- 根目录:
- sound
- soc
- atmel
- atmel_ssc_dai.c
/*
* atmel_ssc_dai.c -- ALSA SoC ATMEL SSC Audio Layer Platform driver
*
* Copyright (C) 2005 SAN People
* Copyright (C) 2008 Atmel
*
* Author: Sedji Gaouaou <sedji.gaouaou@atmel.com>
* ATMEL CORP.
*
* Based on at91-ssc.c by
* Frank Mandarino <fmandarino@endrelia.com>
* Based on pxa2xx Platform drivers by
* Liam Girdwood <lrg@slimlogic.co.uk>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/atmel_pdc.h>
#include <linux/atmel-ssc.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/soc.h>
#include "atmel-pcm.h"
#include "atmel_ssc_dai.h"
#define NUM_SSC_DEVICES 3
/*
* SSC PDC registers required by the PCM DMA engine.
*/
static struct atmel_pdc_regs pdc_tx_reg = {
.xpr = ATMEL_PDC_TPR,
.xcr = ATMEL_PDC_TCR,
.xnpr = ATMEL_PDC_TNPR,
.xncr = ATMEL_PDC_TNCR,
};
static struct atmel_pdc_regs pdc_rx_reg = {
.xpr = ATMEL_PDC_RPR,
.xcr = ATMEL_PDC_RCR,
.xnpr = ATMEL_PDC_RNPR,
.xncr = ATMEL_PDC_RNCR,
};
/*
* SSC & PDC status bits for transmit and receive.
*/
static struct atmel_ssc_mask ssc_tx_mask = {
.ssc_enable = SSC_BIT(CR_TXEN),
.ssc_disable = SSC_BIT(CR_TXDIS),
.ssc_endx = SSC_BIT(SR_ENDTX),
.ssc_endbuf = SSC_BIT(SR_TXBUFE),
.ssc_error = SSC_BIT(SR_OVRUN),
.pdc_enable = ATMEL_PDC_TXTEN,
.pdc_disable = ATMEL_PDC_TXTDIS,
};
static struct atmel_ssc_mask ssc_rx_mask = {
.ssc_enable = SSC_BIT(CR_RXEN),
.ssc_disable = SSC_BIT(CR_RXDIS),
.ssc_endx = SSC_BIT(SR_ENDRX),
.ssc_endbuf = SSC_BIT(SR_RXBUFF),
.ssc_error = SSC_BIT(SR_OVRUN),
.pdc_enable = ATMEL_PDC_RXTEN,
.pdc_disable = ATMEL_PDC_RXTDIS,
};
/*
* DMA parameters.
*/
static struct atmel_pcm_dma_params ssc_dma_params[NUM_SSC_DEVICES][2] = {
{{
.name = "SSC0 PCM out",
.pdc = &pdc_tx_reg,
.mask = &ssc_tx_mask,
},
{
.name = "SSC0 PCM in",
.pdc = &pdc_rx_reg,
.mask = &ssc_rx_mask,
} },
{{
.name = "SSC1 PCM out",
.pdc = &pdc_tx_reg,
.mask = &ssc_tx_mask,
},
{
.name = "SSC1 PCM in",
.pdc = &pdc_rx_reg,
.mask = &ssc_rx_mask,
} },
{{
.name = "SSC2 PCM out",
.pdc = &pdc_tx_reg,
.mask = &ssc_tx_mask,
},
{
.name = "SSC2 PCM in",
.pdc = &pdc_rx_reg,
.mask = &ssc_rx_mask,
} },
};
static struct atmel_ssc_info ssc_info[NUM_SSC_DEVICES] = {
{
.name = "ssc0",
.lock = __SPIN_LOCK_UNLOCKED(ssc_info[0].lock),
.dir_mask = SSC_DIR_MASK_UNUSED,
.initialized = 0,
},
{
.name = "ssc1",
.lock = __SPIN_LOCK_UNLOCKED(ssc_info[1].lock),
.dir_mask = SSC_DIR_MASK_UNUSED,
.initialized = 0,
},
{
.name = "ssc2",
.lock = __SPIN_LOCK_UNLOCKED(ssc_info[2].lock),
.dir_mask = SSC_DIR_MASK_UNUSED,
.initialized = 0,
},
};
/*
* SSC interrupt handler. Passes PDC interrupts to the DMA
* interrupt handler in the PCM driver.
