/* * Copyright 2011 Tilera Corporation. All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, version 2. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for * more details. */ #include <linux/kernel.h> #include <linux/pci.h> #include <linux/delay.h> #include <linux/string.h> #include <linux/init.h> #include <linux/capability.h> #include <linux/sched.h> #include <linux/errno.h> #include <linux/bootmem.h> #include <linux/irq.h> #include <linux/io.h> #include <linux/uaccess.h> #include <linux/export.h> #include <asm/processor.h> #include <asm/sections.h> #include <asm/byteorder.h> #include <asm/hv_driver.h> #include <hv/drv_pcie_rc_intf.h> /* * Initialization flow and process * ------------------------------- * * This files contains the routines to search for PCI buses, * enumerate the buses, and configure any attached devices. * * There are two entry points here: * 1) tile_pci_init * This sets up the pci_controller structs, and opens the * FDs to the hypervisor. This is called from setup_arch() early * in the boot process. * 2) pcibios_init * This probes the PCI bus(es) for any attached hardware. It's * called by subsys_initcall. All of the real work is done by the * generic Linux PCI layer. * */ /* * This flag tells if the platform is TILEmpower that needs * special configuration for the PLX switch chip. */ int __write_once tile_plx_gen1; static struct pci_controller controllers[TILE_NUM_PCIE]; static int num_controllers; static int pci_scan_flags[TILE_NUM_PCIE]; static struct pci_ops tile_cfg_ops; /* * We don't need to worry about the alignment of resources. */ resource_size_t pcibios_align_resource(void *data, const struct resource *res, resource_size_t size, resource_size_t align) { return res->start; } EXPORT_SYMBOL(pcibios_align_resource); /* * Open a FD to the hypervisor PCI device. * * controller_id is the controller number, config type is 0 or 1 for * config0 or config1 operations. */ static int __devinit tile_pcie_open(int controller_id, int config_type) { char filename[32]; int fd; sprintf(filename, "pcie/%d/config%d", controller_id, config_type); fd = hv_dev_open((HV_VirtAddr)filename, 0); return fd; } /* * Get the IRQ numbers from the HV and set up the handlers for them. */ static int __devinit tile_init_irqs(int controller_id, struct pci_controller *controller) { char filename[32]; int fd; int ret; int x; struct pcie_rc_config rc_config; sprintf(filename, "pcie/%d/ctl", controller_id); fd = hv_dev_open((HV_VirtAddr)filename, 0); if (fd < 0) { pr_err("PCI: hv_dev_open(%s) failed\n", filename); return -1; } ret = hv_dev_pread(fd, 0, (HV_VirtAddr)(&rc_config), sizeof(rc_config), PCIE_RC_CONFIG_MASK_OFF); hv_dev_close(fd); if (ret != sizeof(rc_config)) { pr_err("PCI: wanted %zd bytes, got %d\n", sizeof(rc_config), ret); return -1; } /* Record irq_base so that we can map INTx to IRQ # later. */ controller->irq_base = rc_config.intr; for (x = 0; x < 4; x++) tile_irq_activate(rc_config.intr + x, TILE_IRQ_HW_CLEAR); if (rc_config.plx_gen1) controller->plx_gen1 = 1; return 0; } /* * First initialization entry point, called from setup_arch(). * * Find valid controllers and fill in pci_controller structs for each * of them. * * Returns the number of controllers discovered. */ int __devinit tile_pci_init(void) { int i; pr_info("PCI: Searching for controllers...