/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * SGI UV APIC functions (note: not an Intel compatible APIC) * * Copyright (C) 2007-2010 Silicon Graphics, Inc. All rights reserved. */ #include <linux/cpumask.h> #include <linux/hardirq.h> #include <linux/proc_fs.h> #include <linux/threads.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/string.h> #include <linux/ctype.h> #include <linux/sched.h> #include <linux/timer.h> #include <linux/slab.h> #include <linux/cpu.h> #include <linux/init.h> #include <linux/io.h> #include <linux/pci.h> #include <linux/kdebug.h> #include <linux/delay.h> #include <linux/crash_dump.h> #include <asm/uv/uv_mmrs.h> #include <asm/uv/uv_hub.h> #include <asm/current.h> #include <asm/pgtable.h> #include <asm/uv/bios.h> #include <asm/uv/uv.h> #include <asm/apic.h> #include <asm/ipi.h> #include <asm/smp.h> #include <asm/x86_init.h> #include <asm/emergency-restart.h> #include <asm/nmi.h> /* BMC sets a bit this MMR non-zero before sending an NMI */ #define UVH_NMI_MMR UVH_SCRATCH5 #define UVH_NMI_MMR_CLEAR (UVH_NMI_MMR + 8) #define UV_NMI_PENDING_MASK (1UL << 63) DEFINE_PER_CPU(unsigned long, cpu_last_nmi_count); DEFINE_PER_CPU(int, x2apic_extra_bits); #define PR_DEVEL(fmt, args...) pr_devel("%s: " fmt, __func__, args) static enum uv_system_type uv_system_type; static u64 gru_start_paddr, gru_end_paddr; static union uvh_apicid uvh_apicid; int uv_min_hub_revision_id; EXPORT_SYMBOL_GPL(uv_min_hub_revision_id); unsigned int uv_apicid_hibits; EXPORT_SYMBOL_GPL(uv_apicid_hibits); static DEFINE_SPINLOCK(uv_nmi_lock); static struct apic apic_x2apic_uv_x; static unsigned long __init uv_early_read_mmr(unsigned long addr) { unsigned long val, *mmr; mmr = early_ioremap(UV_LOCAL_MMR_BASE | addr, sizeof(*mmr)); val = *mmr; early_iounmap(mmr, sizeof(*mmr)); return val; } static inline bool is_GRU_range(u64 start, u64 end) { return start >= gru_start_paddr && end <= gru_end_paddr; } static bool uv_is_untracked_pat_range(u64 start, u64 end) { return is_ISA_range(start, end) || is_GRU_range(start, end); } static int __init early_get_pnodeid(void) { union uvh_node_id_u node_id; union uvh_rh_gam_config_mmr_u m_n_config; int pnode; /* Currently, all blades have same revision number */ node_id.v = uv_early_read_mmr(UVH_NODE_ID); m_n_config.v = uv_early_read_mmr(UVH_RH_GAM_CONFIG_MMR); uv_min_hub_revision_id = node_id.s.revision; if (node_id.s.part_number == UV2_HUB_PART_NUMBER) uv_min_hub_revision_id += UV2_HUB_REVISION_BASE - 1; if (node_id.s.part_number == UV2_HUB_PART_NUMBER_X) uv_min_hub_revision_id += UV2_HUB_REVISION_BASE - 1; uv_hub_info->hub_revision = uv_min_hub_revision_id; pnode = (node_id.s.node_id >> 1) & ((1 << m_n_config.s.n_skt) - 1); return pnode; } static void __init early_get_apic_pnode_shift(void) { uvh_apicid.v = uv_early_read_mmr(UVH_APICID); if (!uvh_apicid.v) /* * Old bios, use default value */ uvh_apicid.s.pnode_shift = UV_APIC_PNODE_SHIFT; } /* * Add an extra bit as dictated by bios to the destination apicid of * interrupts potentially passing through the UV HUB. This prevents * a deadlock between interrupts and IO port operations. */ static void __init uv_set_apicid_hibit(void) { union uv1h_lb_target_physical_apic_id_mask_u apicid_mask; if (is_uv1_hub()) { apicid_mask.v = uv_early_read_mmr(UV1H_LB_TARGET_PHYSICAL_APIC_ID_MASK); uv_apicid_hibits = apicid_mask.s1.bit_enables & UV_APICID_HIBIT_MASK; } } static int __init uv_acpi_madt_oem_check(char *oem_id, char *oem_table_id) { int pnodeid, is_uv1, is_uv2; is_uv1 = !strcmp(oem_id, "SGI"); is_uv2 = !strcmp(oem_id, "SGI2"); if (is_uv1 || is_uv2) { uv_hub_info->hub_revision = is_uv1 ? UV1_HUB_REVISION_BASE : UV2_HUB_REVISION_BASE; pnodeid = early_get_pnodeid(); early_get_apic_pnode_shift(); x86_platform.is_untracked_pat_range = uv_is_untracked_pat_range; x86_platform.nmi_init = uv_nmi_init; if (!strcmp(oem_table_id, "UVL")) uv_system_type = UV_LEGACY_APIC; else if (!strcmp(oem_table_id, "UVX")) uv_system_type = UV_X2APIC; else if (!strcmp(oem_table_id, "UVH")) { __this_cpu_write(x2apic_extra_bits, pnodeid << uvh_apicid.s.pnode_shift); uv_system_type = UV_NON_UNIQUE_APIC; uv_set_apicid_hibit(); return 1; } } return 0; } enum uv_system_type get_uv_system_type(void) { return uv_system_type; } int is_uv_system(void) { return uv_system_type != UV_NONE; } EXPORT_SYMBOL_GPL(is_uv_system); DEFINE_PER_CPU(struct uv_hub_info_s, __uv_hub_info); EXPORT_PER_CPU_SYMBOL_GPL(__uv_hub_info); struct uv_blade_info *uv_blade_info; EXPORT_SYMBOL_GPL(uv_blade_info); short *uv_node_to_blade; EXPORT_SYMBOL_GPL(uv_node_to_blade); short *uv_cpu_to_blade; EXPORT_SYMBOL_GPL(uv_cpu_to_blade); short uv_possible_blades; EXPORT_SYMBOL_GPL(uv_possible_blades); unsigned long sn_rtc_cycles_per_second; EXPORT_SYMBOL(sn_rtc_cycles_per_second); static const struct cpumask *uv_target_cpus(void) { return cpu_online_mask; } static void uv_vector_allocation_domain(int cpu, struct cpumask *retmask) { cpumask_clear(retmask); cpumask_set_cpu(cpu, retmask); } static int __cpuinit uv_wakeup_secondary(int phys_apicid, unsigned long start_rip) { #ifdef CONFIG_SMP unsigned long val; int pnode; pnode = uv_apicid_to_pnode(phys_apicid); phys_apicid |= uv_apicid_hibits; val = (1UL << UVH_IPI_INT_SEND_SHFT) | (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) | ((start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) | APIC_DM_INIT; uv_write_global_mmr64(pnode, UVH_IPI_INT, val); val = (1UL << UVH_IPI_INT_SEND_SHFT) | (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) | ((start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) | APIC_DM_STARTUP; uv_write_global_mmr64(pnode, UVH_IPI_INT, val); atomic_set(&init_deasserted, 1); #endif return 0; } static void uv_send_IPI_one(int cpu, int vector) { unsigned long apicid; int pnode; apicid = per_cpu(x86_cpu_to_apicid, cpu); pnode = uv_apicid_to_pnode(apicid); uv_hub_send_ipi(pnode, apicid, vector); } static void uv_send_IPI_mask(const struct cpumask *mask, int vector) { unsigned int cpu; for_each_cpu(cpu, mask) uv_send_IPI_one(cpu, vector); } static void uv_send_IPI_mask_allbutself(const struct cpumask *mask, int vector) { unsigned int this_cpu = smp_processor_id(); unsigned int cpu; for_each_cpu(cpu, mask) { if (cpu != this_cpu) uv_send_IPI_one(cpu, vector); } } static void uv_send_IPI_allbutself(int vector) { unsigned int this_cpu = smp_processor_id(); unsigned int cpu; for_each_online_cpu(cpu) { if (cpu != this_cpu) uv_send_IPI_one(cpu, vector); } } static void uv_send_IPI_all(int vector) { uv_send_IPI_mask(cpu_online_mask, vector); } static int