/* * Copyright (C) 2002 Benjamin Herrenschmidt (benh@kernel.crashing.org) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Todo: - add support for the OF persistent properties */ #include <linux/export.h> #include <linux/kernel.h> #include <linux/stddef.h> #include <linux/string.h> #include <linux/nvram.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/errno.h> #include <linux/adb.h> #include <linux/pmu.h> #include <linux/bootmem.h> #include <linux/completion.h> #include <linux/spinlock.h> #include <asm/sections.h> #include <asm/io.h> #include <asm/system.h> #include <asm/prom.h> #include <asm/machdep.h> #include <asm/nvram.h> #include "pmac.h" #define DEBUG #ifdef DEBUG #define DBG(x...) printk(x) #else #define DBG(x...) #endif #define NVRAM_SIZE 0x2000 /* 8kB of non-volatile RAM */ #define CORE99_SIGNATURE 0x5a #define CORE99_ADLER_START 0x14 /* On Core99, nvram is either a sharp, a micron or an AMD flash */ #define SM_FLASH_STATUS_DONE 0x80 #define SM_FLASH_STATUS_ERR 0x38 #define SM_FLASH_CMD_ERASE_CONFIRM 0xd0 #define SM_FLASH_CMD_ERASE_SETUP 0x20 #define SM_FLASH_CMD_RESET 0xff #define SM_FLASH_CMD_WRITE_SETUP 0x40 #define SM_FLASH_CMD_CLEAR_STATUS 0x50 #define SM_FLASH_CMD_READ_STATUS 0x70 /* CHRP NVRAM header */ struct chrp_header { u8 signature; u8 cksum; u16 len; char name[12]; u8 data[0]; }; struct core99_header { struct chrp_header hdr; u32 adler; u32 generation; u32 reserved[2]; }; /* * Read and write the non-volatile RAM on PowerMacs and CHRP machines. */ static int nvram_naddrs; static volatile unsigned char __iomem *nvram_data; static int is_core_99; static int core99_bank = 0; static int nvram_partitions[3]; // XXX Turn that into a sem static DEFINE_RAW_SPINLOCK(nv_lock); static int (*core99_write_bank)(int bank, u8* datas); static int (*core99_erase_bank)(int bank); static char *nvram_image; static unsigned char core99_nvram_read_byte(int addr) { if (nvram_image == NULL) return 0xff; return nvram_image[addr]; } static void core99_nvram_write_byte(int addr, unsigned char val) { if (nvram_image == NULL) return; nvram_image[addr] = val; } static ssize_t core99_nvram_read(char *buf, size_t count, loff_t *index) { int i; if (nvram_image == NULL) return -ENODEV; if (*index > NVRAM_SIZE) return 0; i = *index; if (i + count > NVRAM_SIZE) count = NVRAM_SIZE - i; memcpy(buf, &nvram_image[i], count); *index = i + count; return count; } static ssize_t core99_nvram_write(char *buf, size_t count, loff_t *index) { int i; if (nvram_image == NULL) return -ENODEV; if (*index > NVRAM_SIZE) return 0; i = *index; if (i + count > NVRAM_SIZE) count = NVRAM_SIZE - i; memcpy(&nvram_image[i], buf, count); *index = i + count; return count; } static ssize_t core99_nvram_size(void) { if (nvram_image == NULL) return -ENODEV; return NVRAM_SIZE; } #ifdef CONFIG_PPC32 static volatile unsigned char __iomem *nvram_addr; static int nvram_mult; static unsigned char direct_nvram_read_byte(int addr) { return in_8(&nvram_data[(addr & (NVRAM_SIZE - 1)) * nvram_mult]); } static void direct_nvram_write_byte(int addr, unsigned char val) { out_8(&nvram_data[(addr & (NVRAM_SIZE - 1)) * nvram_mult], val); } static unsigned char indirect_nvram_read_byte(int addr) { unsigned char val; unsigned long flags; raw_spin_lock_irqsave(&nv_lock, flags); out_8(nvram_addr, addr >> 5); val = in_8(&nvram_data[(addr & 0x1f) << 4]); raw_spin_unlock_irqrestore(&nv_lock, flags); return val; } static void indirect_nvram_write_byte(int addr, unsigned char val) { unsigned long flags; raw_spin_lock_irqsave(&nv_lock, flags); out_8(nvram_addr, addr >> 5); out_8(&nvram_data[(addr & 0x1f) << 