/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2007 by Ralf Baechle * Copyright (C) 2009, 2010 Cavium Networks, Inc. */ #include <linux/clocksource.h> #include <linux/export.h> #include <linux/init.h> #include <linux/smp.h> #include <asm/cpu-info.h> #include <asm/time.h> #include <asm/octeon/octeon.h> #include <asm/octeon/cvmx-ipd-defs.h> #include <asm/octeon/cvmx-mio-defs.h> /* * Set the current core's cvmcount counter to the value of the * IPD_CLK_COUNT. We do this on all cores as they are brought * on-line. This allows for a read from a local cpu register to * access a synchronized counter. * * On CPU_CAVIUM_OCTEON2 the IPD_CLK_COUNT is scaled by rdiv/sdiv. */ void octeon_init_cvmcount(void) { unsigned long flags; unsigned loops = 2; u64 f = 0; u64 rdiv = 0; u64 sdiv = 0; if (current_cpu_type() == CPU_CAVIUM_OCTEON2) { union cvmx_mio_rst_boot rst_boot; rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT); rdiv = rst_boot.s.c_mul; /* CPU clock */ sdiv = rst_boot.s.pnr_mul; /* I/O clock */ f = (0x8000000000000000ull / sdiv) * 2; } /* Clobber loops so GCC will not unroll the following while loop. */ asm("" : "+r" (loops)); local_irq_save(flags); /* * Loop several times so we are executing from the cache, * which should give more deterministic timing. */ while (loops--) { u64 ipd_clk_count = cvmx_read_csr(CVMX_IPD_CLK_COUNT); if (rdiv != 0) { ipd_clk_count *= rdiv; if (f != 0) { asm("dmultu\t%[cnt],%[f]\n\t" "mfhi\t%[cnt]" : [cnt] "+r" (ipd_clk_count), [f] "=r" (f) : : "hi", "lo"); } } write_c0_cvmcount(ipd_clk_count); } local_irq_restore(flags); } static cycle_t octeon_cvmcount_read(struct clocksource *cs) { return read_c0_cvmcount(); } static struct clocksource clocksource_mips = { .name = "OCTEON_CVMCOUNT", .read = octeon_cvmcount_read, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; unsigned long long notrace sched_clock(void) { /* 64-bit arithmatic can overflow, so use 128-bit. */ u64 t1, t2, t3; unsigned long long rv; u64 mult = clocksource_mips.mult; u64 shift = clocksource_mips.shift; u64 cnt = read_c0_cvmcount(); asm ( "dmultu\t%[cnt],%[mult]\n\t" "nor\t%[t1],$0,%[shift]\n\t" "mfhi\t%[t2]\n\t" "mflo\t%[t3]\n\t" "dsll\t%[t2],%[t2],1\n\t" "dsrlv\t%[rv],%[t3],%[shift]\n\t" "dsllv\t%[t1],%[t2],%[t1]\n\t" "or\t%[rv],%[t1],%[rv]\n\t" : [rv] "=&r" (rv), [t1] "=&r" (t1), [t2] "=&r" (t2), [t3] "=&r" (t3) : [cnt] "r" (cnt), [mult] "r" (mult), [shift] "r" (shift) : "hi", "lo"); return rv; } void __init plat_time_init(void) { clocksource_mips.rating = 300; clocksource_register_hz(&clocksource_mips, octeon_get_clock_rate()); } static u64 octeon_udelay_factor; static u64 octeon_ndelay_factor; void __init octeon_setup_delays(void) { octeon_udelay_factor = octeon_get_clock_rate() / 1000000; /* * For __ndelay we divide by 2^16, so the factor is multiplied * by the same amount. */ octeon_ndelay_factor = (octeon_udelay_factor * 0x10000ull) / 1000ull; preset_lpj = octeon_get_clock_rate() / HZ; } void __udelay(unsigned long us) { u64 cur, end, inc; cur = read_c0_cvmcount(); inc = us * octeon_udelay_factor; end = cur + inc; while (end > cur) cur = read_c0_cvmcount(); } EXPORT_SYMBOL(__udelay); void __ndelay(unsigned long ns) { u64 cur, end, inc; cur = read_c0_cvmcount(); inc = ((ns * octeon_ndelay_factor) >> 16); end = cur + inc; while (end > cur) cur = read_c0_cvmcount(); } EXPORT_SYMBOL(__ndelay); void __delay(unsigned long loops) { u64 cur, end; cur = read_c0_cvmcount(); end = cur + loops; while (end > cur) cur = read_c0_cvmcount(); } EXPORT_SYMBOL(__delay);