#ifndef _ASM_SCORE_PGTABLE_H #define _ASM_SCORE_PGTABLE_H #include <linux/const.h> #include <asm-generic/pgtable-nopmd.h> #include <asm/fixmap.h> #include <asm/setup.h> #include <asm/pgtable-bits.h> extern void load_pgd(unsigned long pg_dir); extern pte_t invalid_pte_table[PAGE_SIZE/sizeof(pte_t)]; /* PGDIR_SHIFT determines what a third-level page table entry can map */ #define PGDIR_SHIFT 22 #define PGDIR_SIZE (_AC(1, UL) << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE - 1)) /* * Entries per page directory level: we use two-level, so * we don't really have any PUD/PMD directory physically. */ #define PGD_ORDER 0 #define PTE_ORDER 0 #define PTRS_PER_PGD 1024 #define PTRS_PER_PTE 1024 #define USER_PTRS_PER_PGD (0x80000000UL/PGDIR_SIZE) #define FIRST_USER_ADDRESS 0 #define VMALLOC_START (0xc0000000UL) #define PKMAP_BASE (0xfd000000UL) #define VMALLOC_END (FIXADDR_START - 2*PAGE_SIZE) #define pte_ERROR(e) \ printk(KERN_ERR "%s:%d: bad pte %08lx.\n", \ __FILE__, __LINE__, pte_val(e)) #define pgd_ERROR(e) \ printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \ __FILE__, __LINE__, pgd_val(e)) /* * Empty pgd/pmd entries point to the invalid_pte_table. */ static inline int pmd_none(pmd_t pmd) { return pmd_val(pmd) == (unsigned long) invalid_pte_table; } #define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK) static inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) != (unsigned long) invalid_pte_table; } static inline void pmd_clear(pmd_t *pmdp) { pmd_val(*pmdp) = ((unsigned long) invalid_pte_table); } #define pte_page(x) pfn_to_page(pte_pfn(x)) #define pte_pfn(x) ((unsigned long)((x).pte >> PAGE_SHIFT)) #define pfn_pte(pfn, prot) \ __pte(((unsigned long long)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) #define __pgd_offset(address) pgd_index(address) #define __pud_offset(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1)) #define __pmd_offset(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) /* to find an entry in a kernel page-table-directory */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) /* to find an entry in a page-table-directory */ #define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr)) /* Find an entry in the third-level page table.. */ #define __pte_offset(address) \ (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) #define pte_offset(dir, address) \ ((pte_t *) pmd_page_vaddr(*(dir)) + __pte_offset(address)) #define pte_offset_kernel(dir, address) \ ((pte_t *) pmd_page_vaddr(*(dir)) + __pte_offset(address)) #define pte_offset_map(dir, address) \ ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address)) #define pte_unmap(pte) ((void)(pte)) /* * Bits 9(_PAGE_PRESENT) and 10(_PAGE_FILE)are taken, * split up 30 bits of offset into this range: */ #define PTE_FILE_MAX_BITS 30 #define pte_to_pgoff(_pte) \ (((_pte).pte & 0x1ff) | (((_pte).pte >> 11) << 9)) #define pgoff_to_pte(off) \ ((pte_t) {((off) & 0x1ff) | (((off) >> 9) << 11) | _PAGE_FILE}) #define __pte_to_swp_entry(pte) \ ((swp_entry_t) { pte_val(pte)}) #define __swp_entry_to_pte(x) ((pte_t) {(x).val}) #define pmd_phys(pmd) __pa((void *)pmd_val(pmd)) #define pmd_page(pmd) (pfn_to_page(pmd_phys(pmd) >> PAGE_SHIFT)) #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) static inline pte_t pte_mkspecial(pte_t pte) { return pte; } #define set_pte(pteptr, pteval) (*(pteptr) = pteval) #define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval) #define pte_clear(mm, addr, xp) \ do { set_pte_at(mm, addr, xp, __pte(0)); } while (0) #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ remap_pfn_range(vma, vaddr, pfn, size, prot) /* * The "pgd_xxx()" functions here are trivial for a folded two-level * setup: the pgd is never bad, and a pmd always exists (as it's folded * into the pgd entry) */ #define pgd_present(pgd) (1) #define pgd_none(pgd) (0) #define pgd_bad(pgd) (0) #define pgd_clear(pgdp) do { } while (0) #define kern_addr_valid(addr) (1) #define pmd_page_vaddr(pmd) pmd_val(pmd) #define pte_none(pte) (!(pte_val(pte) & ~_PAGE_GLOBAL)) #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_CACHE) #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ _PAGE_CACHE) #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHE) #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHE) #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | __READABLE | __WRITEABLE | \ _PAGE_GLOBAL | _PAGE_CACHE) #define PAGE_KERNEL_UNCACHED __pgprot(_PAGE_PRESENT | __READABLE | \ __WRITEABLE | _PAGE_GLOBAL & ~_PAGE_CACHE) #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_COPY #define __P011 PAGE_COPY #define __P100 PAGE_READONLY #define __P101 PAGE_READONLY #define __P110 PAGE_COPY #define __P111 PAGE_COPY #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED #define __S100 PAGE_READONLY #define __S101 PAGE_READONLY #define __S110 PAGE_SHARED #define __S111 PAGE_SHARED #define pgprot_noncached pgprot_noncached static inline pgprot_t pgprot_noncached(pgprot_t _prot) { unsigned long prot = pgprot_val(_prot); prot = (prot & ~_CACHE_MASK); return __pgprot(prot); } #define __swp_type(x) ((x).val & 0x1f) #define __swp_offset(x) ((x).val >> 11) #define __swp_entry(type, offset) ((swp_entry_t){(type) | ((offset) << 11)}) extern unsigned long empty_zero_page; extern unsigned long zero_page_mask; #define ZERO_PAGE(vaddr) \ (virt_to_page((void *)(empty_zero_page + \ (((unsigned long)(vaddr)) & zero_page_mask)))) #define pgtable_cache_init() do {} while (0) #define arch_enter_lazy_cpu_mode() do {} while (0) static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_MODIFIED; } static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } #define pte_special(pte) (0) static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~(_PAGE_WRITE | _PAGE_SILENT_WRITE); return pte; } static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~(_PAGE_MODIFIED|_PAGE_SILENT_WRITE); return pte; } static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~(_PAGE_ACCESSED|_PAGE_SILENT_READ); return pte; } static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; if (pte_val(pte) & _PAGE_MODIFIED) pte_val(pte) |= _PAGE_SILENT_WRITE; return pte; } static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_MODIFIED; if (pte_val(pte) & _PAGE_WRITE) pte_val(pte) |= _PAGE_SILENT_WRITE; return pte; } static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; if (pte_val(pte) & _PAGE_READ) pte_val(pte) |= _PAGE_SILENT_READ; return pte; } #define set_pmd(pmdptr, pmdval) \ do { *(pmdptr) = (pmdval); } while (0) #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) extern unsigned long pgd_current; extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; extern void paging_init(void); static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); } extern void __update_tlb(struct vm_area_struct *vma, unsigned long address, pte_t pte); extern void __update_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte); static inline void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { pte_t pte = *ptep; __update_tlb(vma, address, pte); __update_cache(vma, address, pte); } #ifndef __ASSEMBLY__ #include <asm-generic/pgtable.h> void setup_memory(void); #endif /* __ASSEMBLY__ */ #endif /* _ASM_SCORE_PGTABLE_H */