m++) { dma_addr_t addr = sg_dma_address(sg) + (m << PAGE_SHIFT); intel_private.driver->write_entry(addr, j, flags); j++; } } readl(intel_private.gtt+j-1); } EXPORT_SYMBOL(intel_gtt_insert_sg_entries); void intel_gtt_insert_pages(unsigned int first_entry, unsigned int num_entries, struct page **pages, unsigned int flags) { int i, j; for (i = 0, j = first_entry; i < num_entries; i++, j++) { dma_addr_t addr = page_to_phys(pages[i]); intel_private.driver->write_entry(addr, j, flags); } readl(intel_private.gtt+j-1); } EXPORT_SYMBOL(intel_gtt_insert_pages); static int intel_fake_agp_insert_entries(struct agp_memory *mem, off_t pg_start, int type) { int ret = -EINVAL; if (intel_private.base.do_idle_maps) return -ENODEV; if (intel_private.clear_fake_agp) { int start = intel_private.base.stolen_size / PAGE_SIZE; int end = intel_private.base.gtt_mappable_entries; intel_gtt_clear_range(start, end - start); intel_private.clear_fake_agp = false; } if (INTEL_GTT_GEN == 1 && type == AGP_DCACHE_MEMORY) return i810_insert_dcache_entries(mem, pg_start, type); if (mem->page_count == 0) goto out; if (pg_start + mem->page_count > intel_private.base.gtt_total_entries) goto out_err; if (type != mem->type) goto out_err; if (!intel_private.driver->check_flags(type)) goto out_err; if (!mem->is_flushed) global_cache_flush(); if (intel_private.base.needs_dmar) { ret = intel_gtt_map_memory(mem->pages, mem->page_count, &mem->sg_list, &mem->num_sg); if (ret != 0) return ret; intel_gtt_insert_sg_entries(mem->sg_list, mem->num_sg, pg_start, type); } else intel_gtt_insert_pages(pg_start, mem->page_count, mem->pages, type); out: ret = 0; out_err: mem->is_flushed = true; return ret; } void intel_gtt_clear_range(unsigned int first_entry, unsigned int num_entries) { unsigned int i; for (i = first_entry; i < (first_entry + num_entries); i++) { intel_private.driver->write_entry(intel_private.scratch_page_dma, i, 0); } readl(intel_private.gtt+i-1); } EXPORT_SYMBOL(intel_gtt_clear_range); static int intel_fake_agp_remove_entries(struct agp_memory *mem, off_t pg_start, int type) { if (mem->page_count == 0) return 0; if (intel_private.base.do_idle_maps) return -ENODEV; intel_gtt_clear_range(pg_start, mem->page_count); if (intel_private.base.needs_dmar) { intel_gtt_unmap_memory(mem->sg_list, mem->num_sg); mem->sg_list = NULL; mem->num_sg = 0; } return 0; } static struct agp_memory *intel_fake_agp_alloc_by_type(size_t pg_count, int type) { struct agp_memory *new; if (type == AGP_DCACHE_MEMORY && INTEL_GTT_GEN == 1) { if (pg_count != intel_private.num_dcache_entries) return NULL; new = agp_create_memory(1); if (new == NULL) return NULL; new->type = AGP_DCACHE_MEMORY; new->page_count = pg_count; new->num_scratch_pages = 0; agp_free_page_array(new); return new; } if (type == AGP_PHYS_MEMORY) return alloc_agpphysmem_i8xx(pg_count, type); /* always return NULL for other allocation types for now */ return NULL; } static int intel_alloc_chipset_flush_resource(void) { int ret; ret = pci_bus_alloc_resource(intel_private.bridge_dev->bus, &intel_private.ifp_resource, PAGE_SIZE, PAGE_SIZE, PCIBIOS_MIN_MEM, 0, pcibios_align_resource, intel_private.bridge_dev); return ret; } static void intel_i915_setup_chipset_flush(void) { int ret; u32 temp; pci_read_config_dword(intel_private.bridge_dev, I915_IFPADDR, &temp); if (!