/* * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs * * Pentium III FXSR, SSE support * Gareth Hughes <gareth@valinux.com>, May 2000 */ /* * Handle hardware traps and faults. */ #include <linux/interrupt.h> #include <linux/kallsyms.h> #include <linux/spinlock.h> #include <linux/kprobes.h> #include <linux/uaccess.h> #include <linux/kdebug.h> #include <linux/kgdb.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/ptrace.h> #include <linux/string.h> #include <linux/delay.h> #include <linux/errno.h> #include <linux/kexec.h> #include <linux/sched.h> #include <linux/timer.h> #include <linux/init.h> #include <linux/bug.h> #include <linux/nmi.h> #include <linux/mm.h> #include <linux/smp.h> #include <linux/io.h> #ifdef CONFIG_EISA #include <linux/ioport.h> #include <linux/eisa.h> #endif #ifdef CONFIG_MCA #include <linux/mca.h> #endif #if defined(CONFIG_EDAC) #include <linux/edac.h> #endif #include <asm/kmemcheck.h> #include <asm/stacktrace.h> #include <asm/processor.h> #include <asm/debugreg.h> #include <linux/atomic.h> #include <asm/system.h> #include <asm/traps.h> #include <asm/desc.h> #include <asm/i387.h> #include <asm/mce.h> #include <asm/mach_traps.h> #ifdef CONFIG_X86_64 #include <asm/x86_init.h> #include <asm/pgalloc.h> #include <asm/proto.h> #else #include <asm/processor-flags.h> #include <asm/setup.h> asmlinkage int system_call(void); /* Do we ignore FPU interrupts ? */ char ignore_fpu_irq; /* * The IDT has to be page-aligned to simplify the Pentium * F0 0F bug workaround. */ gate_desc idt_table[NR_VECTORS] __page_aligned_data = { { { { 0, 0 } } }, }; #endif DECLARE_BITMAP(used_vectors, NR_VECTORS); EXPORT_SYMBOL_GPL(used_vectors); static inline void conditional_sti(struct pt_regs *regs) { if (regs->flags & X86_EFLAGS_IF) local_irq_enable(); } static inline void preempt_conditional_sti(struct pt_regs *regs) { inc_preempt_count(); if (regs->flags & X86_EFLAGS_IF) local_irq_enable(); } static inline void conditional_cli(struct pt_regs *regs) { if (regs->flags & X86_EFLAGS_IF) local_irq_disable(); } static inline void preempt_conditional_cli(struct pt_regs *regs) { if (regs->flags & X86_EFLAGS_IF) local_irq_disable(); dec_preempt_count(); } static void __kprobes do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, long error_code, siginfo_t *info) { struct task_struct *tsk = current; #ifdef CONFIG_X86_32 if (regs->flags & X86_VM_MASK) { /* * traps 0, 1, 3, 4, and 5 should be forwarded to vm86. * On nmi (interrupt 2), do_trap should not be called. */ if (trapnr < 6) goto vm86_trap; goto trap_signal; } #endif if (!user_mode(regs)) goto kernel_trap; #ifdef CONFIG_X86_32 trap_signal: #endif /* * We want error_code and trap_no set for userspace faults and * kernelspace faults which result in die(), but not * kernelspace faults which are fixed up. die() gives the * process no chance to handle the signal and notice the * kernel fault information, so that won't result in polluting * the information about previously queued, but not yet * delivered, faults. See also do_general_protection below. */ tsk->thread.error_code = error_code; tsk->thread.trap_no = trapnr; #ifdef CONFIG_X86_64 if (show_unhandled_signals && unhandled_signal(tsk, signr) && printk_ratelimit()) { printk(KERN_INFO "%s[%d] trap %s ip:%lx sp:%lx error:%lx", tsk->comm, tsk->pid, str, regs->ip, regs->sp, error_code); print_vma_addr(" in ", regs->ip); printk("\n"); } #endif if (info) force_sig_info(signr, info, tsk); else force_sig(signr, tsk); return; kernel_trap: if (!fixup_exception(regs)) { tsk->thread.error_code = error_code; tsk->thread.trap_no = trapnr; die(str, regs, error_code); } return; #ifdef CONFIG_X86_32 vm86_trap: if (handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr)) goto trap_signal; return; #endif } #define DO_ERROR(trapnr, signr, str, name) \ dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ { \ if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ == NOTIFY_STOP) \ return; \ conditional_sti(regs); \ do_trap(trapnr, signr, str, regs, error_code, NULL); \ } #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \ dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ { \ siginfo_t info; \ info.si_signo = signr; \ info.si_errno = 0; \ info.si_code = sicode; \ info.si_addr = (void __user *)siaddr; \ if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ == NOTIFY_STOP) \ return; \ conditional_sti(regs); \ do_trap(trapnr, signr, str, regs, error_code, &info); \ } DO_ERROR_INFO(0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip) DO_ERROR(4, SIGSEGV, "overflow", overflow) DO_ERROR(5, SIGSEGV, "bounds", bounds) DO_ERROR_INFO(6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip) DO_ERROR(9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun) DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS) DO_ERROR(11, SIGBUS, "segment not present", segment_not_present) #ifdef CONFIG_X86_32 DO_ERROR(12, SIGBUS, "stack segment", stack_segment) #endif DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0) #ifdef CONFIG_X86_64 /* Runs on IST stack */ dotraplinkage void do_stack_segment(struct pt_regs *regs, long error_code) { if (notify_die(DIE_TRAP, "stack segment", regs, error_code, 12, SIGBUS) == NOTIFY_STOP) return; preempt_conditional_sti(regs); do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL); preempt_conditional_cli(regs); } dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code) { static const char str[] = "double fault"; struct task_struct *tsk = current; /* Return not checked because double check cannot be ignored */ notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV); tsk->thread.error_code = error_code; tsk->thread.trap_no = 8; /* * This is always a kernel trap and never fixable (and thus must * never return). */ for (;;) die(str, regs, error_code); } #endif dotraplinkage void __kprobes do_general_protection(struct pt_regs *regs, long error_code) { struct task_struct *tsk; conditional_sti(regs); #ifdef CONFIG_X86_32 if (regs->flags & X86_VM_MASK) goto gp_in_vm86; #endif tsk = current; if (!user_mode(regs)) goto gp_in_kernel; tsk->thread.error_code = error_code; tsk->thread.trap_no = 13; if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && printk_ratelimit()) { printk(KERN_INFO "%s[%d] general protection ip:%lx sp:%lx error:%lx", tsk->comm, task_pid_nr(tsk), regs->ip, regs->sp, error_code); print_vma_addr(" in ", regs->ip); printk("\n"); } force_sig(SIGSEGV, tsk); return; #ifdef CONFIG_X86_32 gp_in_vm86: local_irq_enable(); handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); return; #endif gp_in_kernel: if (fixup_exception(regs)) return; tsk->thread.error_code = error_code; tsk->thread.trap_no = 13; if (notify_die(DIE_GPF, "general protection fault", regs, error_code, 13, SIGSEGV) == NOTIFY_STOP) return; die("general protection fault", regs, error_code); } /* May run on IST stack. */ dotraplinkage void __kprobes do_int3(struct pt_regs *regs, long error_code) { #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP) == NOTIFY_STOP) return; #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP) == NOTIFY_STOP) return; /* * Let others (NMI) know that the debug stack is in use * as we may switch to the interrupt stack. */ debug_stack_usage_inc(); preempt_conditional_sti(regs); do_trap(3, SIGTRAP, "int3", regs, error_code, NULL); preempt_conditional_cli(regs); debug_stack_usage_dec(); } #ifdef CONFIG_X86_64 /* * Help handler running on IST stack to switch back to user stack * for scheduling or signal handling. The actual stack switch is done in * entry.S */ asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs) { struct pt_regs *regs = eregs; /* Did already sync */ if (eregs == (struct pt_regs *)eregs->sp) ; /* Exception from user space */ else if (user_mode(eregs)) regs = task_pt_regs(current); /* * Exception from kernel and interrupts are enabled. Move to * kernel process stack. */ else if (eregs->flags & X86_EFLAGS_IF) regs = (struct pt_regs *)(eregs->sp -= sizeof(struct pt_regs)); if (eregs != regs) *regs = *eregs; return regs; } #endif /* * Our handling of the processor debug registers is non-trivial. * We do not clear them on entry and exit from the kernel. Therefore * it is possible to get a watchpoint trap here from inside the kernel. * However, the code in ./ptrace.c has ensured that the user can * only set watchpoints on userspace addresses. Therefore the in-kernel * watchpoint trap can only occur in code which is reading/writing * from user space. Such code must not hold kernel locks (since it * can equally take a page fault), therefore it is safe to call * force_sig_info even though that claims and releases locks. * * Code in ./signal.c ensures that the debug control register * is restored before we deliver any signal, and therefore that * user code runs with the correct debug control register even though * we clear it here. * * Being careful here means that we don't have to be as careful in a * lot of more