\n"); /* Re-init number of PCIe controllers to support hot-plug feature. */ num_controllers = 0; /* Do any configuration we need before using the PCIe */ for (i = 0; i < TILE_NUM_PCIE; i++) { /* * To see whether we need a real config op based on * the results of pcibios_init(), to support PCIe hot-plug. */ if (pci_scan_flags[i] == 0) { int hv_cfg_fd0 = -1; int hv_cfg_fd1 = -1; int hv_mem_fd = -1; char name[32]; struct pci_controller *controller; /* * Open the fd to the HV. If it fails then this * device doesn't exist. */ hv_cfg_fd0 = tile_pcie_open(i, 0); if (hv_cfg_fd0 < 0) continue; hv_cfg_fd1 = tile_pcie_open(i, 1); if (hv_cfg_fd1 < 0) { pr_err("PCI: Couldn't open config fd to HV " "for controller %d\n", i); goto err_cont; } sprintf(name, "pcie/%d/mem", i); hv_mem_fd = hv_dev_open((HV_VirtAddr)name, 0); if (hv_mem_fd < 0) { pr_err("PCI: Could not open mem fd to HV!\n"); goto err_cont; } pr_info("PCI: Found PCI controller #%d\n", i); controller = &controllers[i]; controller->index = i; controller->hv_cfg_fd[0] = hv_cfg_fd0; controller->hv_cfg_fd[1] = hv_cfg_fd1; controller->hv_mem_fd = hv_mem_fd; controller->first_busno = 0; controller->last_busno = 0xff; controller->ops = &tile_cfg_ops; num_controllers++; continue; err_cont: if (hv_cfg_fd0 >= 0) hv_dev_close(hv_cfg_fd0); if (hv_cfg_fd1 >= 0) hv_dev_close(hv_cfg_fd1); if (hv_mem_fd >= 0) hv_dev_close(hv_mem_fd); continue; } } /* * Before using the PCIe, see if we need to do any platform-specific * configuration, such as the PLX switch Gen 1 issue on TILEmpower. */ for (i = 0; i < num_controllers; i++) { struct pci_controller *controller = &controllers[i]; if (controller->plx_gen1) tile_plx_gen1 = 1; } return num_controllers; } /* * (pin - 1) converts from the PCI standard's [1:4] convention to * a normal [0:3] range. */ static int tile_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { struct pci_controller *controller = (struct pci_controller *)dev->sysdata; return (pin - 1) + controller->irq_base; } static void __devinit fixup_read_and_payload_sizes(void) { struct pci_dev *dev = NULL; int smallest_max_payload = 0x1; /* Tile maxes out at 256 bytes. */ int max_read_size = 0x2; /* Limit to 512 byte reads. */ u16 new_values; /* Scan for the smallest maximum payload size. */ while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) { int pcie_caps_offset; u32 devcap; int max_payload; pcie_caps_offset = pci_find_capability(dev, PCI_CAP_ID_EXP); if (pcie_caps_offset == 0) continue; pci_read_config_dword(dev, pcie_caps_offset + PCI_EXP_DEVCAP, &devcap); max_payload = devcap & PCI_EXP_DEVCAP_PAYLOAD; if (max_payload < smallest_max_payload) smallest_max_payload = max_payload; } /* Now, set the max_payload_size for all devices to that value. */ new_values = (max_read_size << 12) | (smallest_max_payload << 5); while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) { int pcie_caps_offset; u16 devctl; pcie_caps_offset = pci_find_capability(dev, PCI_CAP_ID_EXP); if (pcie_caps_offset == 0) continue; pci_read_config_word(dev, pcie_caps_offset + PCI_EXP_DEVCTL, &devctl); devctl &= ~(PCI_EXP_DEVCTL_PAYLOAD | PCI_EXP_DEVCTL_READRQ); devctl |= new_values; pci_write_config_word(dev, pcie_caps_offset + PCI_EXP_DEVCTL, devctl); } } /* * Second PCI initialization entry point, called by subsys_initcall. * * The controllers have been set up by the time we get here, by a call to * tile_pci_init. */ int __devinit pcibios_init(void) { int i; pr_info("PCI: Probing PCI hardware\n"); /* * Delay a bit in case devices aren't ready. Some devices are * known to require at least 20ms here, but we use a more * conservative value. */ mdelay(250); /* Scan all of the recorded PCI controllers. */ for (i = 0; i < TILE_NUM_PCIE; i++) { /* * Do real pcibios init ops if the controller is initialized * by tile_pci_init() successfully and not initialized by * pcibios_init() yet to support PCIe hot-plug. */ if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) { struct pci_controller *controller = &controllers[i]; struct pci_bus *bus; if (tile_init_irqs(i, controller)) { pr_err("PCI: Could not initialize