/* * Copyright 2006 Andi Kleen, SUSE Labs. * Subject to the GNU Public License, v.2 * * Fast user context implementation of clock_gettime, gettimeofday, and time. * * The code should have no internal unresolved relocations. * Check with readelf after changing. */ /* Disable profiling for userspace code: */ #define DISABLE_BRANCH_PROFILING #include <linux/kernel.h> #include <linux/posix-timers.h> #include <linux/time.h> #include <linux/string.h> #include <asm/vsyscall.h> #include <asm/fixmap.h> #include <asm/vgtod.h> #include <asm/timex.h> #include <asm/hpet.h> #include <asm/unistd.h> #include <asm/io.h> #define gtod (&VVAR(vsyscall_gtod_data)) notrace static cycle_t vread_tsc(void) { cycle_t ret; u64 last; /* * Empirically, a fence (of type that depends on the CPU) * before rdtsc is enough to ensure that rdtsc is ordered * with respect to loads. The various CPU manuals are unclear * as to whether rdtsc can be reordered with later loads, * but no one has ever seen it happen. */ rdtsc_barrier(); ret = (cycle_t)vget_cycles(); last = VVAR(vsyscall_gtod_data).clock.cycle_last; if (likely(ret >= last)) return ret; /* * GCC likes to generate cmov here, but this branch is extremely * predictable (it's just a funciton of time and the likely is * very likely) and there's a data dependence, so force GCC * to generate a branch instead. I don't barrier() because * we don't actually need a barrier, and if this function * ever gets inlined it will generate worse code. */ asm volatile (""); return last; } static notrace cycle_t vread_hpet(void) { return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0); } notrace static long vdso_fallback_gettime(long clock, struct timespec *ts) { long ret; asm("syscall" : "=a" (ret) : "0" (__NR_clock_gettime),"D" (clock), "S" (ts) : "memory"); return ret; } notrace static inline long vgetns(void) { long v; cycles_t cycles; if (gtod->clock.vclock_mode == VCLOCK_TSC) cycles = vread_tsc(); else cycles = vread_hpet(); v = (cycles - gtod->clock.cycle_last) & gtod->clock.mask; return (v * gtod->clock.mult) >> gtod->clock.shift; } notrace static noinline int do_realtime(struct timespec *ts) { unsigned long seq, ns; do { seq = read_seqbegin(>od->lock); ts->tv_sec = gtod->wall_time_sec; ts->tv_nsec = gtod->wall_time_nsec; ns = vgetns(); } while (unlikely(read_seqretry(>od->lock, seq))); timespec_add_ns(ts, ns); return 0; } notrace static noinline int do_monotonic(struct timespec *ts) { unsigned long seq, ns, secs; do { seq = read_seqbegin(>od->lock); secs = gtod->wall_time_sec; ns = gtod->wall_time_nsec + vgetns(); secs += gtod->wall_to_monotonic.tv_sec; ns += gtod->wall_to_monotonic.tv_nsec; } while (unlikely(read_seqretry(>od->lock, seq))); /* wall_time_nsec, vgetns(), and wall_to_monotonic.tv_nsec * are all guaranteed to be nonnegative. */ while (ns >= NSEC_PER_SEC) { ns -= NSEC_PER_SEC; ++secs; } ts->tv_sec = secs; ts->tv_nsec = ns; return 0; } notrace static noinline int do_realtime_coarse(struct timespec *ts) { unsigned long seq; do { seq = read_seqbegin(>od->lock); ts->tv_sec = gtod->wall_time_coarse.tv_sec; ts->tv_nsec = gtod->wall_time_coarse.tv_nsec; } while (unlikely(read_seqretry(>od->lock, seq))); return 0; } notrace static noinline int do_monotonic_coarse(struct timespec *ts) { unsigned long seq, ns, secs; do { seq = read_seqbegin(>od->lock); secs = gtod->wall_time_coarse.tv_sec; ns = gtod->wall_time_coarse.tv_nsec; secs += gtod->wall_to_monotonic.tv_sec; ns += gtod->wall_to_monotonic.tv_nsec; } while (unlikely(read_seqretry(>od->lock, seq))); /* wall_time_nsec and wall_to_monotonic.tv_nsec are * guaranteed to be between 0 and NSEC_PER_SEC. */ if (ns >= NSEC_PER_SEC) { ns -= NSEC_PER_SEC; ++secs; } ts->tv_sec = secs; ts->tv_nsec = ns; return 0; } notrace int __vdso_clock_gettime(clockid_t clock, struct timespec *ts) { switch (clock) { case CLOCK_REALTIME: if (likely(gtod->clock.vclock_mode != VCLOCK_NONE)) return do_realtime(ts); break; case CLOCK_MONOTONIC: if (likely(gtod->clock.vclock_mode != VCLOCK_NONE)) return do_monotonic(ts); break; case CLOCK_REALTIME_COARSE: return do_realtime_coarse(ts); case CLOCK_MONOTONIC_COARSE: return do_monotonic_coarse(ts); } return vdso_fallback_gettime(clock, ts); } int clock_gettime(clockid_t, struct timespec *) __attribute__((weak, alias("__vdso_clock_gettime"))); notrace int __vdso_gettimeofday(struct timeval *tv, struct timezone *tz) { long ret; if (likely(gtod->clock.vclock_mode != VCLOCK_NONE)) { if (likely(tv != NULL)) { BUILD_BUG_ON(offsetof(struct timeval, tv_usec) != offsetof(struct timespec, tv_nsec) || sizeof(*tv) != sizeof(struct timespec)); do_realtime((struct timespec *)tv); tv->tv_usec /= 1000; } if (unlikely(tz != NULL)) { /* Avoid memcpy. Some old compilers fail to inline it */ tz->tz_minuteswest = gtod->sys_tz.tz_minuteswest; tz->tz_dsttime = gtod->sys_tz.tz_dsttime; } return 0; } asm("syscall" : "=a" (ret) : "0" (__NR_gettimeofday), "D" (tv), "S" (tz) : "memory"); return ret; } int gettimeofday(struct timeval *, struct timezone *) __attribute__((weak, alias("__vdso_gettimeofday"))); /* * This will break when the xtime seconds get inaccurate, but that is * unlikely */ notrace time_t __vdso_time(time_t *t) { /* This is atomic on x86_64 so we don't need any locks. */ time_t result = ACCESS_ONCE(VVAR(vsyscall_gtod_data).wall_time_sec); if (t) *t = result; return result; } int time(time_t *t) __attribute__((weak, alias("__vdso_time")));