complicated places (task switching can be a bit lazy * about restoring all the debug state, and ptrace doesn't have to * find every occurrence of the TF bit that could be saved away even * by user code) * * May run on IST stack. */ dotraplinkage void __kprobes do_debug(struct pt_regs *regs, long error_code) { struct task_struct *tsk = current; int user_icebp = 0; unsigned long dr6; int si_code; get_debugreg(dr6, 6); /* Filter out all the reserved bits which are preset to 1 */ dr6 &= ~DR6_RESERVED; /* * If dr6 has no reason to give us about the origin of this trap, * then it's very likely the result of an icebp/int01 trap. * User wants a sigtrap for that. */ if (!dr6 && user_mode(regs)) user_icebp = 1; /* Catch kmemcheck conditions first of all! */ if ((dr6 & DR_STEP) && kmemcheck_trap(regs)) return; /* DR6 may or may not be cleared by the CPU */ set_debugreg(0, 6); /* * The processor cleared BTF, so don't mark that we need it set. */ clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP); /* Store the virtualized DR6 value */ tsk->thread.debugreg6 = dr6; if (notify_die(DIE_DEBUG, "debug", regs, PTR_ERR(&dr6), error_code, SIGTRAP) == NOTIFY_STOP) return; /* * Let others (NMI) know that the debug stack is in use * as we may switch to the interrupt stack. */ debug_stack_usage_inc(); /* It's safe to allow irq's after DR6 has been saved */ preempt_conditional_sti(regs); if (regs->flags & X86_VM_MASK) { handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1); preempt_conditional_cli(regs); debug_stack_usage_dec(); return; } /* * Single-stepping through system calls: ignore any exceptions in * kernel space, but re-enable TF when returning to user mode. * * We already checked v86 mode above, so we can check for kernel mode * by just checking the CPL of CS. */ if ((dr6 & DR_STEP) && !user_mode(regs)) { tsk->thread.debugreg6 &= ~DR_STEP; set_tsk_thread_flag(tsk, TIF_SINGLESTEP); regs->flags &= ~X86_EFLAGS_TF; } si_code = get_si_code(tsk->thread.debugreg6); if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp) send_sigtrap(tsk, regs, error_code, si_code); preempt_conditional_cli(regs); debug_stack_usage_dec(); return; } /* * Note that we play around with the 'TS' bit in an attempt to get * the correct behaviour even in the presence of the asynchronous * IRQ13 behaviour */ void math_error(struct pt_regs *regs, int error_code, int trapnr) { struct task_struct *task = current; siginfo_t info; unsigned short err; char *str = (trapnr == 16) ? "fpu exception" : "simd exception"; if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP) return; conditional_sti(regs); if (!user_mode_vm(regs)) { if (!fixup_exception(regs)) { task->thread.error_code = error_code; task->thread.trap_no = trapnr; die(str, regs, error_code); } return; } /* * Save the info for the exception handler and clear the error. */ save_init_fpu(task); task->thread.trap_no = trapnr; task->thread.error_code = error_code; info.si_signo = SIGFPE; info.si_errno = 0; info.si_addr = (void __user *)regs->ip; if (trapnr == 16) { unsigned short cwd, swd; /* * (~cwd & swd) will mask out exceptions that are not set to unmasked * status. 0x3f is the exception bits in these regs, 0x200 is the * C1 reg you need in case of a stack fault, 0x040 is the stack * fault bit. We should only be taking one exception at a time, * so if this combination doesn't produce any single exception, * then we have a bad program that isn't synchronizing its FPU usage * and it will suffer the consequences since we won't be able to * fully reproduce the context of the exception */ cwd = get_fpu_cwd(task); swd = get_fpu_swd(task); err = swd & ~cwd; } else { /* * The SIMD FPU exceptions are handled a little differently, as there * is only a single status/control register. Thus, to determine which * unmasked exception was caught we must mask the exception mask bits * at 0x1f80, and then use these to mask the exception bits at 0x3f. */ unsigned short mxcsr = get_fpu_mxcsr(task); err = ~(mxcsr >> 7) & mxcsr; } if (err & 0x001) { /* Invalid op */ /* * swd & 0x240 == 0x040: Stack Underflow * swd & 0x240 == 0x240: Stack Overflow * User must clear the SF bit (0x40) if set */ info.si_code = FPE_FLTINV; } else if (err & 0x004) { /* Divide by Zero */ info.si_code = FPE_FLTDIV; } else if (err & 0x008) { /* Overflow */ info.si_code = FPE_FLTOVF; } else if (err & 0x012) { /* Denormal, Underflow */ info.si_code = FPE_FLTUND; } else if (err & 0x020) { /* Precision */ info.si_code = FPE_FLTRES; } else { /* * If we're using IRQ 13, or supposedly even some trap 16 * implementations, it's possible we get a spurious trap... */ return; /* Spurious trap, no error */ } force_sig_info(SIGFPE, &info, task); } dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code) { #ifdef CONFIG_X86_32 ignore_fpu_irq = 1; #endif math_error(regs, error_code, 16); } dotraplinkage void do_simd_coprocessor_error(struct pt_regs *regs, long error_code) { math_error(regs, error_code, 19); } dotraplinkage void do_spurious_interrupt_bug(struct pt_regs *regs, long error_code) { conditional_sti(regs); #if 0 /* No need to warn about this any longer. */ printk(KERN_INFO "Ignoring P6 Local APIC Spurious Interrupt Bug...\n"); #endif } asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void) { } asmlinkage void __attribute__((weak)) smp_threshold_interrupt(void) { } /* * 'math_state_restore()' saves the current math information in the * old math state array, and gets the new ones from the current task * * Careful.. There are problems with IBM-designed IRQ13 behaviour. * Don't touch unless you *really* know how it works. * * Must be called with kernel preemption disabled (eg with local * local interrupts as in the case of do_device_not_available). */ void math_state_restore(void) { struct task_struct *tsk = current; if (!tsk_used_math(tsk)) { local_irq_enable(); /* * does a slab alloc which can sleep */ if (init_fpu(tsk)) { /* * ran out of memory! */ do_group_exit(SIGKILL); return; } local_irq_disable(); } __thread_fpu_begin(tsk); /* * Paranoid restore. send a SIGSEGV if we fail to restore the state. */ if (unlikely(restore_fpu_checking(tsk))) { __thread_fpu_end(tsk); force_sig(SIGSEGV, tsk); return; } tsk->fpu_counter++; } EXPORT_SYMBOL_GPL(math_state_restore); dotraplinkage void __kprobes do_device_not_available(struct pt_regs *regs, long error_code) { #ifdef CONFIG_MATH_EMULATION if (read_cr0() & X86_CR0_EM) { struct math_emu_info info = { }; conditional_sti(regs); info.regs = regs; math_emulate(&info); return; } #endif math_state_restore(); /* interrupts still off */ #ifdef CONFIG_X86_32 conditional_sti(regs); #endif } #ifdef CONFIG_X86_32 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code) { siginfo_t info; local_irq_enable(); info.si_signo = SIGILL; info.si_errno = 0; info.si_code = ILL_BADSTK; info.si_addr = NULL; if (notify_die(DIE_TRAP, "iret exception", regs, error_code, 32, SIGILL) == NOTIFY_STOP) return; do_trap(32, SIGILL, "iret exception", regs, error_code, &info); } #endif /* Set of traps needed for early debugging. */ void __init early_trap_init(void) { set_intr_gate_ist(1, &debug, DEBUG_STACK); /* int3 can be called from all */ set_system_intr_gate_ist(3, &int3, DEBUG_STACK); set_intr_gate(14, &page_fault); load_idt(&idt_descr); } void __init trap_init(void) { int i; #ifdef CONFIG_EISA void __iomem *p = early_ioremap(0x0FFFD9, 4); if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24)) EISA_bus = 1; early_iounmap(p, 4); #endif set_intr_gate(0, ÷_error); set_intr_gate_ist(2, &nmi, NMI_STACK); /* int4 can be called from all */ set_system_intr_gate(4, &overflow); set_intr_gate(5, &bounds); set_intr_gate(6, &invalid_op); set_intr_gate(7, &device_not_available); #ifdef CONFIG_X86_32 set_task_gate(8, GDT_ENTRY_DOUBLEFAULT_TSS); #else set_intr_gate_ist(8, &double_fault, DOUBLEFAULT_STACK); #endif set_intr_gate(9, &coprocessor_segment_overrun); set_intr_gate(10, &invalid_TSS); set_intr_gate(11, &segment_not_present); set_intr_gate_ist(12, &stack_segment, STACKFAULT_STACK); set_intr_gate(13, &general_protection); set_intr_gate(15, &spurious_interrupt_bug); set_intr_gate(16, &coprocessor_error); set_intr_gate(17, &alignment_check); #ifdef CONFIG_X86_MCE set_intr_gate_ist(18, &machine_check, MCE_STACK); #endif set_intr_gate(19, &simd_coprocessor_error); /* Reserve all the builtin and the syscall vector: */ for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++) set_bit(i, used_vectors); #ifdef CONFIG_IA32_EMULATION set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall); set_bit(IA32_SYSCALL_VECTOR, used_vectors); #endif #ifdef CONFIG_X86_32 set_system_trap_gate(SYSCALL_VECTOR, &system_call); set_bit(SYSCALL_VECTOR, used_vectors); #endif /* * Should be a barrier for any external CPU state: */ cpu_init(); x86_init.irqs.trap_init(); #ifdef CONFIG_X86_64 memcpy(&nmi_idt_table, &idt_table, IDT_ENTRIES * 16); set_nmi_gate(1, &debug); set_nmi_gate(3, &int3); #endif }