uv_apic_id_registered(void) { return 1; } static void uv_init_apic_ldr(void) { } static unsigned int uv_cpu_mask_to_apicid(const struct cpumask *cpumask) { /* * We're using fixed IRQ delivery, can only return one phys APIC ID. * May as well be the first. */ int cpu = cpumask_first(cpumask); if ((unsigned)cpu < nr_cpu_ids) return per_cpu(x86_cpu_to_apicid, cpu) | uv_apicid_hibits; else return BAD_APICID; } static unsigned int uv_cpu_mask_to_apicid_and(const struct cpumask *cpumask, const struct cpumask *andmask) { int cpu; /* * We're using fixed IRQ delivery, can only return one phys APIC ID. * May as well be the first. */ for_each_cpu_and(cpu, cpumask, andmask) { if (cpumask_test_cpu(cpu, cpu_online_mask)) break; } return per_cpu(x86_cpu_to_apicid, cpu) | uv_apicid_hibits; } static unsigned int x2apic_get_apic_id(unsigned long x) { unsigned int id; WARN_ON(preemptible() && num_online_cpus() > 1); id = x | __this_cpu_read(x2apic_extra_bits); return id; } static unsigned long set_apic_id(unsigned int id) { unsigned long x; /* maskout x2apic_extra_bits ? */ x = id; return x; } static unsigned int uv_read_apic_id(void) { return x2apic_get_apic_id(apic_read(APIC_ID)); } static int uv_phys_pkg_id(int initial_apicid, int index_msb) { return uv_read_apic_id() >> index_msb; } static void uv_send_IPI_self(int vector) { apic_write(APIC_SELF_IPI, vector); } static int uv_probe(void) { return apic == &apic_x2apic_uv_x; } static struct apic __refdata apic_x2apic_uv_x = { .name = "UV large system", .probe = uv_probe, .acpi_madt_oem_check = uv_acpi_madt_oem_check, .apic_id_registered = uv_apic_id_registered, .irq_delivery_mode = dest_Fixed, .irq_dest_mode = 0, /* physical */ .target_cpus = uv_target_cpus, .disable_esr = 0, .dest_logical = APIC_DEST_LOGICAL, .check_apicid_used = NULL, .check_apicid_present = NULL, .vector_allocation_domain = uv_vector_allocation_domain, .init_apic_ldr = uv_init_apic_ldr, .ioapic_phys_id_map = NULL, .setup_apic_routing = NULL, .multi_timer_check = NULL, .cpu_present_to_apicid = default_cpu_present_to_apicid, .apicid_to_cpu_present = NULL, .setup_portio_remap = NULL, .check_phys_apicid_present = default_check_phys_apicid_present, .enable_apic_mode = NULL, .phys_pkg_id = uv_phys_pkg_id, .mps_oem_check = NULL, .get_apic_id = x2apic_get_apic_id, .set_apic_id = set_apic_id, .apic_id_mask = 0xFFFFFFFFu, .cpu_mask_to_apicid = uv_cpu_mask_to_apicid, .cpu_mask_to_apicid_and = uv_cpu_mask_to_apicid_and, .send_IPI_mask = uv_send_IPI_mask, .send_IPI_mask_allbutself = uv_send_IPI_mask_allbutself, .send_IPI_allbutself = uv_send_IPI_allbutself, .send_IPI_all = uv_send_IPI_all, .send_IPI_self = uv_send_IPI_self, .wakeup_secondary_cpu = uv_wakeup_secondary, .trampoline_phys_low = DEFAULT_TRAMPOLINE_PHYS_LOW, .trampoline_phys_high = DEFAULT_TRAMPOLINE_PHYS_HIGH, .wait_for_init_deassert = NULL, .smp_callin_clear_local_apic = NULL, .inquire_remote_apic = NULL, .read = native_apic_msr_read, .write = native_apic_msr_write, .icr_read = native_x2apic_icr_read, .icr_write = native_x2apic_icr_write, .wait_icr_idle = native_x2apic_wait_icr_idle, .safe_wait_icr_idle = native_safe_x2apic_wait_icr_idle, }; static __cpuinit void set_x2apic_extra_bits(int pnode) { __this_cpu_write(x2apic_extra_bits, pnode << uvh_apicid.s.pnode_shift); } /* * Called