Kernel  |  3.18

下载     查看原文件
C++程序  |  2561行  |  71.73 KB
/*
 *   ALSA driver for RME Digi96, Digi96/8 and Digi96/8 PRO/PAD/PST audio
 *   interfaces 
 *
 *	Copyright (c) 2000, 2001 Anders Torger <torger@ludd.luth.se>
 *    
 *      Thanks to Henk Hesselink <henk@anda.nl> for the analog volume control
 *      code.
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 *
 */      

#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/vmalloc.h>

#include <sound/core.h>
#include <sound/info.h>
#include <sound/control.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/asoundef.h>
#include <sound/initval.h>

#include <asm/io.h>

/* note, two last pcis should be equal, it is not a bug */

MODULE_AUTHOR("Anders Torger <torger@ludd.luth.se>");
MODULE_DESCRIPTION("RME Digi96, Digi96/8, Digi96/8 PRO, Digi96/8 PST, "
		   "Digi96/8 PAD");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{RME,Digi96},"
		"{RME,Digi96/8},"
		"{RME,Digi96/8 PRO},"
		"{RME,Digi96/8 PST},"
		"{RME,Digi96/8 PAD}}");

static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable this card */

module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for RME Digi96 soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for RME Digi96 soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable RME Digi96 soundcard.");

/*
 * Defines for RME Digi96 series, from internal RME reference documents
 * dated 12.01.00
 */

#define RME96_SPDIF_NCHANNELS 2

/* Playback and capture buffer size */
#define RME96_BUFFER_SIZE 0x10000

/* IO area size */
#define RME96_IO_SIZE 0x60000

/* IO area offsets */
#define RME96_IO_PLAY_BUFFER      0x0
#define RME96_IO_REC_BUFFER       0x10000
#define RME96_IO_CONTROL_REGISTER 0x20000
#define RME96_IO_ADDITIONAL_REG   0x20004
#define RME96_IO_CONFIRM_PLAY_IRQ 0x20008
#define RME96_IO_CONFIRM_REC_IRQ  0x2000C
#define RME96_IO_SET_PLAY_POS     0x40000
#define RME96_IO_RESET_PLAY_POS   0x4FFFC
#define RME96_IO_SET_REC_POS      0x50000
#define RME96_IO_RESET_REC_POS    0x5FFFC
#define RME96_IO_GET_PLAY_POS     0x20000
#define RME96_IO_GET_REC_POS      0x30000

/* Write control register bits */
#define RME96_WCR_START     (1 << 0)
#define RME96_WCR_START_2   (1 << 1)
#define RME96_WCR_GAIN_0    (1 << 2)
#define RME96_WCR_GAIN_1    (1 << 3)
#define RME96_WCR_MODE24    (1 << 4)
#define RME96_WCR_MODE24_2  (1 << 5)
#define RME96_WCR_BM        (1 << 6)
#define RME96_WCR_BM_2      (1 << 7)
#define RME96_WCR_ADAT      (1 << 8)
#define RME96_WCR_FREQ_0    (1 << 9)
#define RME96_WCR_FREQ_1    (1 << 10)
#define RME96_WCR_DS        (1 << 11)
#define RME96_WCR_PRO       (1 << 12)
#define RME96_WCR_EMP       (1 << 13)
#define RME96_WCR_SEL       (1 << 14)
#define RME96_WCR_MASTER    (1 << 15)
#define RME96_WCR_PD        (1 << 16)
#define RME96_WCR_INP_0     (1 << 17)
#define RME96_WCR_INP_1     (1 << 18)
#define RME96_WCR_THRU_0    (1 << 19)
#define RME96_WCR_THRU_1    (1 << 20)
#define RME96_WCR_THRU_2    (1 << 21)
#define RME96_WCR_THRU_3    (1 << 22)
#define RME96_WCR_THRU_4    (1 << 23)
#define RME96_WCR_THRU_5    (1 << 24)
#define RME96_WCR_THRU_6    (1 << 25)
#define RME96_WCR_THRU_7    (1 << 26)
#define RME96_WCR_DOLBY     (1 << 27)
#define RME96_WCR_MONITOR_0 (1 << 28)
#define RME96_WCR_MONITOR_1 (1 << 29)
#define RME96_WCR_ISEL      (1 << 30)
#define RME96_WCR_IDIS      (1 << 31)

