/* * PowerPC version * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) * and Cort Dougan (PReP) (cort@cs.nmt.edu) * Copyright (C) 1996 Paul Mackerras * PPC44x/36-bit changes by Matt Porter (mporter@mvista.com) * * Derived from "arch/i386/mm/init.c" * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include <linux/export.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/gfp.h> #include <linux/types.h> #include <linux/mm.h> #include <linux/stddef.h> #include <linux/init.h> #include <linux/bootmem.h> #include <linux/highmem.h> #include <linux/initrd.h> #include <linux/pagemap.h> #include <linux/suspend.h> #include <linux/memblock.h> #include <linux/hugetlb.h> #include <linux/slab.h> #include <asm/pgalloc.h> #include <asm/prom.h> #include <asm/io.h> #include <asm/mmu_context.h> #include <asm/pgtable.h> #include <asm/mmu.h> #include <asm/smp.h> #include <asm/machdep.h> #include <asm/btext.h> #include <asm/tlb.h> #include <asm/sections.h> #include <asm/sparsemem.h> #include <asm/vdso.h> #include <asm/fixmap.h> #include <asm/swiotlb.h> #include <asm/rtas.h> #include "mmu_decl.h" #ifndef CPU_FTR_COHERENT_ICACHE #define CPU_FTR_COHERENT_ICACHE 0 /* XXX for now */ #define CPU_FTR_NOEXECUTE 0 #endif int init_bootmem_done; int mem_init_done; phys_addr_t memory_limit; #ifdef CONFIG_HIGHMEM pte_t *kmap_pte; pgprot_t kmap_prot; EXPORT_SYMBOL(kmap_prot); EXPORT_SYMBOL(kmap_pte); static inline pte_t *virt_to_kpte(unsigned long vaddr) { return pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k(vaddr), vaddr), vaddr), vaddr); } #endif int page_is_ram(unsigned long pfn) { #ifndef CONFIG_PPC64 /* XXX for now */ return pfn < max_pfn; #else unsigned long paddr = (pfn << PAGE_SHIFT); struct memblock_region *reg; for_each_memblock(memory, reg) if (paddr >= reg->base && paddr < (reg->base + reg->size)) return 1; return 0; #endif } pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size, pgprot_t vma_prot) { if (ppc_md.phys_mem_access_prot) return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot); if (!page_is_ram(pfn)) vma_prot = pgprot_noncached(vma_prot); return vma_prot; } EXPORT_SYMBOL(phys_mem_access_prot); #ifdef CONFIG_MEMORY_HOTPLUG #ifdef CONFIG_NUMA int memory_add_physaddr_to_nid(u64 start) { return hot_add_scn_to_nid(start); } #endif int arch_add_memory(int nid, u64 start, u64 size) { struct pglist_data *pgdata; struct zone *zone; unsigned long start_pfn = start >> PAGE_SHIFT; unsigned long nr_pages = size >> PAGE_SHIFT; pgdata = NODE_DATA(nid); start = (unsigned long)__va(start); if (create_section_mapping(start, start + size)) return -EINVAL; /* this should work for most non-highmem platforms */ zone = pgdata->node_zones; return __add_pages(nid, zone, start_pfn, nr_pages); } #endif /* CONFIG_MEMORY_HOTPLUG */ /* * walk_memory_resource() needs to make sure there is no holes in a given * memory range. PPC64 does not maintain the memory layout in /proc/iomem. * Instead it maintains it in memblock.memory structures. Walk through the * memory regions, find holes and callback for contiguous regions. */ int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, void *arg, int (*func)(unsigned long, unsigned long, void *)) { struct memblock_region *reg; unsigned long end_pfn = start_pfn + nr_pages; unsigned long tstart, tend; int ret = -1; for_each_memblock(memory, reg) { tstart = max(start_pfn, memblock_region_memory_base_pfn(reg)); tend = min(end_pfn, memblock_region_memory_end_pfn(reg)); if (tstart >= tend) continue; ret = (*func)(tstart, tend - tstart, arg); if (ret) break; } return ret; } EXPORT_SYMBOL_GPL(walk_system_ram_range); /* * Initialize the bootmem system and give it all the memory we * have available. If we are using highmem, we only put the * lowmem into the bootmem system. */ #ifndef CONFIG_NEED_MULTIPLE_NODES void __init do_init_bootmem(void) { unsigned long start, bootmap_pages; unsigned long total_pages; struct memblock_region *reg; int boot_mapsize; max_low_pfn = max_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; total_pages = (memblock_end_of_DRAM() - memstart_addr) >> PAGE_SHIFT; #ifdef CONFIG_HIGHMEM total_pages = total_lowmem >> PAGE_SHIFT; max_low_pfn = lowmem_end_addr >> PAGE_SHIFT; #endif /* * Find an area to use for the bootmem bitmap. Calculate the size of * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE. * Add 1 additional page in case the address isn't page-aligned. */ bootmap_pages = bootmem_bootmap_pages(total_pages); start = memblock_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE); min_low_pfn = MEMORY_START >> PAGE_SHIFT; boot_mapsize = init_bootmem_node(NODE_DATA(0), start >> PAGE_SHIFT, min_low_pfn, max_low_pfn); /* Add active regions with valid PFNs */ for_each_memblock(memory, reg) { unsigned long start_pfn, end_pfn; start_pfn = memblock_region_memory_base_pfn(reg); end_pfn = memblock_region_memory_end_pfn(reg); memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0); } /* Add all physical memory to the bootmem map, mark each area * present. */ #ifdef CONFIG_HIGHMEM free_bootmem_with_active_regions(0, lowmem_end_addr >> PAGE_SHIFT); /* reserve the sections we're already using */ for_each_memblock(reserved, reg) { unsigned long top = reg->base + reg->size - 1; if (top < lowmem_end_addr) reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT); else if (reg->base < lowmem_end_addr) { unsigned long trunc_size = lowmem_end_addr - reg->base; reserve_bootmem(reg->base, trunc_size, BOOTMEM_DEFAULT); } } #else free_bootmem_with_active_regions(0, max_pfn); /* reserve the sections we're already using */ for_each_memblock(reserved, reg) reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT); #endif /* XXX need to clip this if using highmem? */ sparse_memory_present_with_active_regions(0); init_bootmem_done = 1; } /* mark pages that don't exist as nosave */ static int __init mark_nonram_nosave(void) { struct memblock_region *reg, *prev = NULL; for_each_memblock(memory, reg) { if (prev && memblock_region_memory_end_pfn(prev) < memblock_region_memory_base_pfn(reg)) register_nosave_region(memblock_region_memory_end_pfn(prev), memblock_region_memory_base_pfn(reg)); prev = reg; } return 0; } /* * paging_init() sets up the page tables - in fact we've already done this. */ void __init paging_init(void) { unsigned long long total_ram = memblock_phys_mem_size(); phys_addr_t top_of_ram = memblock_end_of_DRAM(); unsigned long max_zone_pfns[MAX_NR_ZONES]; #ifdef CONFIG_PPC32 unsigned long v = __fix_to_virt(__end_of_fixed_addresses - 1); unsigned long end = __fix_to_virt(FIX_HOLE); for (; v < end; v += PAGE_SIZE) map_page(v, 0, 0); /* XXX gross */ #endif #ifdef CONFIG_HIGHMEM map_page(PKMAP_BASE, 0, 0); /* XXX gross */ pkmap_page_table = virt_to_kpte(PKMAP_BASE); kmap_pte = virt_to_kpte(__fix_to_virt(FIX_KMAP_BEGIN)); kmap_prot = PAGE_KERNEL; #endif /* CONFIG_HIGHMEM */ printk(KERN_DEBUG "Top of RAM: 0x%llx, Total RAM: 0x%llx\n", (unsigned long long)top_of_ram, total_ram); printk(KERN_DEBUG "Memory hole size: %ldMB\n", (long int)((top_of_ram - total_ram) >> 20)); memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); #ifdef CONFIG_HIGHMEM max_zone_pfns[ZONE_DMA] = lowmem_end_addr >> PAGE_SHIFT; max_zone_pfns[ZONE_HIGHMEM] = top_of_ram >> PAGE_SHIFT; #else max_zone_pfns[ZONE_DMA] = top_of_ram >> PAGE_SHIFT; #endif free_area_init_nodes(max_zone_pfns); mark_nonram_nosave(); } #endif /* ! CONFIG_NEED_MULTIPLE_NODES */ void __init mem_init(void) { #ifdef CONFIG_NEED_MULTIPLE_NODES int nid; #endif pg_data_t *pgdat; unsigned long i; struct page *page; unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize; #ifdef CONFIG_SWIOTLB if (ppc_swiotlb_enable) swiotlb_init(1); #endif num_physpages = memblock_phys_mem_size() >> PAGE_SHIFT; high_memory = (void *) __va(max_low_pfn * PAGE_SIZE); #ifdef CONFIG_NEED_MULTIPLE_NODES for_each_online_node(nid) { if (NODE_DATA(nid)->node_spanned_pages != 0) { printk("freeing bootmem node %d\n", nid); totalram_pages += free_all_bootmem_node(NODE_DATA(nid)); } } #else max_mapnr = max_pfn; totalram_pages += free_all_bootmem(); #endif for_each_online_pgdat(pgdat) { for (i = 0; i < pgdat->node_spanned_pages; i++) { if (!pfn_valid(pgdat->node_start_pfn + i)) continue; page = pgdat_page_nr(pgdat, i); if (PageReserved(page)) reservedpages++; } } codesize = (unsigned long)&_sdata - (unsigned long)&_stext; datasize = (unsigned long)&_edata - (unsigned long)&_sdata; initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin; bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start; #ifdef CONFIG_HIGHMEM { unsigned long pfn, highmem_mapnr; highmem_mapnr = lowmem_end_addr >> PAGE_SHIFT; for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) { phys_addr_t paddr = (phys_addr_t)pfn << PAGE_SHIFT; struct page *page = pfn_to_page(pfn); if (memblock_is_reserved(paddr)) continue; ClearPageReserved(page); init_page_count(page); __free_page(page); totalhigh_pages++; reservedpages--; } totalram_pages += totalhigh_pages; printk(KERN_DEBUG "High memory: %luk\n", totalhigh_pages << (PAGE_SHIFT-10)); } #endif /* CONFIG_HIGHMEM */ #if defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_SMP) /* * If smp is enabled, next_tlbcam_idx is initialized in the cpu up * functions.... do it here for the non-smp case. */ per_cpu(next_tlbcam_idx, smp_processor_id()) = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1; #endif printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, " "%luk reserved, %luk data, %luk bss, %luk init)\n", nr_free_pages() << (PAGE_SHIFT-10), num_physpages << (PAGE_SHIFT-10), codesize >> 10, reservedpages << (PAGE_SHIFT-10), datasize >> 10, bsssize >> 10, initsize >> 10); #ifdef CONFIG_PPC32 pr_info("Kernel virtual memory layout:\n"); pr_info(" * 0x%08lx..0x%08lx : fixmap\n", FIXADDR_START, FIXADDR_TOP); #ifdef CONFIG_HIGHMEM pr_info(" * 0x%08lx..0x%08lx : highmem PTEs\n", PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP)); #endif /* CONFIG_HIGHMEM */ #ifdef CONFIG_NOT_COHERENT_CACHE pr_info(" * 0x%08lx..0x%08lx : consistent mem\n", IOREMAP_TOP, IOREMAP_TOP + CONFIG_CONSISTENT_SIZE); #endif /* CONFIG_NOT_COHERENT_CACHE */ pr_info(" * 0x%08lx..0x%08lx : early ioremap\n", ioremap_bot, IOREMAP_TOP); pr_info(" * 0x%08lx..0x%08lx : vmalloc & ioremap\n", VMALLOC_START, VMALLOC_END); #endif /* CONFIG_PPC32 */ mem_init_done = 1; } void free_initmem(void) { unsigned long addr; ppc_md.progress = ppc_printk_progress; addr = (unsigned long)__init_begin; for (; addr < (unsigned long)__init_end; addr += PAGE_SIZE) { memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); ClearPageReserved(virt_to_page(addr)); init_page_count(virt_to_page(addr)); free_page(addr); totalram_pages++; } pr_info("Freeing unused kernel memory: %luk freed\n", ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10); } #ifdef CONFIG_BLK_DEV_INITRD void __init free_initrd_mem(unsigned long start, unsigned long end) { if (start >= end) return; start = _ALIGN_DOWN(start, PAGE_SIZE); end = _ALIGN_UP(end, PAGE_SIZE); pr_info("Freeing initrd memory: %ldk freed\n", (end - start) >> 10); for (; start < end; start += PAGE_SIZE) { ClearPageReserved(virt_to_page(start)); init_page_count(virt_to_page(start)); free_page(start); totalram_pages++; } } #endif /* * This is called when a page has been modified by the kernel. * It just marks the page as not i-cache clean. We do the i-cache * flush later when the page is given to a user process, if necessary. */ void flush_dcache_page(struct page *page) { if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) return; /* avoid an atomic op if possible */ if (test_bit(PG_arch_1, &page->flags)) clear_bit(PG_arch_1, &page->flags); } EXPORT_SYMBOL(flush_dcache_page); void flush_dcache_icache_page(struct page *page) { #ifdef CONFIG_HUGETLB_PAGE if (PageCompound(page)) { flush_dcache_icache_hugepage(page); return; } #endif #ifdef CONFIG_BOOKE { void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE); __flush_dcache_icache(start); kunmap_atomic(start, KM_PPC_SYNC_ICACHE); } #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64) /* On 8xx there is no need to kmap since highmem is not supported */ __flush_dcache_icache(page_address(page)); #else __flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT); #endif } void clear_user_page(void *page, unsigned long vaddr, struct page *pg) { clear_page(page); /* * We shouldn't have to do this, but some versions of glibc * require it (ld.so assumes zero filled pages are icache clean) * - Anton */ flush_dcache_page(pg); } EXPORT_SYMBOL(clear_user_page); void copy_user_page(void *vto, void *vfrom, unsigned long vaddr, struct page *pg) { copy_page(vto, vfrom); /* * We should be able to use the following optimisation, however * there are two problems. * Firstly a bug in some versions of binutils meant PLT sections * were not marked executable. * Secondly the first word in the GOT section is blrl, used * to establish the GOT address. Until recently the GOT was * not marked executable. * - Anton */ #if 0 if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0)) return; #endif flush_dcache_page(pg); } void flush_icache_user_range(struct vm_area_struct *vma, struct page *page, unsigned long addr, int len) { unsigned long maddr; maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK); flush_icache_range(maddr, maddr + len); kunmap(page); } EXPORT_SYMBOL(flush_icache_user_range); /* * This is called at the end of handling a user page fault, when the * fault has been handled by updating a PTE in the linux page tables. * We use it to preload an HPTE into the hash table corresponding to * the updated linux PTE. * * This must always be called with the pte lock held. */ void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { #ifdef CONFIG_PPC_STD_MMU unsigned long access = 0, trap; /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */ if (!pte_young(*ptep) || address >= TASK_SIZE) return; /* We try to figure out if we are coming from an instruction * access fault and pass that down to __hash_page so we avoid * double-faulting on execution of fresh text. We have to test * for regs NULL since init will get here first thing at boot * * We also avoid filling the hash if not coming from a fault */ if (current->thread.regs == NULL) return; trap = TRAP(current->thread.regs); if (trap == 0x400) access |= _PAGE_EXEC; else if (trap != 0x300) return; hash_preload(vma->vm_mm, address, access, trap); #endif /* CONFIG_PPC_STD_MMU */ #if (defined(CONFIG_PPC_BOOK3E_64) || defined(CONFIG_PPC_FSL_BOOK3E)) \ && defined(CONFIG_HUGETLB_PAGE) if (is_vm_hugetlb_page(vma)) book3e_hugetlb_preload(vma, address, *ptep); #endif } /* * System memory should not be in /proc/iomem but various tools expect it * (eg kdump). */ static int add_system_ram_resources(void) { struct memblock_region *reg; for_each_memblock(memory, reg) { struct resource *res; unsigned long base = reg->base; unsigned long size = reg->size; res = kzalloc(sizeof(struct resource), GFP_KERNEL); WARN_ON(!res); if (res) { res->name = "System RAM"; res->start = base; res->end = base + size - 1; res->flags = IORESOURCE_MEM; WARN_ON(request_resource(&iomem_resource, res) < 0); } } return 0; } subsys_initcall(add_system_ram_resources); #ifdef CONFIG_STRICT_DEVMEM /* * devmem_is_allowed(): check to see if /dev/mem access to a certain address * is valid. The argument is a physical page number. * * Access has to be given to non-kernel-ram areas as well, these contain the * PCI mmio resources as well as potential bios/acpi data regions. */ int devmem_is_allowed(unsigned long pfn) { if (iomem_is_exclusive(pfn << PAGE_SHIFT)) return 0; if (!page_is_ram(pfn)) return 1; if (page_is_rtas_user_buf(pfn)) return 1; return 0; } #endif /* CONFIG_STRICT_DEVMEM */