IRQs\n"); continue; } pr_info("PCI: initializing controller #%d\n", i); /* * This comes from the generic Linux PCI driver. * * It reads the PCI tree for this bus into the Linux * data structures. * * This is inlined in linux/pci.h and calls into * pci_scan_bus_parented() in probe.c. */ bus = pci_scan_bus(0, controller->ops, controller); controller->root_bus = bus; controller->last_busno = bus->subordinate; } } /* Do machine dependent PCI interrupt routing */ pci_fixup_irqs(pci_common_swizzle, tile_map_irq); /* * This comes from the generic Linux PCI driver. * * It allocates all of the resources (I/O memory, etc) * associated with the devices read in above. */ pci_assign_unassigned_resources(); /* Configure the max_read_size and max_payload_size values. */ fixup_read_and_payload_sizes(); /* Record the I/O resources in the PCI controller structure. */ for (i = 0; i < TILE_NUM_PCIE; i++) { /* * Do real pcibios init ops if the controller is initialized * by tile_pci_init() successfully and not initialized by * pcibios_init() yet to support PCIe hot-plug. */ if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) { struct pci_bus *root_bus = controllers[i].root_bus; struct pci_bus *next_bus; struct pci_dev *dev; list_for_each_entry(dev, &root_bus->devices, bus_list) { /* * Find the PCI host controller, ie. the 1st * bridge. */ if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI && (PCI_SLOT(dev->devfn) == 0)) { next_bus = dev->subordinate; controllers[i].mem_resources[0] = *next_bus->resource[0]; controllers[i].mem_resources[1] = *next_bus->resource[1]; controllers[i].mem_resources[2] = *next_bus->resource[2]; /* Setup flags. */ pci_scan_flags[i] = 1; break; } } } } return 0; } subsys_initcall(pcibios_init); /* * No bus fixups needed. */ void __devinit pcibios_fixup_bus(struct pci_bus *bus) { /* Nothing needs to be done. */ } void pcibios_set_master(struct pci_dev *dev) { /* No special bus mastering setup handling. */ } /* * This can be called from the generic PCI layer, but doesn't need to * do anything. */ char __devinit *pcibios_setup(char *str) { /* Nothing needs to be done. */ return str; } /* * This is called from the generic Linux layer. */ void __devinit pcibios_update_irq(struct pci_dev *dev, int irq) { pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq); } /* * Enable memory and/or address decoding, as appropriate, for the * device described by the 'dev' struct. * * This is called from the generic PCI layer, and can be called * for bridges or endpoints. */ int pcibios_enable_device(struct pci_dev *dev, int mask) { u16 cmd, old_cmd; u8 header_type; int i; struct resource *r; pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type); pci_read_config_word(dev, PCI_COMMAND, &cmd); old_cmd = cmd; if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* * For bridges, we enable both memory and I/O decoding * in call cases. */ cmd |= PCI_COMMAND_IO; cmd |= PCI_COMMAND_MEMORY; } else { /* * For endpoints, we enable memory and/or I/O decoding * only if they have a memory resource of that type. */ for (i = 0; i < 6; i++) { r = &dev->resource[i]; if (r->flags & IORESOURCE_UNSET) { pr_err("PCI: Device %s not available " "because of resource collisions\n", pci_name(dev)); return -EINVAL; } if (r->flags & IORESOURCE_IO) cmd |= PCI_COMMAND_IO; if (r->flags & IORESOURCE_MEM) cmd |= PCI_COMMAND_MEMORY; } } /* * We only write the command if it changed. */ if (cmd != old_cmd) pci_write_config_word(dev, PCI_COMMAND, cmd); return 0; } /**************************************************************** * * Tile PCI config space read/write routines * ****************************************************************/ /* * These are the normal read and write ops * These