/* * intc.c -- interrupt controller or ColdFire 5272 SoC * * (C) Copyright 2009, Greg Ungerer <gerg@snapgear.com> * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of this archive * for more details. */ #include <linux/types.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/interrupt.h> #include <linux/kernel_stat.h> #include <linux/irq.h> #include <linux/io.h> #include <asm/coldfire.h> #include <asm/mcfsim.h> #include <asm/traps.h> /* * The 5272 ColdFire interrupt controller is nothing like any other * ColdFire interrupt controller - it truly is completely different. * Given its age it is unlikely to be used on any other ColdFire CPU. */ /* * The masking and priproty setting of interrupts on the 5272 is done * via a set of 4 "Interrupt Controller Registers" (ICR). There is a * loose mapping of vector number to register and internal bits, but * a table is the easiest and quickest way to map them. * * Note that the external interrupts are edge triggered (unlike the * internal interrupt sources which are level triggered). Which means * they also need acknowledging via acknowledge bits. */ struct irqmap { unsigned char icr; unsigned char index; unsigned char ack; }; static struct irqmap intc_irqmap[MCFINT_VECMAX - MCFINT_VECBASE] = { /*MCF_IRQ_SPURIOUS*/ { .icr = 0, .index = 0, .ack = 0, }, /*MCF_IRQ_EINT1*/ { .icr = MCFSIM_ICR1, .index = 28, .ack = 1, }, /*MCF_IRQ_EINT2*/ { .icr = MCFSIM_ICR1, .index = 24, .ack = 1, }, /*MCF_IRQ_EINT3*/ { .icr = MCFSIM_ICR1, .index = 20, .ack = 1, }, /*MCF_IRQ_EINT4*/ { .icr = MCFSIM_ICR1, .index = 16, .ack = 1, }, /*MCF_IRQ_TIMER1*/ { .icr = MCFSIM_ICR1, .index = 12, .ack = 0, }, /*MCF_IRQ_TIMER2*/ { .icr = MCFSIM_ICR1, .index = 8, .ack = 0, }, /*MCF_IRQ_TIMER3*/ { .icr = MCFSIM_ICR1, .index = 4, .ack = 0, }, /*MCF_IRQ_TIMER4*/ { .icr = MCFSIM_ICR1, .index = 0, .ack = 0, }, /*MCF_IRQ_UART1*/ { .icr = MCFSIM_ICR2, .index = 28, .ack = 0, }, /*MCF_IRQ_UART2*/ { .icr = MCFSIM_ICR2, .index = 24, .ack = 0, }, /*MCF_IRQ_PLIP*/ { .icr = MCFSIM_ICR2, .index = 20, .ack = 0, }, /*MCF_IRQ_PLIA*/ { .icr = MCFSIM_ICR2, .index = 16, .ack = 0, }, /*MCF_IRQ_USB0*/ { .icr = MCFSIM_ICR2, .index = 12, .ack = 0, }, /*MCF_IRQ_USB1*/ { .icr = MCFSIM_ICR2, .index = 8, .ack = 0, }, /*MCF_IRQ_USB2*/ { .icr = MCFSIM_ICR2, .index = 4, .ack = 0, }, /*MCF_IRQ_USB3*/ { .icr = MCFSIM_ICR2, .index = 0, .ack = 0, }, /*MCF_IRQ_USB4*/ { .icr = MCFSIM_ICR3, .index = 28, .ack = 0, }, /*MCF_IRQ_USB5*/ { .icr = MCFSIM_ICR3, .index = 24, .ack = 0, }, /*MCF_IRQ_USB6*/ { .icr = MCFSIM_ICR3, .index = 20, .ack = 0, }, /*MCF_IRQ_USB7*/ { .icr = MCFSIM_ICR3, .index = 16, .ack = 0, }, /*MCF_IRQ_DMA*/ { .icr = MCFSIM_ICR3, .index = 12, .ack = 0, }, /*MCF_IRQ_ERX*/ { .icr = MCFSIM_ICR3, .index = 8, .ack = 0, }, /*MCF_IRQ_ETX*/ { .icr = MCFSIM_ICR3, .index = 4, .ack = 0, }, /*MCF_IRQ_ENTC*/ { .icr = MCFSIM_ICR3, .index = 0, .ack = 0, }, /*MCF_IRQ_QSPI*/ { .icr = MCFSIM_ICR4, .index = 28, .ack = 0, }, /*MCF_IRQ_EINT5*/ { .icr = MCFSIM_ICR4, .index = 24, .ack = 1, }, /*MCF_IRQ_EINT6*/ { .icr = MCFSIM_ICR4, .index = 20, .ack = 1, }, /*MCF_IRQ_SWTO*/ { .icr = MCFSIM_ICR4, .index = 16, .ack = 0, }, }; /* * The act of masking the interrupt also has a side effect of 'ack'ing * an interrupt on this irq (for the external irqs). So this mask function * is also an ack_mask function. */ static void intc_irq_mask(struct irq_data *d) { unsigned int irq = d->irq; if ((irq >= MCFINT_VECBASE) && (irq <= MCFINT_VECMAX)) { u32 v; irq -= MCFINT_VECBASE; v = 0x8 << intc_irqmap[irq].index; writel(v, MCF_MBAR + intc_irqmap[irq].icr); } } static void intc_irq_unmask(struct irq_data *d) { unsigned int irq = d->irq; if ((irq >= MCFINT_VECBASE) && (irq <= MCFINT_VECMAX)) { u32 v; irq -= MCFINT_VECBASE; v = 0xd << intc_irqmap[irq].index; writel(v, MCF_MBAR + intc_irqmap[irq].icr); } } static void intc_irq_ack(struct irq_data *d) { unsigned int irq = d->irq; /* Only external interrupts are acked */ if ((irq >= MCFINT_VECBASE) && (irq <= MCFINT_VECMAX)) { irq -= MCFINT_VECBASE; if (intc_irqmap[irq].ack) { u32 v; v = readl(MCF_MBAR + intc_irqmap[irq].icr); v &= (0x7 << intc_irqmap[irq].index); v |= (0x8 << intc_irqmap[irq].index); writel(v, MCF_MBAR + intc_irqmap[irq].icr); } } } static int intc_irq_set_type(struct irq_data *d, unsigned int type) { unsigned int irq = d->irq; if ((irq >= MCFINT_VECBASE) && (irq <= MCFINT_VECMAX)) { irq -= MCFINT_VECBASE; if (intc_irqmap[irq].ack) { u32 v; v = readl(MCF_MBAR + MCFSIM_PITR); if (type == IRQ_TYPE_EDGE_FALLING) v &= ~(0x1 << (32 - irq)); else v |= (0x1 << (32 - irq)); writel(v, MCF_MBAR + MCFSIM_PITR); } } return 0; } /* * Simple flow handler to deal with the external edge triggered interrupts. * We need to be careful with the masking/acking due to the side effects * of masking an interrupt. */ static void intc_external_irq(unsigned int irq, struct irq_desc *desc) { irq_desc_get_chip(desc)->irq_ack(&desc->irq_data); handle_simple_irq(irq, desc); } static struct irq_chip intc_irq_chip = { .name = "CF-INTC", .irq_mask = intc_irq_mask, .irq_unmask = intc_irq_unmask, .irq_mask_ack = intc_irq_mask, .irq_ack = intc_irq_ack, .irq_set_type = intc_irq_set_type, }; void __init init_IRQ(void) { int irq, edge; /* Mask all interrupt sources */ writel(0x88888888, MCF_MBAR + MCFSIM_ICR1); writel(0x88888888, MCF_MBAR + MCFSIM_ICR2); writel(0x88888888, MCF_MBAR + MCFSIM_ICR3); writel(0x88888888, MCF_MBAR + MCFSIM_ICR4); for (irq = 0; (irq < NR_IRQS); irq++) { irq_set_chip(irq, &intc_irq_chip); edge = 0; if ((irq >= MCFINT_VECBASE) && (irq <= MCFINT_VECMAX)) edge = intc_irqmap[irq - MCFINT_VECBASE].ack; if (edge) { irq_set_irq_type(irq, IRQ_TYPE_EDGE_RISING); irq_set_handler(irq, intc_external_irq); } else { irq_set_irq_type(irq, IRQ_TYPE_LEVEL_HIGH); irq_set_handler(irq, handle_level_irq); } } }