*/
static irqreturn_t atmel_ssc_interrupt(int irq, void *dev_id)
{
struct atmel_ssc_info *ssc_p = dev_id;
struct atmel_pcm_dma_params *dma_params;
u32 ssc_sr;
u32 ssc_substream_mask;
int i;
ssc_sr = (unsigned long)ssc_readl(ssc_p->ssc->regs, SR)
& (unsigned long)ssc_readl(ssc_p->ssc->regs, IMR);
/*
* Loop through the substreams attached to this SSC. If
* a DMA-related interrupt occurred on that substream, call
* the DMA interrupt handler function, if one has been
* registered in the dma_params structure by the PCM driver.
*/
for (i = 0; i < ARRAY_SIZE(ssc_p->dma_params); i++) {
dma_params = ssc_p->dma_params[i];
if ((dma_params != NULL) &&
(dma_params->dma_intr_handler != NULL)) {
ssc_substream_mask = (dma_params->mask->ssc_endx |
dma_params->mask->ssc_endbuf);
if (ssc_sr & ssc_substream_mask) {
dma_params->dma_intr_handler(ssc_sr,
dma_params->
substream);
}
}
}
return IRQ_HANDLED;
}
/*-------------------------------------------------------------------------*\
* DAI functions
\*-------------------------------------------------------------------------*/
/*
* Startup. Only that one substream allowed in each direction.
*/
static int atmel_ssc_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
struct atmel_pcm_dma_params *dma_params;
int dir, dir_mask;
pr_debug("atmel_ssc_startup: SSC_SR=0x%u\n",
ssc_readl(ssc_p->ssc->regs, SR));
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
dir = 0;
dir_mask = SSC_DIR_MASK_PLAYBACK;
} else {
dir = 1;
dir_mask = SSC_DIR_MASK_CAPTURE;
}
dma_params = &ssc_dma_params[dai->id][dir];
dma_params->ssc = ssc_p->ssc;
dma_params->substream = substream;
ssc_p->dma_params[dir] = dma_params;
snd_soc_dai_set_dma_data(dai, substream, dma_params);
spin_lock_irq(&ssc_p->lock);
if (ssc_p->dir_mask & dir_mask) {
spin_unlock_irq(&ssc_p->lock);
return -EBUSY;
}
ssc_p->dir_mask |= dir_mask;
spin_unlock_irq(&ssc_p->lock);
return 0;
}
/*
* Shutdown. Clear DMA parameters and shutdown the SSC if there
* are no other substreams open.
*/
static void atmel_ssc_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
struct atmel_pcm_dma_params *dma_params;
int dir, dir_mask;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
dir = 0;
else
dir = 1;
dma_params = ssc_p->dma_params[dir];
if (dma_params != NULL) {
ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
pr_debug("atmel_ssc_shutdown: %s disabled SSC_SR=0x%08x\n",
(dir ? "receive" : "transmit"),
ssc_readl(ssc_p->ssc->regs, SR));
dma_params->ssc = NULL;
dma_params->substream = NULL;
ssc_p->dma_params[dir] = NULL;
}
dir_mask = 1 << dir;
spin_lock_irq(&ssc_p->lock);
ssc_p->dir_mask &= ~dir_mask;
if (!ssc_p->dir_mask) {
if (ssc_p->initialized) {
/* Shutdown the SSC clock. */
pr_debug("atmel_ssc_dau: Stopping clock\n");
clk_disable(ssc_p->ssc->clk);
free_irq(ssc_p->ssc->irq, ssc_p);
ssc_p->initialized = 0;
}
/* Reset the SSC */
ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
/* Clear the SSC dividers */
ssc_p->cmr_div = ssc_p->tcmr_period = ssc_p->rcmr_period = 0;
}
spin_unlock_irq(&ssc_p->lock);
}
/*
* Record the DAI format for use in hw_params().