on boot cpu. */ static __init int boot_pnode_to_blade(int pnode) { int blade; for (blade = 0; blade < uv_num_possible_blades(); blade++) if (pnode == uv_blade_info[blade].pnode) return blade; BUG(); } struct redir_addr { unsigned long redirect; unsigned long alias; }; #define DEST_SHIFT UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR_DEST_BASE_SHFT static __initdata struct redir_addr redir_addrs[] = { {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR, UVH_RH_GAM_ALIAS210_OVERLAY_CONFIG_0_MMR}, {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_1_MMR, UVH_RH_GAM_ALIAS210_OVERLAY_CONFIG_1_MMR}, {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_2_MMR, UVH_RH_GAM_ALIAS210_OVERLAY_CONFIG_2_MMR}, }; static __init void get_lowmem_redirect(unsigned long *base, unsigned long *size) { union uvh_rh_gam_alias210_overlay_config_2_mmr_u alias; union uvh_rh_gam_alias210_redirect_config_2_mmr_u redirect; int i; for (i = 0; i < ARRAY_SIZE(redir_addrs); i++) { alias.v = uv_read_local_mmr(redir_addrs[i].alias); if (alias.s.enable && alias.s.base == 0) { *size = (1UL << alias.s.m_alias); redirect.v = uv_read_local_mmr(redir_addrs[i].redirect); *base = (unsigned long)redirect.s.dest_base << DEST_SHIFT; return; } } *base = *size = 0; } enum map_type {map_wb, map_uc}; static __init void map_high(char *id, unsigned long base, int pshift, int bshift, int max_pnode, enum map_type map_type) { unsigned long bytes, paddr; paddr = base << pshift; bytes = (1UL << bshift) * (max_pnode + 1); printk(KERN_INFO "UV: Map %s_HI 0x%lx - 0x%lx\n", id, paddr, paddr + bytes); if (map_type == map_uc) init_extra_mapping_uc(paddr, bytes); else init_extra_mapping_wb(paddr, bytes); } static __init void map_gru_high(int max_pnode) { union uvh_rh_gam_gru_overlay_config_mmr_u gru; int shift = UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR_BASE_SHFT; gru.v = uv_read_local_mmr(UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR); if (gru.s.enable) { map_high("GRU", gru.s.base, shift, shift, max_pnode, map_wb); gru_start_paddr = ((u64)gru.s.base << shift); gru_end_paddr = gru_start_paddr + (1UL << shift) * (max_pnode + 1); } } static __init void map_mmr_high(int max_pnode) { union uvh_rh_gam_mmr_overlay_config_mmr_u mmr; int shift = UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR_BASE_SHFT; mmr.v = uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR); if (mmr.s.enable) map_high("MMR", mmr.s.base, shift, shift, max_pnode, map_uc); } static __init void map_mmioh_high(int max_pnode) { union uvh_rh_gam_mmioh_overlay_config_mmr_u mmioh; int shift; mmioh.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR); if (is_uv1_hub() && mmioh.s1.enable) { shift = UV1H_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR_BASE_SHFT; map_high("MMIOH", mmioh.s1.base, shift, mmioh.s1.m_io, max_pnode, map_uc); } if (is_uv2_hub() && mmioh.s2.enable) { shift = UV2H_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR_BASE_SHFT; map_high("MMIOH", mmioh.s2.base, shift, mmioh.s2.m_io, max_pnode, map_uc); } } static __init void map_low_mmrs(void) { init_extra_mapping_uc(UV_GLOBAL_MMR32_BASE, UV_GLOBAL_MMR32_SIZE); init_extra_mapping_uc(UV_LOCAL_MMR_BASE, UV_LOCAL_MMR_SIZE); } static __init void uv_rtc_init(void) { long status; u64 ticks_per_sec; status = uv_bios_freq_base(BIOS_FREQ_BASE_REALTIME_CLOCK, &ticks_per_sec); if (status != BIOS_STATUS_SUCCESS || ticks_per_sec < 100000) { printk(KERN_WARNING "unable to determine platform RTC clock frequency, " "guessing.