(temp & 0x1)) { intel_alloc_chipset_flush_resource(); intel_private.resource_valid = 1; pci_write_config_dword(intel_private.bridge_dev, I915_IFPADDR, (intel_private.ifp_resource.start & 0xffffffff) | 0x1); } else { temp &= ~1; intel_private.resource_valid = 1; intel_private.ifp_resource.start = temp; intel_private.ifp_resource.end = temp + PAGE_SIZE; ret = request_resource(&iomem_resource, &intel_private.ifp_resource); /* some BIOSes reserve this area in a pnp some don't */ if (ret) intel_private.resource_valid = 0; } } static void intel_i965_g33_setup_chipset_flush(void) { u32 temp_hi, temp_lo; int ret; pci_read_config_dword(intel_private.bridge_dev, I965_IFPADDR + 4, &temp_hi); pci_read_config_dword(intel_private.bridge_dev, I965_IFPADDR, &temp_lo); if (!(temp_lo & 0x1)) { intel_alloc_chipset_flush_resource(); intel_private.resource_valid = 1; pci_write_config_dword(intel_private.bridge_dev, I965_IFPADDR + 4, upper_32_bits(intel_private.ifp_resource.start)); pci_write_config_dword(intel_private.bridge_dev, I965_IFPADDR, (intel_private.ifp_resource.start & 0xffffffff) | 0x1); } else { u64 l64; temp_lo &= ~0x1; l64 = ((u64)temp_hi << 32) | temp_lo; intel_private.resource_valid = 1; intel_private.ifp_resource.start = l64; intel_private.ifp_resource.end = l64 + PAGE_SIZE; ret = request_resource(&iomem_resource, &intel_private.ifp_resource); /* some BIOSes reserve this area in a pnp some don't */ if (ret) intel_private.resource_valid = 0; } } static void intel_i9xx_setup_flush(void) { /* return if already configured */ if (intel_private.ifp_resource.start) return; if (INTEL_GTT_GEN == 6) return; /* setup a resource for this object */ intel_private.ifp_resource.name = "Intel Flush Page"; intel_private.ifp_resource.flags = IORESOURCE_MEM; /* Setup chipset flush for 915 */ if (IS_G33 || INTEL_GTT_GEN >= 4) { intel_i965_g33_setup_chipset_flush(); } else { intel_i915_setup_chipset_flush(); } if (intel_private.ifp_resource.start) intel_private.i9xx_flush_page = ioremap_nocache(intel_private.ifp_resource.start, PAGE_SIZE); if (!intel_private.i9xx_flush_page) dev_err(&intel_private.pcidev->dev, "can't ioremap flush page - no chipset flushing\n"); } static void i9xx_cleanup(void) { if (intel_private.i9xx_flush_page) iounmap(intel_private.i9xx_flush_page); if (intel_private.resource_valid) release_resource(&intel_private.ifp_resource); intel_private.ifp_resource.start = 0; intel_private.resource_valid = 0; } static void i9xx_chipset_flush(void) { if (intel_private.i9xx_flush_page) writel(1, intel_private.i9xx_flush_page); } static void i965_write_entry(dma_addr_t addr, unsigned int entry, unsigned int flags) { u32 pte_flags; pte_flags = I810_PTE_VALID; if (flags == AGP_USER_CACHED_MEMORY) pte_flags |= I830_PTE_SYSTEM_CACHED; /* Shift high bits down */ addr |= (addr >> 28) & 0xf0; writel(addr | pte_flags, intel_private.gtt + entry); } static bool gen6_check_flags(unsigned int flags) { return true; } static void gen6_write_entry(dma_addr_t addr, unsigned int entry, unsigned int flags) { unsigned int type_mask = flags & ~AGP_USER_CACHED_MEMORY_GFDT; unsigned int gfdt = flags & AGP_USER_CACHED_MEMORY_GFDT; u32 pte_flags; if (type_mask == AGP_USER_MEMORY) pte_flags = GEN6_PTE_UNCACHED | I810_PTE_VALID; else if (type_mask == AGP_USER_CACHED_MEMORY_LLC_MLC) { pte_flags = GEN6_PTE_LLC_MLC | I810_PTE_VALID; if (gfdt) pte_flags |= GEN6_PTE_GFDT; } else { /* set 'normal'/'cached' to LLC by default */ pte_flags = GEN6_PTE_LLC | I810_PTE_VALID; if (gfdt) pte_flags |= GEN6_PTE_GFDT; } /* gen6 has bit11-4 for physical addr bit39-32 */ addr |= (addr >> 28) & 0xff0; writel(addr | pte_flags, intel_private.gtt + entry); } static void gen6_cleanup(void) { } /* Certain Gen5 chipsets require require idling the GPU before * unmapping anything from the GTT when VT-d is enabled. */ static inline int needs_idle_maps(void) { #ifdef CONFIG_INTEL_IOMMU const unsigned short gpu_devid = intel_private.pcidev->device; extern int intel_iommu_gfx_mapped; /* Query intel_iommu to see if we need the workaround. Presumably that * was loaded first. */ if ((gpu_devid == PCI_DEVICE_ID_INTEL_IRONLAKE_M_HB || gpu_devid == PCI_DEVICE_ID_INTEL_IRONLAKE_M_IG) && intel_iommu_gfx_mapped) return 1; #endif return 0; } static int i9xx_setup(void) { u32 reg_addr; pci_read_config_dword(intel_private.pcidev, I915_MMADDR, ®_addr); reg_addr &= 0xfff80000; intel_private.registers = ioremap(reg_addr, 128 * 4096); if (!intel_private.registers) return -ENOMEM; if (INTEL_GTT_GEN == 3) { u32 gtt_addr; pci_read_config_dword(intel_private.pcidev, I915_PTEADDR, >t_addr); intel_private.gtt_bus_addr = gtt_addr; } else { u32 gtt_offset; switch (INTEL_GTT_GEN) { case 5: case 6: gtt_offset = MB(2); break; case 4: default: gtt_offset = KB(512); break; } intel_private.gtt_bus_addr = reg_addr + gtt_offset; } if (needs_idle_maps()) intel_private.base.do_idle_maps = 1; intel_i9xx_setup_flush(); return 0; } static const struct agp_bridge_driver intel_fake_agp_driver = { .owner = THIS_MODULE, .size_type = FIXED_APER_SIZE, .aperture_sizes = intel_fake_agp_sizes, .num_aperture_sizes = ARRAY_SIZE(intel_fake_agp_sizes), .configure = intel_fake_agp_configure, .fetch_size = intel_fake_agp_fetch_size, .cleanup = intel_gtt_cleanup, .agp_enable = intel_fake_agp_enable, .cache_flush = global_cache_flush, .create_gatt_table = intel_fake_agp_create_gatt_table, .free_gatt_table = intel_fake_agp_free_gatt_table, .insert_memory = intel_fake_agp_insert_entries, .remove_memory = intel_fake_agp_remove_entries, .alloc_by_type = intel_fake_agp_alloc_by_type, .free_by_type = intel_i810_free_by_type, .agp_alloc_page = agp_generic_alloc_page, .agp_alloc_pages = agp_generic_alloc_pages, .agp_destroy_page = agp_generic_destroy_page, .agp_destroy_pages = agp_generic_destroy_pages, }; static const struct intel_gtt_driver i81x_gtt_driver = { .gen = 1, .has_pgtbl_enable = 1, .dma_mask_size = 32, .setup = i810_setup, .cleanup = i810_cleanup, .check_flags = i830_check_flags, .write_entry = i810_write_entry, }; static const struct intel_gtt_driver i8xx_gtt_driver = { .gen = 2, .has_pgtbl_enable = 1, .setup = i830_setup, .cleanup = i830_cleanup, .write_entry = i830_write_entry, .dma_mask_size = 32, .check_flags = i830_check_flags, .chipset_flush = i830_chipset_flush, }; static const struct intel_gtt_driver i915_gtt_driver = { .gen = 3, .has_pgtbl_enable = 1, .setup = i9xx_setup, .cleanup = i9xx_cleanup, /* i945 is the last gpu to need phys mem (for overlay and cursors). */ .write_entry = i830_write_entry, .dma_mask_size = 32, .check_flags = i830_check_flags, .chipset_flush = i9xx_chipset_flush, }; static const struct intel_gtt_driver g33_gtt_driver = { .gen = 3, .is_g33 = 1, .setup = i9xx_setup, .cleanup = i9xx_cleanup, .write_entry = i965_write_entry, .dma_mask_size = 36, .check_flags = i830_check_flags, .chipset_flush = i9xx_chipset_flush, }; static const struct intel_gtt_driver pineview_gtt_driver = { .gen = 3, .is_pineview = 1, .is_g33 = 1, .setup = i9xx_setup, .cleanup = i9xx_cleanup, .write_entry = i965_write_entry, .dma_mask_size = 36, .check_flags = i830_check_flags, .chipset_flush = i9xx_chipset_flush, }; static const struct intel_gtt_driver i965_gtt_driver = { .gen = 4, .has_pgtbl_enable = 1, .setup = i9xx_setup, .cleanup = i9xx_cleanup, .write_entry = i965_write_entry, .dma_mask_size = 36, .check_flags = i830_check_flags, .chipset_flush = i9xx_chipset_flush, }; static const struct intel_gtt_driver g4x_gtt_driver = { .gen = 5, .setup = i9xx_setup, .cleanup = i9xx_cleanup, .write_entry = i965_write_entry, .dma_mask_size = 36, .check_flags = i830_check_flags, .chipset_flush = i9xx_chipset_flush, }; static const struct intel_gtt_driver ironlake_gtt_driver = { .gen = 5, .is_ironlake = 1, .setup = i9xx_setup, .cleanup = i9xx_cleanup, .write_entry = i965_write_entry, .dma_mask_size = 36, .check_flags = i830_check_flags, .chipset_flush = i9xx_chipset_flush, }; static const struct intel_gtt_driver sandybridge_gtt_driver = { .gen = 6, .setup = i9xx_setup, .cleanup = gen6_cleanup, .write_entry = gen6_write_entry, .dma_mask_size = 40, .check_flags = gen6_check_flags, .chipset_flush = i9xx_chipset_flush, }; /* Table to describe Intel GMCH and AGP/PCIE GART drivers. At least one of * driver and gmch_driver must be non-null, and find_gmch will determine * which one should be used if a gmch_chip_id is present. */ static const struct intel_gtt_driver_description { unsigned int gmch_chip_id; char *name; const struct intel_gtt_driver *gtt_driver; } intel_gtt_chipsets[] = { { PCI_DEVICE_ID_INTEL_82810_IG1, "i810", &i81x_gtt_driver}, { PCI_DEVICE_ID_INTEL_82810_IG3, "i810", &i81x_gtt_driver}, { PCI_DEVICE_ID_INTEL_82810E_IG, "i810", &i81x_gtt_driver}, { PCI_DEVICE_ID_INTEL_82815_CGC, "i815", &i81x_gtt_driver}, { PCI_DEVICE_ID_INTEL_82830_CGC, "830M", &i8xx_gtt_driver}, { PCI_DEVICE_ID_INTEL_82845G_IG, "845G", &i8xx_gtt_driver}, { PCI_DEVICE_ID_INTEL_82854_IG, "854", &i8xx_gtt_driver}, { PCI_DEVICE_ID_INTEL_82855GM_IG, "855GM", &i8xx_gtt_driver}, { PCI_DEVICE_ID_INTEL_82865_IG, "865", &i8xx_gtt_driver}, { PCI_DEVICE_ID_INTEL_E7221_IG, "E7221 (i915)", &i915_gtt_driver }, { PCI_DEVICE_ID_INTEL_82915G_IG, "915G", &i915_gtt_driver }, { PCI_DEVICE_ID_INTEL_82915GM_IG, "915GM", &i915_gtt_driver }, { PCI_DEVICE_ID_INTEL_82945G_IG, "945G", &i915_gtt_driver }, { PCI_DEVICE_ID_INTEL_82945GM_IG, "945GM", &i915_gtt_driver }, { PCI_DEVICE_ID_INTEL_82945GME_IG, "945GME", &i915_gtt_driver }, { PCI_DEVICE_ID_INTEL_82946GZ_IG, "946GZ", &i965_gtt_driver }, { PCI_DEVICE_ID_INTEL_82G35_IG, "G35", &i965_gtt_driver }, { PCI_DEVICE_ID_INTEL_82965Q_IG, "965Q", &i965_gtt_driver }, { PCI_DEVICE_ID_INTEL_82965G_IG, "965G", &i965_gtt_driver }, { PCI_DEVICE_ID_INTEL_82965GM_IG, "965GM", &i965_gtt_driver }, { PCI_DEVICE_ID_INTEL_82965GME_IG, "965GME/GLE", &i965_gtt_driver }, { PCI_DEVICE_ID_INTEL_G33_IG, "G33", &g33_gtt_driver }, { PCI_DEVICE_ID_INTEL_Q35_IG, "Q35", &g33_gtt_driver }, { PCI_DEVICE_ID_INTEL_Q33_IG, "Q33", &g33_gtt_driver }, { PCI_DEVICE_ID_INTEL_PINEVIEW_M_IG, "GMA3150", &pineview_gtt_driver }, { PCI_DEVICE_ID_INTEL_PINEVIEW_IG, "GMA3150", &pineview_gtt_driver }, { PCI_DEVICE_ID_INTEL_GM45_IG, "GM45", &g4x_gtt_driver }, { PCI_DEVICE_ID_INTEL_EAGLELAKE_IG, "Eaglelake", &g4x_gtt_driver }, { PCI_DEVICE_ID_INTEL_Q45_IG, "Q45/Q43", &g4x_gtt_driver }, { PCI_DEVICE_ID_INTEL_G45_IG, "G45/G43", &g4x_gtt_driver }, { PCI_DEVICE_ID_INTEL_B43_IG, "B43", &g4x_gtt_driver }, { PCI_DEVICE_ID_INTEL_B43_1_IG, "B43", &g4x_gtt_driver }, { PCI_DEVICE_ID_INTEL_G41_IG, "G41", &g4x_gtt_driver }, { PCI_DEVICE_ID_INTEL_IRONLAKE_D_IG, "HD Graphics", &ironlake_gtt_driver }, { PCI_DEVICE_ID_INTEL_IRONLAKE_M_IG, "HD Graphics", &ironlake_gtt_driver }, { PCI_DEVICE_ID_INTEL_SANDYBRIDGE_GT1_IG, "Sandybridge", &sandybridge_gtt_driver }, { PCI_DEVICE_ID_INTEL_SANDYBRIDGE_GT2_IG, "Sandybridge", &sandybridge_gtt_driver }, { PCI_DEVICE_ID_INTEL_SANDYBRIDGE_GT2_PLUS_IG, "Sandybridge", &sandybridge_gtt_driver }, { PCI_DEVICE_ID_INTEL_SANDYBRIDGE_M_GT1_IG, "Sandybridge", &sandybridge_gtt_driver }, { PCI_DEVICE_ID_INTEL_SANDYBRIDGE_M_GT2_IG, "Sandybridge", &sandybridge_gtt_driver }, { PCI_DEVICE_ID_INTEL_SANDYBRIDGE_M_GT2_PLUS_IG, "Sandybridge", &sandybridge_gtt_driver }, { PCI_DEVICE_ID_INTEL_SANDYBRIDGE_S_IG, "Sandybridge", &sandybridge_gtt_driver }, { PCI_DEVICE_ID_INTEL_IVYBRIDGE_GT1_IG, "Ivybridge", &sandybridge_gtt_driver }, { PCI_DEVICE_ID_INTEL_IVYBRIDGE_GT2_IG, "Ivybridge", &sandybridge_gtt_driver }, { PCI_DEVICE_ID_INTEL_IVYBRIDGE_M_GT1_IG, "Ivybridge", &sandybridge_gtt_driver }, { PCI_DEVICE_ID_INTEL_IVYBRIDGE_M_GT2_IG, "Ivybridge", &sandybridge_gtt_driver }, { PCI_DEVICE_ID_INTEL_IVYBRIDGE_S_GT1_IG, "Ivybridge", &sandybridge_gtt_driver }, { 0, NULL, NULL } }; static int find_gmch(u16 device) { struct pci_dev *gmch_device; gmch_device = pci_get_device(PCI_VENDOR_ID_INTEL, device, NULL); if (gmch_device && PCI_FUNC(gmch_device->devfn) != 0) { gmch_device = pci_get_device(PCI_VENDOR_ID_INTEL, device, gmch_device); } if (!gmch_device) return 0; intel_private.pcidev = gmch_device; return 1; } int intel_gmch_probe(struct pci_dev *pdev, struct agp_bridge_data *bridge) { int i, mask; intel_private.driver = NULL; for (i = 0; intel_gtt_chipsets[i].name != NULL; i++) { if (find_gmch(intel_gtt_chipsets[i].gmch_chip_id)) { intel_private.driver = intel_gtt_chipsets[i].gtt_driver; break; } } if (!intel_private.driver) return 0; bridge->driver = &intel_fake_agp_driver; bridge->dev_private_data = &intel_private; bridge->dev = pdev; intel_private.bridge_dev = pci_dev_get(pdev); dev_info(&pdev->dev, "Intel %s Chipset\n", intel_gtt_chipsets[i].name); mask = intel_private.driver->dma_mask_size; if (pci_set_dma_mask(intel_private.pcidev, DMA_BIT_MASK(mask))) dev_err(&intel_private.pcidev->dev, "set gfx device dma mask %d-bit failed!\n", mask); else pci_set_consistent_dma_mask(intel_private.pcidev, DMA_BIT_MASK(mask)); /*if (bridge->driver == &intel_810_driver) return 1;*/ if (intel_gtt_init() != 0) return 0; return 1; } EXPORT_SYMBOL(intel_gmch_probe); const struct intel_gtt *intel_gtt_get(void) { return &intel_private.base; } EXPORT_SYMBOL(intel_gtt_get); void intel_gtt_chipset_flush(void) { if (intel_private.driver->chipset_flush) intel_private.driver->chipset_flush(); } EXPORT_SYMBOL(intel_gtt_chipset_flush); void intel_gmch_remove(struct pci_dev *pdev) { if (intel_private.pcidev) pci_dev_put(intel_private.pcidev); if (intel_private.bridge_dev) pci_dev_put(intel_private.bridge_dev); } EXPORT_SYMBOL(intel_gmch_remove); MODULE_AUTHOR("Dave Jones <davej@redhat.com>"); MODULE_LICENSE("GPL and additional rights");