*/
static int atmel_ssc_set_dai_fmt(struct snd_soc_dai *cpu_dai,
unsigned int fmt)
{
struct atmel_ssc_info *ssc_p = &ssc_info[cpu_dai->id];
ssc_p->daifmt = fmt;
return 0;
}
/*
* Record SSC clock dividers for use in hw_params().
*/
static int atmel_ssc_set_dai_clkdiv(struct snd_soc_dai *cpu_dai,
int div_id, int div)
{
struct atmel_ssc_info *ssc_p = &ssc_info[cpu_dai->id];
switch (div_id) {
case ATMEL_SSC_CMR_DIV:
/*
* The same master clock divider is used for both
* transmit and receive, so if a value has already
* been set, it must match this value.
*/
if (ssc_p->cmr_div == 0)
ssc_p->cmr_div = div;
else
if (div != ssc_p->cmr_div)
return -EBUSY;
break;
case ATMEL_SSC_TCMR_PERIOD:
ssc_p->tcmr_period = div;
break;
case ATMEL_SSC_RCMR_PERIOD:
ssc_p->rcmr_period = div;
break;
default:
return -EINVAL;
}
return 0;
}
/*
* Configure the SSC.
*/
static int atmel_ssc_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
int id = dai->id;
struct atmel_ssc_info *ssc_p = &ssc_info[id];
struct ssc_device *ssc = ssc_p->ssc;
struct atmel_pcm_dma_params *dma_params;
int dir, channels, bits;
u32 tfmr, rfmr, tcmr, rcmr;
int start_event;
int ret;
int fslen, fslen_ext;
/*
* Currently, there is only one set of dma params for
* each direction. If more are added, this code will
* have to be changed to select the proper set.
*/
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
dir = 0;
else
dir = 1;
dma_params = ssc_p->dma_params[dir];
channels = params_channels(params);
/*
* Determine sample size in bits and the PDC increment.
*/
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S8:
bits = 8;
dma_params->pdc_xfer_size = 1;
break;
case SNDRV_PCM_FORMAT_S16_LE:
bits = 16;
dma_params->pdc_xfer_size = 2;
break;
case SNDRV_PCM_FORMAT_S24_LE:
bits = 24;
dma_params->pdc_xfer_size = 4;
break;
case SNDRV_PCM_FORMAT_S32_LE:
bits = 32;
dma_params->pdc_xfer_size = 4;
break;
default:
printk(KERN_WARNING "atmel_ssc_dai: unsupported PCM format");
return -EINVAL;
}
/*
* Compute SSC register settings.
*/
switch (ssc_p->daifmt
& (SND_SOC_DAIFMT_FORMAT_MASK | SND_SOC_DAIFMT_MASTER_MASK)) {
case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBS_CFS:
/*
* I2S format, SSC provides BCLK and LRC clocks.
*
* The SSC transmit and receive clocks are generated
* from the MCK divider, and the BCLK signal
* is output on the SSC TK line.