4], val); raw_spin_unlock_irqrestore(&nv_lock, flags); } #ifdef CONFIG_ADB_PMU static void pmu_nvram_complete(struct adb_request *req) { if (req->arg) complete((struct completion *)req->arg); } static unsigned char pmu_nvram_read_byte(int addr) { struct adb_request req; DECLARE_COMPLETION_ONSTACK(req_complete); req.arg = system_state == SYSTEM_RUNNING ? &req_complete : NULL; if (pmu_request(&req, pmu_nvram_complete, 3, PMU_READ_NVRAM, (addr >> 8) & 0xff, addr & 0xff)) return 0xff; if (system_state == SYSTEM_RUNNING) wait_for_completion(&req_complete); while (!req.complete) pmu_poll(); return req.reply[0]; } static void pmu_nvram_write_byte(int addr, unsigned char val) { struct adb_request req; DECLARE_COMPLETION_ONSTACK(req_complete); req.arg = system_state == SYSTEM_RUNNING ? &req_complete : NULL; if (pmu_request(&req, pmu_nvram_complete, 4, PMU_WRITE_NVRAM, (addr >> 8) & 0xff, addr & 0xff, val)) return; if (system_state == SYSTEM_RUNNING) wait_for_completion(&req_complete); while (!req.complete) pmu_poll(); } #endif /* CONFIG_ADB_PMU */ #endif /* CONFIG_PPC32 */ static u8 chrp_checksum(struct chrp_header* hdr) { u8 *ptr; u16 sum = hdr->signature; for (ptr = (u8 *)&hdr->len; ptr < hdr->data; ptr++) sum += *ptr; while (sum > 0xFF) sum = (sum & 0xFF) + (sum>>8); return sum; } static u32 core99_calc_adler(u8 *buffer) { int cnt; u32 low, high; buffer += CORE99_ADLER_START; low = 1; high = 0; for (cnt=0; cnt<(NVRAM_SIZE-CORE99_ADLER_START); cnt++) { if ((cnt % 5000) == 0) { high %= 65521UL; high %= 65521UL; } low += buffer[cnt]; high += low; } low %= 65521UL; high %= 65521UL; return (high << 16) | low; } static u32 core99_check(u8* datas) { struct core99_header* hdr99 = (struct core99_header*)datas; if (hdr99->hdr.signature != CORE99_SIGNATURE) { DBG("Invalid signature\n"); return 0; } if (hdr99->hdr.cksum != chrp_checksum(&hdr99->hdr)) { DBG("Invalid checksum\n"); return 0; } if (hdr99->adler != core99_calc_adler(datas)) { DBG("Invalid adler\n"); return 0; } return hdr99->generation; } static int sm_erase_bank(int bank) { int stat, i; unsigned long timeout; u8 __iomem *base = (u8 __iomem *)nvram_data + core99_bank*NVRAM_SIZE; DBG("nvram: Sharp/Micron Erasing bank %d...\n", bank); out_8(base, SM_FLASH_CMD_ERASE_SETUP); out_8(base, SM_FLASH_CMD_ERASE_CONFIRM); timeout = 0; do { if (++timeout > 1000000) { printk(KERN_ERR "nvram: Sharp/Micron flash erase timeout !\n"); break; } out_8(base, SM_FLASH_CMD_READ_STATUS); stat = in_8(base); } while (!(stat & SM_FLASH_STATUS_DONE)); out_8(base, SM_FLASH_CMD_CLEAR_STATUS); out_8(base, SM_FLASH_CMD_RESET); for (i=0; i<NVRAM_SIZE; i++) if (base[i] != 0xff) { printk(KERN_ERR "nvram: Sharp/Micron flash erase failed !\n"); return -ENXIO; } return 0; } static int sm_write_bank(int bank, u8* datas) { int i, stat = 0; unsigned long timeout; u8 __iomem *base = (u8 __iomem *)nvram_data + core99_bank*NVRAM_SIZE; DBG("nvram: Sharp/Micron Writing bank %d...\n", bank); for (i=0; i<NVRAM_SIZE; i++) { out_8(base+i, SM_FLASH_CMD_WRITE_SETUP); udelay(1); out_8(base+i, datas[i]); timeout = 0; do { if (++timeout > 1000000) { printk(KERN_ERR "nvram: Sharp/Micron flash write timeout !\n"); break; } out_8(base, SM_FLASH_CMD_READ_STATUS); stat = in_8(base); } while (!(stat & SM_FLASH_STATUS_DONE)); if (!(stat & SM_FLASH_STATUS_DONE)) break; } out_8(base, SM_FLASH_CMD_CLEAR_STATUS); out_8(base, SM_FLASH_CMD_RESET); for (i=0; i<NVRAM_SIZE; i++) if (base[i] != datas[i]) { printk(KERN_ERR "nvram: Sharp/Micron flash write failed !\n"); return -ENXIO; } return 0; } static int amd_erase_bank(int bank) { int i, stat = 0; unsigned long timeout; u8 __iomem *base = (u8 __iomem *)nvram_data + core99_bank*NVRAM_SIZE; DBG("nvram: AMD Erasing bank %d...