/* * arch/arm/mach-ixp4xx/common-pci.c * * IXP4XX PCI routines for all platforms * * Maintainer: Deepak Saxena <dsaxena@plexity.net> * * Copyright (C) 2002 Intel Corporation. * Copyright (C) 2003 Greg Ungerer <gerg@snapgear.com> * Copyright (C) 2003-2004 MontaVista Software, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include <linux/sched.h> #include <linux/kernel.h> #include <linux/pci.h> #include <linux/interrupt.h> #include <linux/mm.h> #include <linux/init.h> #include <linux/ioport.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/io.h> #include <linux/export.h> #include <asm/dma-mapping.h> #include <asm/cputype.h> #include <asm/irq.h> #include <asm/sizes.h> #include <asm/system.h> #include <asm/mach/pci.h> #include <mach/hardware.h> /* * IXP4xx PCI read function is dependent on whether we are * running A0 or B0 (AppleGate) silicon. */ int (*ixp4xx_pci_read)(u32 addr, u32 cmd, u32* data); /* * Base address for PCI regsiter region */ unsigned long ixp4xx_pci_reg_base = 0; /* * PCI cfg an I/O routines are done by programming a * command/byte enable register, and then read/writing * the data from a data regsiter. We need to ensure * these transactions are atomic or we will end up * with corrupt data on the bus or in a driver. */ static DEFINE_RAW_SPINLOCK(ixp4xx_pci_lock); /* * Read from PCI config space */ static void crp_read(u32 ad_cbe, u32 *data) { unsigned long flags; raw_spin_lock_irqsave(&ixp4xx_pci_lock, flags); *PCI_CRP_AD_CBE = ad_cbe; *data = *PCI_CRP_RDATA; raw_spin_unlock_irqrestore(&ixp4xx_pci_lock, flags); } /* * Write to PCI config space */ static void crp_write(u32 ad_cbe, u32 data) { unsigned long flags; raw_spin_lock_irqsave(&ixp4xx_pci_lock, flags); *PCI_CRP_AD_CBE = CRP_AD_CBE_WRITE | ad_cbe; *PCI_CRP_WDATA = data; raw_spin_unlock_irqrestore(&ixp4xx_pci_lock, flags); } static inline int check_master_abort(void) { /* check Master Abort bit after access */ unsigned long isr = *PCI_ISR; if (isr & PCI_ISR_PFE) { /* make sure the Master Abort bit is reset */ *PCI_ISR = PCI_ISR_PFE; pr_debug("%s failed\n", __func__); return 1; } return 0; } int ixp4xx_pci_read_errata(u32 addr, u32 cmd, u32* data) { unsigned long flags; int retval = 0; int i; raw_spin_lock_irqsave(&ixp4xx_pci_lock, flags); *PCI_NP_AD = addr; /* * PCI workaround - only works if NP PCI space reads have * no side effects!!! Read 8 times. last one will be good. */ for (i = 0; i < 8; i++) { *PCI_NP_CBE = cmd; *data = *PCI_NP_RDATA; *data = *PCI_NP_RDATA; } if(check_master_abort()) retval = 1; raw_spin_unlock_irqrestore(&ixp4xx_pci_lock, flags); return retval; } int ixp4xx_pci_read_no_errata(u32 addr, u32 cmd, u32* data) { unsigned long flags; int retval = 0; raw_spin_lock_irqsave(&ixp4xx_pci_lock, flags); *PCI_NP_AD = addr; /* set up and execute the read */ *PCI_NP_CBE = cmd; /* the result of the read is now in NP_RDATA */ *data = *PCI_NP_RDATA; if(check_master_abort()) retval = 1; raw_spin_unlock_irqrestore(&ixp4xx_pci_lock, flags); return retval; } int ixp4xx_pci_write(u32 addr, u32 cmd, u32 data) { unsigned long flags; int retval = 0; raw_spin_lock_irqsave(&ixp4xx_pci_lock, flags); *PCI_NP_AD = addr; /* set up the write */ *PCI_NP_CBE = cmd; /* execute the write by writing to NP_WDATA */ *PCI_NP_WDATA = data; if(check_master_abort()) retval = 1; raw_spin_unlock_irqrestore(&ixp4xx_pci_lock, flags); return retval; } static u32 ixp4xx_config_addr(u8 bus_num, u16 devfn, int where) { u32 addr; if (!bus_num) { /* type 0 */ addr = BIT(32-PCI_SLOT(devfn)) | ((PCI_FUNC(devfn)) << 8) | (where & ~3); } else { /* type 1 */ addr = (bus_num << 16) | ((PCI_SLOT(devfn)) << 11) | ((PCI_FUNC(devfn)) << 8) | (where & ~3) | 1; } return addr; } /* * Mask table, bits to mask for quantity of size 1, 2 or 4 bytes. * 0 and 3 are not valid indexes... */ static u32 bytemask[] = { /*0*/ 0, /*1*/ 0xff, /*2*/ 