*/
if (bits > 16 && !ssc->pdata->has_fslen_ext) {
dev_err(dai->dev,
"sample size %d is too large for SSC device\n",
bits);
return -EINVAL;
}
fslen_ext = (bits - 1) / 16;
fslen = (bits - 1) % 16;
rcmr = SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
| SSC_BF(RCMR_STTDLY, START_DELAY)
| SSC_BF(RCMR_START, SSC_START_FALLING_RF)
| SSC_BF(RCMR_CKI, SSC_CKI_RISING)
| SSC_BF(RCMR_CKO, SSC_CKO_NONE)
| SSC_BF(RCMR_CKS, SSC_CKS_DIV);
rfmr = SSC_BF(RFMR_FSLEN_EXT, fslen_ext)
| SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
| SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE)
| SSC_BF(RFMR_FSLEN, fslen)
| SSC_BF(RFMR_DATNB, (channels - 1))
| SSC_BIT(RFMR_MSBF)
| SSC_BF(RFMR_LOOP, 0)
| SSC_BF(RFMR_DATLEN, (bits - 1));
tcmr = SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
| SSC_BF(TCMR_STTDLY, START_DELAY)
| SSC_BF(TCMR_START, SSC_START_FALLING_RF)
| SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
| SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
| SSC_BF(TCMR_CKS, SSC_CKS_DIV);
tfmr = SSC_BF(TFMR_FSLEN_EXT, fslen_ext)
| SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
| SSC_BF(TFMR_FSDEN, 0)
| SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE)
| SSC_BF(TFMR_FSLEN, fslen)
| SSC_BF(TFMR_DATNB, (channels - 1))
| SSC_BIT(TFMR_MSBF)
| SSC_BF(TFMR_DATDEF, 0)
| SSC_BF(TFMR_DATLEN, (bits - 1));
break;
case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFM:
/*
* I2S format, CODEC supplies BCLK and LRC clocks.
*
* The SSC transmit clock is obtained from the BCLK signal on
* on the TK line, and the SSC receive clock is
* generated from the transmit clock.
*
* For single channel data, one sample is transferred
* on the falling edge of the LRC clock.
* For two channel data, one sample is
* transferred on both edges of the LRC clock.
*/
start_event = ((channels == 1)
? SSC_START_FALLING_RF
: SSC_START_EDGE_RF);
rcmr = SSC_BF(RCMR_PERIOD, 0)
| SSC_BF(RCMR_STTDLY, START_DELAY)
| SSC_BF(RCMR_START, start_event)
| SSC_BF(RCMR_CKI, SSC_CKI_RISING)
| SSC_BF(RCMR_CKO, SSC_CKO_NONE)
| SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
SSC_CKS_PIN : SSC_CKS_CLOCK);
rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
| SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
| SSC_BF(RFMR_FSLEN, 0)
| SSC_BF(RFMR_DATNB, 0)
| SSC_BIT(RFMR_MSBF)
| SSC_BF(RFMR_LOOP, 0)
| SSC_BF(RFMR_DATLEN, (bits - 1));
tcmr = SSC_BF(TCMR_PERIOD, 0)
| SSC_BF(TCMR_STTDLY, START_DELAY)
| SSC_BF(TCMR_START, start_event)
| SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
| SSC_BF(TCMR_CKO, SSC_CKO_NONE)
| SSC_BF(TCMR_CKS, ssc->clk_from_rk_pin ?
SSC_CKS_CLOCK : SSC_CKS_PIN);
tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
| SSC_BF(TFMR_FSDEN, 0)
| SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
| SSC_BF(TFMR_FSLEN, 0)
| SSC_BF(TFMR_DATNB, 0)
| SSC_BIT(TFMR_MSBF)
| SSC_BF(TFMR_DATDEF, 0)
| SSC_BF(TFMR_DATLEN, (bits - 1));
break;
case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBS_CFS:
/*
* DSP/PCM Mode A format, SSC provides BCLK and LRC clocks.
*
* The SSC transmit and receive clocks are generated from the
* MCK divider, and the BCLK signal is output
* on the SSC TK line.
*/
rcmr = SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
| SSC_BF(RCMR_STTDLY, 1)
| SSC_BF(RCMR_START, SSC_START_RISING_RF)
| SSC_BF(RCMR_CKI, SSC_CKI_RISING)
| SSC_BF(RCMR_CKO, SSC_CKO_NONE)
| SSC_BF(RCMR_CKS, SSC_CKS_DIV);
rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
| SSC_BF(RFMR_FSOS, SSC_FSOS_POSITIVE)
| SSC_BF(RFMR_FSLEN, 0)
| SSC_BF(RFMR_DATNB, (channels - 1))
| SSC_BIT(RFMR_MSBF)
| SSC_BF(RFMR_LOOP, 0)
| SSC_BF(RFMR_DATLEN, (bits - 1));
tcmr = SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
| SSC_BF(TCMR_STTDLY, 1)
| SSC_BF(TCMR_START, SSC_START_RISING_RF)
| SSC_BF(TCMR_CKI, SSC_CKI_RISING)
| SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
| SSC_BF(TCMR_CKS, SSC_CKS_DIV);
tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
| SSC_BF(TFMR_FSDEN, 0)
| SSC_BF(TFMR_FSOS, SSC_FSOS_POSITIVE)
| SSC_BF(TFMR_FSLEN, 0)
| SSC_BF(TFMR_DATNB, (channels - 1))
| SSC_BIT(TFMR_MSBF)
| SSC_BF(TFMR_DATDEF, 0)
| SSC_BF(TFMR_DATLEN, (bits - 1));
break;
case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBM_CFM:
/*
* DSP/PCM Mode A format, CODEC supplies BCLK and LRC clocks.