\n", bank); /* Unlock 1 */ out_8(base+0x555, 0xaa); udelay(1); /* Unlock 2 */ out_8(base+0x2aa, 0x55); udelay(1); /* Sector-Erase */ out_8(base+0x555, 0x80); udelay(1); out_8(base+0x555, 0xaa); udelay(1); out_8(base+0x2aa, 0x55); udelay(1); out_8(base, 0x30); udelay(1); timeout = 0; do { if (++timeout > 1000000) { printk(KERN_ERR "nvram: AMD flash erase timeout !\n"); break; } stat = in_8(base) ^ in_8(base); } while (stat != 0); /* Reset */ out_8(base, 0xf0); udelay(1); for (i=0; i<NVRAM_SIZE; i++) if (base[i] != 0xff) { printk(KERN_ERR "nvram: AMD flash erase failed !\n"); return -ENXIO; } return 0; } static int amd_write_bank(int bank, u8* datas) { int i, stat = 0; unsigned long timeout; u8 __iomem *base = (u8 __iomem *)nvram_data + core99_bank*NVRAM_SIZE; DBG("nvram: AMD Writing bank %d...\n", bank); for (i=0; i<NVRAM_SIZE; i++) { /* Unlock 1 */ out_8(base+0x555, 0xaa); udelay(1); /* Unlock 2 */ out_8(base+0x2aa, 0x55); udelay(1); /* Write single word */ out_8(base+0x555, 0xa0); udelay(1); out_8(base+i, datas[i]); timeout = 0; do { if (++timeout > 1000000) { printk(KERN_ERR "nvram: AMD flash write timeout !\n"); break; } stat = in_8(base) ^ in_8(base); } while (stat != 0); if (stat != 0) break; } /* Reset */ out_8(base, 0xf0); udelay(1); for (i=0; i<NVRAM_SIZE; i++) if (base[i] != datas[i]) { printk(KERN_ERR "nvram: AMD flash write failed !\n"); return -ENXIO; } return 0; } static void __init lookup_partitions(void) { u8 buffer[17]; int i, offset; struct chrp_header* hdr; if (pmac_newworld) { nvram_partitions[pmac_nvram_OF] = -1; nvram_partitions[pmac_nvram_XPRAM] = -1; nvram_partitions[pmac_nvram_NR] = -1; hdr = (struct chrp_header *)buffer; offset = 0; buffer[16] = 0; do { for (i=0;i<16;i++) buffer[i] = ppc_md.nvram_read_val(offset+i); if (!strcmp(hdr->name, "common")) nvram_partitions[pmac_nvram_OF] = offset + 0x10; if (!strcmp(hdr->name, "APL,MacOS75")) { nvram_partitions[pmac_nvram_XPRAM] = offset + 0x10; nvram_partitions[pmac_nvram_NR] = offset + 0x110; } offset += (hdr->len * 0x10); } while(offset < NVRAM_SIZE); } else { nvram_partitions[pmac_nvram_OF] = 0x1800; nvram_partitions[pmac_nvram_XPRAM] = 0x1300; nvram_partitions[pmac_nvram_NR] = 0x1400; } DBG("nvram: OF partition at 0x%x\n", nvram_partitions[pmac_nvram_OF]); DBG("nvram: XP partition at 0x%x\n", nvram_partitions[pmac_nvram_XPRAM]); DBG("nvram: NR partition at 0x%x\n", nvram_partitions[pmac_nvram_NR]); } static void core99_nvram_sync(void) { struct core99_header* hdr99; unsigned long flags; if (!is_core_99 || !nvram_data || !nvram_image) return; raw_spin_lock_irqsave(&nv_lock, flags); if (!memcmp(nvram_image, (u8*)nvram_data + core99_bank*NVRAM_SIZE, NVRAM_SIZE)) goto bail; DBG("Updating nvram...\n"); hdr99 = (struct core99_header*)nvram_image; hdr99->generation++; hdr99->hdr.signature = CORE99_SIGNATURE; hdr99->hdr.cksum = chrp_checksum(&hdr99->hdr); hdr99->adler = core99_calc_adler(nvram_image); core99_bank = core99_bank ? 0 : 1; if (core99_erase_bank) if (core99_erase_bank(core99_bank)) { printk("nvram: Error erasing bank %d\n", core99_bank); goto bail; } if (core99_write_bank) if (core99_write_bank(core99_bank, nvram_image)) printk("nvram: Error writing bank %d\n", core99_bank); bail: raw_spin_unlock_irqrestore(&nv_lock, flags); #ifdef DEBUG mdelay(2000); #endif } static int __init core99_nvram_setup(struct device_node *dp, unsigned long addr) { int i; u32 gen_bank0, gen_bank1; if (nvram_naddrs < 1) { printk(KERN_ERR "nvram: no address\n"); return -EINVAL; } nvram_image = alloc_bootmem(NVRAM_SIZE); if (nvram_image == NULL) { printk(KERN_ERR "nvram: can't allocate ram image\n"); return -ENOMEM; } nvram_data = ioremap(addr, NVRAM_SIZE*2); nvram_naddrs = 1; /* Make sure we get the correct case */ DBG("nvram: Checking bank 0...