0xffff, /*3*/ 0, /*4*/ 0xffffffff, }; static u32 local_byte_lane_enable_bits(u32 n, int size) { if (size == 1) return (0xf & ~BIT(n)) << CRP_AD_CBE_BESL; if (size == 2) return (0xf & ~(BIT(n) | BIT(n+1))) << CRP_AD_CBE_BESL; if (size == 4) return 0; return 0xffffffff; } static int local_read_config(int where, int size, u32 *value) { u32 n, data; pr_debug("local_read_config from %d size %d\n", where, size); n = where % 4; crp_read(where & ~3, &data); *value = (data >> (8*n)) & bytemask[size]; pr_debug("local_read_config read %#x\n", *value); return PCIBIOS_SUCCESSFUL; } static int local_write_config(int where, int size, u32 value) { u32 n, byte_enables, data; pr_debug("local_write_config %#x to %d size %d\n", value, where, size); n = where % 4; byte_enables = local_byte_lane_enable_bits(n, size); if (byte_enables == 0xffffffff) return PCIBIOS_BAD_REGISTER_NUMBER; data = value << (8*n); crp_write((where & ~3) | byte_enables, data); return PCIBIOS_SUCCESSFUL; } static u32 byte_lane_enable_bits(u32 n, int size) { if (size == 1) return (0xf & ~BIT(n)) << 4; if (size == 2) return (0xf & ~(BIT(n) | BIT(n+1))) << 4; if (size == 4) return 0; return 0xffffffff; } static int ixp4xx_pci_read_config(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value) { u32 n, byte_enables, addr, data; u8 bus_num = bus->number; pr_debug("read_config from %d size %d dev %d:%d:%d\n", where, size, bus_num, PCI_SLOT(devfn), PCI_FUNC(devfn)); *value = 0xffffffff; n = where % 4; byte_enables = byte_lane_enable_bits(n, size); if (byte_enables == 0xffffffff) return PCIBIOS_BAD_REGISTER_NUMBER; addr = ixp4xx_config_addr(bus_num, devfn, where); if (ixp4xx_pci_read(addr, byte_enables | NP_CMD_CONFIGREAD, &data)) return PCIBIOS_DEVICE_NOT_FOUND; *value = (data >> (8*n)) & bytemask[size]; pr_debug("read_config_byte read %#x\n", *value); return PCIBIOS_SUCCESSFUL; } static int ixp4xx_pci_write_config(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value) { u32 n, byte_enables, addr, data; u8 bus_num = bus->number; pr_debug("write_config_byte %#x to %d size %d dev %d:%d:%d\n", value, where, size, bus_num, PCI_SLOT(devfn), PCI_FUNC(devfn)); n = where % 4; byte_enables = byte_lane_enable_bits(n, size); if (byte_enables == 0xffffffff) return PCIBIOS_BAD_REGISTER_NUMBER; addr = ixp4xx_config_addr(bus_num, devfn, where); data = value << (8*n); if (ixp4xx_pci_write(addr, byte_enables | NP_CMD_CONFIGWRITE, data)) return PCIBIOS_DEVICE_NOT_FOUND; return PCIBIOS_SUCCESSFUL; } struct pci_ops ixp4xx_ops = { .read = ixp4xx_pci_read_config, .write = ixp4xx_pci_write_config, }; /* * PCI abort handler */ static int abort_handler(unsigned long addr, unsigned int fsr, struct pt_regs *regs) { u32 isr, status; isr = *PCI_ISR; local_read_config(PCI_STATUS, 2, &status); pr_debug("PCI: abort_handler addr = %#lx, isr = %#x, " "status = %#x\n", addr, isr, status); /* make sure the Master Abort bit is reset */ *PCI_ISR = PCI_ISR_PFE; status |= PCI_STATUS_REC_MASTER_ABORT; local_write_config(PCI_STATUS, 2, status); /* * If it was an imprecise abort, then we need to correct the * return address to be _after_ the instruction. */ if (fsr & (1 << 10)) regs->ARM_pc += 4; return 0; } static int ixp4xx_needs_bounce(struct device *dev, dma_addr_t dma_addr, size_t size) { return (dma_addr + size) >= SZ_64M; } /* * Setup DMA mask to 64MB on PCI devices. Ignore all other devices. */ static int ixp4xx_pci_platform_notify(struct device *dev) { if(dev->bus == &pci_bus_type) { *dev->dma_mask = SZ_64M - 1; dev->coherent_dma_mask = SZ_64M - 1; dmabounce_register_dev(dev, 2048, 4096, ixp4xx_needs_bounce); } return 0; } static int ixp4xx_pci_platform_notify_remove(struct device *dev) { if(dev->bus == &pci_bus_type) { dmabounce_unregister_dev(dev); } return 0; } void __init ixp4xx_pci_preinit(void) { unsigned long cpuid = read_cpuid_id(); #ifdef CONFIG_IXP4XX_INDIRECT_PCI pcibios_min_mem = 0x10000000; /* 1 GB of indirect PCI MMIO space */ #else pcibios_min_mem = 0x48000000; /* 64 MB of PCI MMIO space */ #endif /* * Determine which PCI read method to use. * Rev 0 IXP425 requires workaround. */ if (!