*
* The SSC transmit clock is obtained from the BCLK signal on
* on the TK line, and the SSC receive clock is
* generated from the transmit clock.
*
* Data is transferred on first BCLK after LRC pulse rising
* edge.If stereo, the right channel data is contiguous with
* the left channel data.
*/
rcmr = SSC_BF(RCMR_PERIOD, 0)
| SSC_BF(RCMR_STTDLY, START_DELAY)
| SSC_BF(RCMR_START, SSC_START_RISING_RF)
| SSC_BF(RCMR_CKI, SSC_CKI_RISING)
| SSC_BF(RCMR_CKO, SSC_CKO_NONE)
| SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
SSC_CKS_PIN : SSC_CKS_CLOCK);
rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
| SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
| SSC_BF(RFMR_FSLEN, 0)
| SSC_BF(RFMR_DATNB, (channels - 1))
| SSC_BIT(RFMR_MSBF)
| SSC_BF(RFMR_LOOP, 0)
| SSC_BF(RFMR_DATLEN, (bits - 1));
tcmr = SSC_BF(TCMR_PERIOD, 0)
| SSC_BF(TCMR_STTDLY, START_DELAY)
| SSC_BF(TCMR_START, SSC_START_RISING_RF)
| SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
| SSC_BF(TCMR_CKO, SSC_CKO_NONE)
| SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
SSC_CKS_CLOCK : SSC_CKS_PIN);
tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
| SSC_BF(TFMR_FSDEN, 0)
| SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
| SSC_BF(TFMR_FSLEN, 0)
| SSC_BF(TFMR_DATNB, (channels - 1))
| SSC_BIT(TFMR_MSBF)
| SSC_BF(TFMR_DATDEF, 0)
| SSC_BF(TFMR_DATLEN, (bits - 1));
break;
default:
printk(KERN_WARNING "atmel_ssc_dai: unsupported DAI format 0x%x\n",
ssc_p->daifmt);
return -EINVAL;
}
pr_debug("atmel_ssc_hw_params: "
"RCMR=%08x RFMR=%08x TCMR=%08x TFMR=%08x\n",
rcmr, rfmr, tcmr, tfmr);
if (!ssc_p->initialized) {
/* Enable PMC peripheral clock for this SSC */
pr_debug("atmel_ssc_dai: Starting clock\n");
clk_enable(ssc_p->ssc->clk);
/* Reset the SSC and its PDC registers */
ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
ssc_writel(ssc_p->ssc->regs, PDC_RPR, 0);
ssc_writel(ssc_p->ssc->regs, PDC_RCR, 0);
ssc_writel(ssc_p->ssc->regs, PDC_RNPR, 0);
ssc_writel(ssc_p->ssc->regs, PDC_RNCR, 0);
ssc_writel(ssc_p->ssc->regs, PDC_TPR, 0);
ssc_writel(ssc_p->ssc->regs, PDC_TCR, 0);
ssc_writel(ssc_p->ssc->regs, PDC_TNPR, 0);
ssc_writel(ssc_p->ssc->regs, PDC_TNCR, 0);
ret = request_irq(ssc_p->ssc->irq, atmel_ssc_interrupt, 0,
ssc_p->name, ssc_p);
if (ret < 0) {
printk(KERN_WARNING
"atmel_ssc_dai: request_irq failure\n");
pr_debug("Atmel_ssc_dai: Stoping clock\n");
clk_disable(ssc_p->ssc->clk);
return ret;
}
ssc_p->initialized = 1;
}
/* set SSC clock mode register */
ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->cmr_div);
/* set receive clock mode and format */
ssc_writel(ssc_p->ssc->regs, RCMR, rcmr);
ssc_writel(ssc_p->ssc->regs, RFMR, rfmr);
/* set transmit clock mode and format */
ssc_writel(ssc_p->ssc->regs, TCMR, tcmr);
ssc_writel(ssc_p->ssc->regs, TFMR, tfmr);