\n"); /* BIOS gives wrong value for clock freq. so guess */ sn_rtc_cycles_per_second = 1000000000000UL / 30000UL; } else sn_rtc_cycles_per_second = ticks_per_sec; } /* * percpu heartbeat timer */ static void uv_heartbeat(unsigned long ignored) { struct timer_list *timer = &uv_hub_info->scir.timer; unsigned char bits = uv_hub_info->scir.state; /* flip heartbeat bit */ bits ^= SCIR_CPU_HEARTBEAT; /* is this cpu idle? */ if (idle_cpu(raw_smp_processor_id())) bits &= ~SCIR_CPU_ACTIVITY; else bits |= SCIR_CPU_ACTIVITY; /* update system controller interface reg */ uv_set_scir_bits(bits); /* enable next timer period */ mod_timer_pinned(timer, jiffies + SCIR_CPU_HB_INTERVAL); } static void __cpuinit uv_heartbeat_enable(int cpu) { while (!uv_cpu_hub_info(cpu)->scir.enabled) { struct timer_list *timer = &uv_cpu_hub_info(cpu)->scir.timer; uv_set_cpu_scir_bits(cpu, SCIR_CPU_HEARTBEAT|SCIR_CPU_ACTIVITY); setup_timer(timer, uv_heartbeat, cpu); timer->expires = jiffies + SCIR_CPU_HB_INTERVAL; add_timer_on(timer, cpu); uv_cpu_hub_info(cpu)->scir.enabled = 1; /* also ensure that boot cpu is enabled */ cpu = 0; } } #ifdef CONFIG_HOTPLUG_CPU static void __cpuinit uv_heartbeat_disable(int cpu) { if (uv_cpu_hub_info(cpu)->scir.enabled) { uv_cpu_hub_info(cpu)->scir.enabled = 0; del_timer(&uv_cpu_hub_info(cpu)->scir.timer); } uv_set_cpu_scir_bits(cpu, 0xff); } /* * cpu hotplug notifier */ static __cpuinit int uv_scir_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) { long cpu = (long)hcpu; switch (action) { case CPU_ONLINE: uv_heartbeat_enable(cpu); break; case CPU_DOWN_PREPARE: uv_heartbeat_disable(cpu); break; default: break; } return NOTIFY_OK; } static __init void uv_scir_register_cpu_notifier(void) { hotcpu_notifier(uv_scir_cpu_notify, 0); } #else /* !CONFIG_HOTPLUG_CPU */ static __init void uv_scir_register_cpu_notifier(void) { } static __init int uv_init_heartbeat(void) { int cpu; if (is_uv_system()) for_each_online_cpu(cpu) uv_heartbeat_enable(cpu); return 0; } late_initcall(uv_init_heartbeat); #endif /* !CONFIG_HOTPLUG_CPU */ /* Direct Legacy VGA I/O traffic to designated IOH */ int uv_set_vga_state(struct pci_dev *pdev, bool decode, unsigned int command_bits, u32 flags) { int domain, bus, rc; PR_DEVEL("devfn %x decode %d cmd %x flags %d\n", pdev->devfn, decode, command_bits, flags); if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) return 0; if ((command_bits & PCI_COMMAND_IO) == 0) return 0; domain = pci_domain_nr(pdev->bus); bus = pdev->bus->number; rc = uv_bios_set_legacy_vga_target(decode, domain, bus); PR_DEVEL("vga decode %d %x:%x, rc: %d\n", decode, domain, bus, rc); return rc; } /* * Called on each cpu to initialize the per_cpu UV data area. * FIXME: hotplug not supported yet */ void __cpuinit uv_cpu_init(void) { /* CPU 0 initilization will be done via uv_system_init. */ if (!uv_blade_info) return; uv_blade_info[uv_numa_blade_id()].nr_online_cpus++; if (get_uv_system_type() == UV_NON_UNIQUE_APIC) set_x2apic_extra_bits(uv_hub_info->pnode); } /* * When NMI is received, print a stack trace. */ int uv_handle_nmi(unsigned int reason, struct pt_regs *regs) { unsigned long real_uv_nmi; int bid; /* * Each blade has an MMR that indicates when an NMI has been sent * to cpus on the blade. If an NMI is detected, atomically * clear the MMR and update a per-blade NMI count used to * cause each cpu on the blade to notice a new NMI. */ bid = uv_numa_blade_id(); real_uv_nmi = (uv_read_local_mmr(UVH_NMI_MMR) & UV_NMI_PENDING_MASK); if (unlikely(real_uv_nmi)) { spin_lock(&uv_blade_info[bid].nmi_lock); real_uv_nmi = (uv_read_local_mmr(UVH_NMI_MMR) & UV_NMI_PENDING_MASK); if (real_uv_nmi) { uv_blade_info[bid].nmi_count++; uv_write_local_mmr(UVH_NMI_MMR_CLEAR, UV_NMI_PENDING_MASK); } spin_unlock(&uv_blade_info[bid].nmi_lock); } if (likely(__get_cpu_var(cpu_last_nmi_count) == uv_blade_info[bid].nmi_count)) return NMI_DONE; __get_cpu_var(cpu_last_nmi_count) = uv_blade_info[bid].nmi_count; /* * Use a lock so only one cpu prints at a time. * This prevents intermixed output. */ spin_lock(&uv_nmi_lock); pr_info("UV NMI stack dump cpu %u:\n", smp_processor_id()); dump_stack(); spin_unlock(&uv_nmi_lock); return NMI_HANDLED; } void uv_register_nmi_notifier(void) { if (register_nmi_handler(NMI_UNKNOWN, uv_handle_nmi, 0, "uv")) printk(KERN_WARNING "UV NMI handler failed to register\n"); } void uv_nmi_init(void) { unsigned int value; /* * Unmask NMI on all cpus */ value = apic_read(APIC_LVT1) | APIC_DM_NMI; value &= ~APIC_LVT_MASKED; apic_write(APIC_LVT1, value); } void __init uv_system_init(void) { union uvh_rh_gam_config_mmr_u m_n_config; union uvh_rh_gam_mmioh_overlay_config_mmr_u mmioh; union uvh_node_id_u node_id; unsigned long gnode_upper, lowmem_redir_base, lowmem_redir_size; int bytes, nid, cpu, lcpu, pnode, blade, i, j, m_val, n_val, n_io; int gnode_extra, max_pnode = 0; unsigned long mmr_base, present, paddr; unsigned short pnode_mask, pnode_io_mask; printk(KERN_INFO "UV: Found %s hub\n", is_uv1_hub() ? "UV1" : "UV2"); map_low_mmrs(); m_n_config.v = uv_read_local_mmr(UVH_RH_GAM_CONFIG_MMR ); m_val = m_n_config.s.m_skt; n_val = m_n_config.s.n_skt; mmioh.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR); n_io = is_uv1_hub() ? mmioh.s1.n_io : mmioh.s2.n_io; mmr_base = uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR) & ~UV_MMR_ENABLE; pnode_mask = (1 << n_val) - 1; pnode_io_mask = (1 << n_io) - 1; node_id.v = uv_read_local_mmr(UVH_NODE_ID); gnode_extra = (node_id.s.node_id & ~((1 << n_val) - 1)) >> 1; gnode_upper = ((unsigned long)gnode_extra << m_val); printk(KERN_INFO "UV: N %d, M %d, N_IO: %d, gnode_upper 0x%lx, gnode_extra 0x%x, pnode_mask 0x%x, pnode_io_mask 0x%x\n", n_val, m_val, n_io, gnode_upper, gnode_extra, pnode_mask, pnode_io_mask); printk(KERN_DEBUG "UV: global MMR base 0x%lx\n", mmr_base); for(i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++) uv_possible_blades += hweight64(uv_read_local_mmr( UVH_NODE_PRESENT_TABLE + i * 8)); /* uv_num_possible_blades() is really the hub count */ printk(KERN_INFO "UV: Found %d blades, %d hubs\n", is_uv1_hub() ? uv_num_possible_blades() : (uv_num_possible_blades() + 1) / 2, uv_num_possible_blades()); bytes = sizeof(struct uv_blade_info) * uv_num_possible_blades(); uv_blade_info = kzalloc(bytes, GFP_KERNEL); BUG_ON(!uv_blade_info); for (blade = 0; blade < uv_num_possible_blades(); blade++) uv_blade_info[blade].memory_nid = -1; get_lowmem_redirect(&lowmem_redir_base, &lowmem_redir_size); bytes = sizeof(uv_node_to_blade[0]) * num_possible_nodes(); uv_node_to_blade = kmalloc(bytes, GFP_KERNEL); BUG_ON(!uv_node_to_blade); memset(uv_node_to_blade, 255, bytes); bytes = sizeof(uv_cpu_to_blade[0]) * num_possible_cpus(); uv_cpu_to_blade = kmalloc(bytes, GFP_KERNEL); BUG_ON(!uv_cpu_to_blade); memset(uv_cpu_to_blade, 255, bytes); blade = 0; for (i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++) { present = uv_read_local_mmr(UVH_NODE_PRESENT_TABLE + i * 8); for (j = 0; j < 64; j++) { if (!test_bit(j, &present)) continue; pnode = (i * 64 + j) & pnode_mask; uv_blade_info[blade].pnode = pnode; uv_blade_info[blade].nr_possible_cpus = 0; uv_blade_info[blade].nr_online_cpus = 0; spin_lock_init(&uv_blade_info[blade].nmi_lock); max_pnode = max(pnode, max_pnode); blade++; } } uv_bios_init(); uv_bios_get_sn_info(0, &uv_type, &sn_partition_id, &sn_coherency_id, &sn_region_size, &system_serial_number); uv_rtc_init(); for_each_present_cpu(cpu) { int apicid = per_cpu(x86_cpu_to_apicid, cpu); nid = cpu_to_node(cpu); /* * apic_pnode_shift must be set before calling uv_apicid_to_pnode(); */ uv_cpu_hub_info(cpu)->pnode_mask = pnode_mask; uv_cpu_hub_info(cpu)->apic_pnode_shift = uvh_apicid.s.pnode_shift; uv_cpu_hub_info(cpu)->hub_revision = uv_hub_info->hub_revision; uv_cpu_hub_info(cpu)->m_shift = 64 - m_val; uv_cpu_hub_info(cpu)->n_lshift = is_uv2_1_hub() ? (m_val == 40 ? 40 : 39) : m_val; pnode = uv_apicid_to_pnode(apicid); blade = boot_pnode_to_blade(pnode); lcpu = uv_blade_info[blade].nr_possible_cpus; uv_blade_info[blade].nr_possible_cpus++; /* Any node on the blade, else will contain -1. */ uv_blade_info[blade].memory_nid = nid; uv_cpu_hub_info(cpu)->lowmem_remap_base = lowmem_redir_base; uv_cpu_hub_info(cpu)->lowmem_remap_top = lowmem_redir_size; uv_cpu_hub_info(cpu)->m_val = m_val; uv_cpu_hub_info(cpu)->n_val = n_val; uv_cpu_hub_info(cpu)->numa_blade_id = blade; uv_cpu_hub_info(cpu)->blade_processor_id = lcpu; uv_cpu_hub_info(cpu)->pnode = pnode; uv_cpu_hub_info(cpu)->gpa_mask = (1UL << (m_val + n_val)) - 1; uv_cpu_hub_info(cpu)->gnode_upper = gnode_upper; uv_cpu_hub_info(cpu)->gnode_extra = gnode_extra; uv_cpu_hub_info(cpu)->global_mmr_base = mmr_base; uv_cpu_hub_info(cpu)->coherency_domain_number = sn_coherency_id; uv_cpu_hub_info(cpu)->scir.offset = uv_scir_offset(apicid); uv_node_to_blade[nid] = blade; uv_cpu_to_blade[cpu] = blade; } /* Add blade/pnode info for nodes without cpus */ for_each_online_node(nid) { if (uv_node_to_blade[nid] >= 0) continue; paddr = node_start_pfn(nid) << PAGE_SHIFT; pnode = uv_gpa_to_pnode(uv_soc_phys_ram_to_gpa(paddr)); blade = boot_pnode_to_blade(pnode); uv_node_to_blade[nid] = blade; } map_gru_high(max_pnode); map_mmr_high(max_pnode); map_mmioh_high(max_pnode & pnode_io_mask); uv_cpu_init(); uv_scir_register_cpu_notifier(); uv_register_nmi_notifier(); proc_mkdir("sgi_uv", NULL); /* register Legacy VGA I/O redirection handler */ pci_register_set_vga_state(uv_set_vga_state); /* * For a kdump kernel the reset must be BOOT_ACPI, not BOOT_EFI, as * EFI is not enabled in the kdump kernel. */ if (is_kdump_kernel()) reboot_type = BOOT_ACPI; } apic_driver(apic_x2apic_uv_x);