(cpuid & 0xf) && cpu_is_ixp42x()) { printk("PCI: IXP42x A0 silicon detected - " "PCI Non-Prefetch Workaround Enabled\n"); ixp4xx_pci_read = ixp4xx_pci_read_errata; } else ixp4xx_pci_read = ixp4xx_pci_read_no_errata; /* hook in our fault handler for PCI errors */ hook_fault_code(16+6, abort_handler, SIGBUS, 0, "imprecise external abort"); pr_debug("setup PCI-AHB(inbound) and AHB-PCI(outbound) address mappings\n"); /* * We use identity AHB->PCI address translation * in the 0x48000000 to 0x4bffffff address space */ *PCI_PCIMEMBASE = 0x48494A4B; /* * We also use identity PCI->AHB address translation * in 4 16MB BARs that begin at the physical memory start */ *PCI_AHBMEMBASE = (PHYS_OFFSET & 0xFF000000) + ((PHYS_OFFSET & 0xFF000000) >> 8) + ((PHYS_OFFSET & 0xFF000000) >> 16) + ((PHYS_OFFSET & 0xFF000000) >> 24) + 0x00010203; if (*PCI_CSR & PCI_CSR_HOST) { printk("PCI: IXP4xx is host\n"); pr_debug("setup BARs in controller\n"); /* * We configure the PCI inbound memory windows to be * 1:1 mapped to SDRAM */ local_write_config(PCI_BASE_ADDRESS_0, 4, PHYS_OFFSET); local_write_config(PCI_BASE_ADDRESS_1, 4, PHYS_OFFSET + SZ_16M); local_write_config(PCI_BASE_ADDRESS_2, 4, PHYS_OFFSET + SZ_32M); local_write_config(PCI_BASE_ADDRESS_3, 4, PHYS_OFFSET + SZ_32M + SZ_16M); /* * Enable CSR window at 64 MiB to allow PCI masters * to continue prefetching past 64 MiB boundary. */ local_write_config(PCI_BASE_ADDRESS_4, 4, PHYS_OFFSET + SZ_64M); /* * Enable the IO window to be way up high, at 0xfffffc00 */ local_write_config(PCI_BASE_ADDRESS_5, 4, 0xfffffc01); } else { printk("PCI: IXP4xx is target - No bus scan performed\n"); } printk("PCI: IXP4xx Using %s access for memory space\n", #ifndef CONFIG_IXP4XX_INDIRECT_PCI "direct" #else "indirect" #endif ); pr_debug("clear error bits in ISR\n"); *PCI_ISR = PCI_ISR_PSE | PCI_ISR_PFE | PCI_ISR_PPE | PCI_ISR_AHBE; /* * Set Initialize Complete in PCI Control Register: allow IXP4XX to * respond to PCI configuration cycles. Specify that the AHB bus is * operating in big endian mode. Set up byte lane swapping between * little-endian PCI and the big-endian AHB bus */ #ifdef __ARMEB__ *PCI_CSR = PCI_CSR_IC | PCI_CSR_ABE | PCI_CSR_PDS | PCI_CSR_ADS; #else *PCI_CSR = PCI_CSR_IC | PCI_CSR_ABE; #endif pr_debug("DONE\n"); } int ixp4xx_setup(int nr, struct pci_sys_data *sys) { struct resource *res; if (nr >= 1) return 0; res = kzalloc(sizeof(*res) * 2, GFP_KERNEL); if (res == NULL) { /* * If we're out of memory this early, something is wrong, * so we might as well catch it here. */ panic("PCI: unable to allocate resources?\n"); } local_write_config(PCI_COMMAND, 2, PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY); res[0].name = "PCI I/O Space"; res[0].start = 0x00000000; res[0].end = 0x0000ffff; res[0].flags = IORESOURCE_IO; res[1].name = "PCI Memory Space"; res[1].start = PCIBIOS_MIN_MEM; res[1].end = PCIBIOS_MAX_MEM; res[1].flags = IORESOURCE_MEM; request_resource(&ioport_resource, &res[0]); request_resource(&iomem_resource, &res[1]); pci_add_resource(&sys->resources, &res[0]); pci_add_resource(&sys->resources, &res[1]); platform_notify = ixp4xx_pci_platform_notify; platform_notify_remove = ixp4xx_pci_platform_notify_remove; return 1; } struct pci_bus * __devinit ixp4xx_scan_bus(int nr, struct pci_sys_data *sys) { return pci_scan_root_bus(NULL, sys->busnr, &ixp4xx_ops, sys, &sys->resources); } int dma_set_coherent_mask(struct device *dev, u64 mask) { if (mask >= SZ_64M - 1) return 0; return -EIO; } EXPORT_SYMBOL(ixp4xx_pci_read); EXPORT_SYMBOL(ixp4xx_pci_write); EXPORT_SYMBOL(dma_set_coherent_mask);