pr_debug("atmel_ssc_dai,hw_params: SSC initialized\n");
return 0;
}
static int atmel_ssc_prepare(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
struct atmel_pcm_dma_params *dma_params;
int dir;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
dir = 0;
else
dir = 1;
dma_params = ssc_p->dma_params[dir];
ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
ssc_writel(ssc_p->ssc->regs, IDR, dma_params->mask->ssc_error);
pr_debug("%s enabled SSC_SR=0x%08x\n",
dir ? "receive" : "transmit",
ssc_readl(ssc_p->ssc->regs, SR));
return 0;
}
static int atmel_ssc_trigger(struct snd_pcm_substream *substream,
int cmd, struct snd_soc_dai *dai)
{
struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
struct atmel_pcm_dma_params *dma_params;
int dir;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
dir = 0;
else
dir = 1;
dma_params = ssc_p->dma_params[dir];
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_enable);
break;
default:
ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
break;
}
return 0;
}
#ifdef CONFIG_PM
static int atmel_ssc_suspend(struct snd_soc_dai *cpu_dai)
{
struct atmel_ssc_info *ssc_p;
if (!cpu_dai->active)
return 0;
ssc_p = &ssc_info[cpu_dai->id];
/* Save the status register before disabling transmit and receive */
ssc_p->ssc_state.ssc_sr = ssc_readl(ssc_p->ssc->regs, SR);
ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_TXDIS) | SSC_BIT(CR_RXDIS));
/* Save the current interrupt mask, then disable unmasked interrupts */
ssc_p->ssc_state.ssc_imr = ssc_readl(ssc_p->ssc->regs, IMR);
ssc_writel(ssc_p->ssc->regs, IDR, ssc_p->ssc_state.ssc_imr);
ssc_p->ssc_state.ssc_cmr = ssc_readl(ssc_p->ssc->regs, CMR);
ssc_p->ssc_state.ssc_rcmr = ssc_readl(ssc_p->ssc->regs, RCMR);
ssc_p->ssc_state.ssc_rfmr = ssc_readl(ssc_p->ssc->regs, RFMR);
ssc_p->ssc_state.ssc_tcmr = ssc_readl(ssc_p->ssc->regs, TCMR);
ssc_p->ssc_state.ssc_tfmr = ssc_readl(ssc_p->ssc->regs, TFMR);
return 0;
}
static int atmel_ssc_resume(struct snd_soc_dai *cpu_dai)
{
struct atmel_ssc_info *ssc_p;
u32 cr;
if (!cpu_dai->active)
return 0;
ssc_p = &ssc_info[cpu_dai->id];
/* restore SSC register settings */
ssc_writel(ssc_p->ssc->regs, TFMR, ssc_p->ssc_state.ssc_tfmr);
ssc_writel(ssc_p->ssc->regs, TCMR, ssc_p->ssc_state.ssc_tcmr);
ssc_writel(ssc_p->ssc->regs, RFMR, ssc_p->ssc_state.ssc_rfmr);
ssc_writel(ssc_p->ssc->regs, RCMR, ssc_p->ssc_state.ssc_rcmr);
ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->ssc_state.ssc_cmr);
/* re-enable interrupts */
ssc_writel(ssc_p->ssc->regs, IER, ssc_p->ssc_state.ssc_imr);
/* Re-enable receive and transmit as appropriate */
cr = 0;
cr |=
(ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_RXEN)) ? SSC_BIT(CR_RXEN) : 0;
cr |=
(ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_TXEN)) ? SSC_BIT(CR_TXEN) : 0;