\n"); gen_bank0 = core99_check((u8 *)nvram_data); gen_bank1 = core99_check((u8 *)nvram_data + NVRAM_SIZE); core99_bank = (gen_bank0 < gen_bank1) ? 1 : 0; DBG("nvram: gen0=%d, gen1=%d\n", gen_bank0, gen_bank1); DBG("nvram: Active bank is: %d\n", core99_bank); for (i=0; i<NVRAM_SIZE; i++) nvram_image[i] = nvram_data[i + core99_bank*NVRAM_SIZE]; ppc_md.nvram_read_val = core99_nvram_read_byte; ppc_md.nvram_write_val = core99_nvram_write_byte; ppc_md.nvram_read = core99_nvram_read; ppc_md.nvram_write = core99_nvram_write; ppc_md.nvram_size = core99_nvram_size; ppc_md.nvram_sync = core99_nvram_sync; ppc_md.machine_shutdown = core99_nvram_sync; /* * Maybe we could be smarter here though making an exclusive list * of known flash chips is a bit nasty as older OF didn't provide us * with a useful "compatible" entry. A solution would be to really * identify the chip using flash id commands and base ourselves on * a list of known chips IDs */ if (of_device_is_compatible(dp, "amd-0137")) { core99_erase_bank = amd_erase_bank; core99_write_bank = amd_write_bank; } else { core99_erase_bank = sm_erase_bank; core99_write_bank = sm_write_bank; } return 0; } int __init pmac_nvram_init(void) { struct device_node *dp; struct resource r1, r2; unsigned int s1 = 0, s2 = 0; int err = 0; nvram_naddrs = 0; dp = of_find_node_by_name(NULL, "nvram"); if (dp == NULL) { printk(KERN_ERR "Can't find NVRAM device\n"); return -ENODEV; } /* Try to obtain an address */ if (of_address_to_resource(dp, 0, &r1) == 0) { nvram_naddrs = 1; s1 = resource_size(&r1); if (of_address_to_resource(dp, 1, &r2) == 0) { nvram_naddrs = 2; s2 = resource_size(&r2); } } is_core_99 = of_device_is_compatible(dp, "nvram,flash"); if (is_core_99) { err = core99_nvram_setup(dp, r1.start); goto bail; } #ifdef CONFIG_PPC32 if (machine_is(chrp) && nvram_naddrs == 1) { nvram_data = ioremap(r1.start, s1); nvram_mult = 1; ppc_md.nvram_read_val = direct_nvram_read_byte; ppc_md.nvram_write_val = direct_nvram_write_byte; } else if (nvram_naddrs == 1) { nvram_data = ioremap(r1.start, s1); nvram_mult = (s1 + NVRAM_SIZE - 1) / NVRAM_SIZE; ppc_md.nvram_read_val = direct_nvram_read_byte; ppc_md.nvram_write_val = direct_nvram_write_byte; } else if (nvram_naddrs == 2) { nvram_addr = ioremap(r1.start, s1); nvram_data = ioremap(r2.start, s2); ppc_md.nvram_read_val = indirect_nvram_read_byte; ppc_md.nvram_write_val = indirect_nvram_write_byte; } else if (nvram_naddrs == 0 && sys_ctrler == SYS_CTRLER_PMU) { #ifdef CONFIG_ADB_PMU nvram_naddrs = -1; ppc_md.nvram_read_val = pmu_nvram_read_byte; ppc_md.nvram_write_val = pmu_nvram_write_byte; #endif /* CONFIG_ADB_PMU */ } else { printk(KERN_ERR "Incompatible type of NVRAM\n"); err = -ENXIO; } #endif /* CONFIG_PPC32 */ bail: of_node_put(dp); if (err == 0) lookup_partitions(); return err; } int pmac_get_partition(int partition) { return nvram_partitions[partition]; } u8 pmac_xpram_read(int xpaddr) { int offset = pmac_get_partition(pmac_nvram_XPRAM); if (offset < 0 || xpaddr < 0 || xpaddr > 0x100) return 0xff; return ppc_md.nvram_read_val(xpaddr + offset); } void pmac_xpram_write(int xpaddr, u8 data) { int offset = pmac_get_partition(pmac_nvram_XPRAM); if (offset < 0 || xpaddr < 0 || xpaddr > 0x100) return; ppc_md.nvram_write_val(xpaddr + offset, data); } EXPORT_SYMBOL(pmac_get_partition); EXPORT_SYMBOL(pmac_xpram_read); EXPORT_SYMBOL(pmac_xpram_write);