are expanded with macros from pci_bus_read_config_byte() etc. * * devfn is the combined PCI slot & function. * * offset is in bytes, from the start of config space for the * specified bus & slot. */ static int __devinit tile_cfg_read(struct pci_bus *bus, unsigned int devfn, int offset, int size, u32 *val) { struct pci_controller *controller = bus->sysdata; int busnum = bus->number & 0xff; int slot = (devfn >> 3) & 0x1f; int function = devfn & 0x7; u32 addr; int config_mode = 1; /* * There is no bridge between the Tile and bus 0, so we * use config0 to talk to bus 0. * * If we're talking to a bus other than zero then we * must have found a bridge. */ if (busnum == 0) { /* * We fake an empty slot for (busnum == 0) && (slot > 0), * since there is only one slot on bus 0. */ if (slot) { *val = 0xFFFFFFFF; return 0; } config_mode = 0; } addr = busnum << 20; /* Bus in 27:20 */ addr |= slot << 15; /* Slot (device) in 19:15 */ addr |= function << 12; /* Function is in 14:12 */ addr |= (offset & 0xFFF); /* byte address in 0:11 */ return hv_dev_pread(controller->hv_cfg_fd[config_mode], 0, (HV_VirtAddr)(val), size, addr); } /* * See tile_cfg_read() for relevant comments. * Note that "val" is the value to write, not a pointer to that value. */ static int __devinit tile_cfg_write(struct pci_bus *bus, unsigned int devfn, int offset, int size, u32 val) { struct pci_controller *controller = bus->sysdata; int busnum = bus->number & 0xff; int slot = (devfn >> 3) & 0x1f; int function = devfn & 0x7; u32 addr; int config_mode = 1; HV_VirtAddr valp = (HV_VirtAddr)&val; /* * For bus 0 slot 0 we use config 0 accesses. */ if (busnum == 0) { /* * We fake an empty slot for (busnum == 0) && (slot > 0), * since there is only one slot on bus 0. */ if (slot) return 0; config_mode = 0; } addr = busnum << 20; /* Bus in 27:20 */ addr |= slot << 15; /* Slot (device) in 19:15 */ addr |= function << 12; /* Function is in 14:12 */ addr |= (offset & 0xFFF); /* byte address in 0:11 */ #ifdef __BIG_ENDIAN /* Point to the correct part of the 32-bit "val". */ valp += 4 - size; #endif return hv_dev_pwrite(controller->hv_cfg_fd[config_mode], 0, valp, size, addr); } static struct pci_ops tile_cfg_ops = { .read = tile_cfg_read, .write = tile_cfg_write, }; /* * In the following, each PCI controller's mem_resources[1] * represents its (non-prefetchable) PCI memory resource. * mem_resources[0] and mem_resources[2] refer to its PCI I/O and * prefetchable PCI memory resources, respectively. * For more details, see pci_setup_bridge() in setup-bus.c. * By comparing the target PCI memory address against the * end address of controller 0, we can determine the controller * that should accept the PCI memory access. */ #define TILE_READ(size, type) \ type _tile_read##size(unsigned long addr) \ { \ type val; \ int idx = 0; \ if (addr > controllers[0].mem_resources[1].end && \ addr > controllers[0].mem_resources[2].end) \ idx = 1; \ if (hv_dev_pread(controllers[idx].hv_mem_fd, 0, \ (HV_VirtAddr)(&val), sizeof(type), addr)) \ pr_err("PCI: read %zd bytes at 0x%lX failed\n", \ sizeof(type), addr); \ return val; \ } \ EXPORT_SYMBOL(_tile_read##size) TILE_READ(b, u8); TILE_READ(w, u16); TILE_READ(l, u32); TILE_READ(q, u64); #define TILE_WRITE(size, type) \ void _tile_write##size(type val, unsigned long addr) \ { \ int idx = 0; \ if (addr > controllers[0].mem_resources[1].end && \ addr > controllers[0].mem_resources[2].end) \ idx = 1; \ if (hv_dev_pwrite(controllers[idx].hv_mem_fd, 0, \ (HV_VirtAddr)(&val), sizeof(type), addr)) \ pr_err("PCI: write %zd bytes at 0x%lX failed\n", \ sizeof(type), addr); \ } \ EXPORT_SYMBOL(_tile_write##size) TILE_WRITE(b, u8); TILE_WRITE(w, u16); TILE_WRITE(l, u32); TILE_WRITE(q, u64);