ssc_writel(ssc_p->ssc->regs, CR, cr);
return 0;
}
#else /* CONFIG_PM */
# define atmel_ssc_suspend NULL
# define atmel_ssc_resume NULL
#endif /* CONFIG_PM */
#define ATMEL_SSC_RATES (SNDRV_PCM_RATE_8000_96000)
#define ATMEL_SSC_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE |\
SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
static const struct snd_soc_dai_ops atmel_ssc_dai_ops = {
.startup = atmel_ssc_startup,
.shutdown = atmel_ssc_shutdown,
.prepare = atmel_ssc_prepare,
.trigger = atmel_ssc_trigger,
.hw_params = atmel_ssc_hw_params,
.set_fmt = atmel_ssc_set_dai_fmt,
.set_clkdiv = atmel_ssc_set_dai_clkdiv,
};
static struct snd_soc_dai_driver atmel_ssc_dai = {
.suspend = atmel_ssc_suspend,
.resume = atmel_ssc_resume,
.playback = {
.channels_min = 1,
.channels_max = 2,
.rates = ATMEL_SSC_RATES,
.formats = ATMEL_SSC_FORMATS,},
.capture = {
.channels_min = 1,
.channels_max = 2,
.rates = ATMEL_SSC_RATES,
.formats = ATMEL_SSC_FORMATS,},
.ops = &atmel_ssc_dai_ops,
};
static const struct snd_soc_component_driver atmel_ssc_component = {
.name = "atmel-ssc",
};
static int asoc_ssc_init(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct ssc_device *ssc = platform_get_drvdata(pdev);
int ret;
ret = snd_soc_register_component(dev, &atmel_ssc_component,
&atmel_ssc_dai, 1);
if (ret) {
dev_err(dev, "Could not register DAI: %d\n", ret);
goto err;
}
if (ssc->pdata->use_dma)
ret = atmel_pcm_dma_platform_register(dev);
else
ret = atmel_pcm_pdc_platform_register(dev);
if (ret) {
dev_err(dev, "Could not register PCM: %d\n", ret);
goto err_unregister_dai;
}
return 0;
err_unregister_dai:
snd_soc_unregister_component(dev);
err:
return ret;
}
static void asoc_ssc_exit(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct ssc_device *ssc = platform_get_drvdata(pdev);
if (ssc->pdata->use_dma)
atmel_pcm_dma_platform_unregister(dev);
else
atmel_pcm_pdc_platform_unregister(dev);
snd_soc_unregister_component(dev);
}
/**
* atmel_ssc_set_audio - Allocate the specified SSC for audio use.
*/
int atmel_ssc_set_audio(int ssc_id)
{
struct ssc_device *ssc;
int ret;
/* If we can grab the SSC briefly to parent the DAI device off it */
ssc = ssc_request(ssc_id);
if (IS_ERR(ssc)) {
pr_err("Unable to parent ASoC SSC DAI on SSC: %ld\n",
PTR_ERR(ssc));
return PTR_ERR(ssc);
} else {
ssc_info[ssc_id].ssc = ssc;
}
ret = asoc_ssc_init(&ssc->pdev->dev);
return ret;
}
EXPORT_SYMBOL_GPL(atmel_ssc_set_audio);
void atmel_ssc_put_audio(int ssc_id)
{
struct ssc_device *ssc = ssc_info[ssc_id].ssc;
asoc_ssc_exit(&ssc->pdev->dev);
ssc_free(ssc);
}
EXPORT_SYMBOL_GPL(atmel_ssc_put_audio);
/* Module information */
MODULE_AUTHOR("Sedji Gaouaou, sedji.gaouaou@atmel.com, www.atmel.com");
MODULE_DESCRIPTION("ATMEL SSC ASoC Interface");
MODULE_LICENSE("GPL");