#define RME96_WCR_BITPOS_GAIN_0 2
#define RME96_WCR_BITPOS_GAIN_1 3
#define RME96_WCR_BITPOS_FREQ_0 9
#define RME96_WCR_BITPOS_FREQ_1 10
#define RME96_WCR_BITPOS_INP_0 17
#define RME96_WCR_BITPOS_INP_1 18
#define RME96_WCR_BITPOS_MONITOR_0 28
#define RME96_WCR_BITPOS_MONITOR_1 29

/* Read control register bits */
#define RME96_RCR_AUDIO_ADDR_MASK 0xFFFF
#define RME96_RCR_IRQ_2     (1 << 16)
#define RME96_RCR_T_OUT     (1 << 17)
#define RME96_RCR_DEV_ID_0  (1 << 21)
#define RME96_RCR_DEV_ID_1  (1 << 22)
#define RME96_RCR_LOCK      (1 << 23)
#define RME96_RCR_VERF      (1 << 26)
#define RME96_RCR_F0        (1 << 27)
#define RME96_RCR_F1        (1 << 28)
#define RME96_RCR_F2        (1 << 29)
#define RME96_RCR_AUTOSYNC  (1 << 30)
#define RME96_RCR_IRQ       (1 << 31)

#define RME96_RCR_BITPOS_F0 27
#define RME96_RCR_BITPOS_F1 28
#define RME96_RCR_BITPOS_F2 29

/* Additional register bits */
#define RME96_AR_WSEL       (1 << 0)
#define RME96_AR_ANALOG     (1 << 1)
#define RME96_AR_FREQPAD_0  (1 << 2)
#define RME96_AR_FREQPAD_1  (1 << 3)
#define RME96_AR_FREQPAD_2  (1 << 4)
#define RME96_AR_PD2        (1 << 5)
#define RME96_AR_DAC_EN     (1 << 6)
#define RME96_AR_CLATCH     (1 << 7)
#define RME96_AR_CCLK       (1 << 8)
#define RME96_AR_CDATA      (1 << 9)

#define RME96_AR_BITPOS_F0 2
#define RME96_AR_BITPOS_F1 3
#define RME96_AR_BITPOS_F2 4

/* Monitor tracks */
#define RME96_MONITOR_TRACKS_1_2 0
#define RME96_MONITOR_TRACKS_3_4 1
#define RME96_MONITOR_TRACKS_5_6 2
#define RME96_MONITOR_TRACKS_7_8 3

/* Attenuation */
#define RME96_ATTENUATION_0 0
#define RME96_ATTENUATION_6 1
#define RME96_ATTENUATION_12 2
#define RME96_ATTENUATION_18 3

/* Input types */
#define RME96_INPUT_OPTICAL 0
#define RME96_INPUT_COAXIAL 1
#define RME96_INPUT_INTERNAL 2
#define RME96_INPUT_XLR 3
#define RME96_INPUT_ANALOG 4

/* Clock modes */
#define RME96_CLOCKMODE_SLAVE 0
#define RME96_CLOCKMODE_MASTER 1
#define RME96_CLOCKMODE_WORDCLOCK 2

/* Block sizes in bytes */
#define RME96_SMALL_BLOCK_SIZE 2048
#define RME96_LARGE_BLOCK_SIZE 8192

/* Volume control */
#define RME96_AD1852_VOL_BITS 14
#define RME96_AD1855_VOL_BITS 10

/* Defines for snd_rme96_trigger */
#define RME96_TB_START_PLAYBACK 1
#define RME96_TB_START_CAPTURE 2
#define RME96_TB_STOP_PLAYBACK 4
#define RME96_TB_STOP_CAPTURE 8
#define RME96_TB_RESET_PLAYPOS 16
#define RME96_TB_RESET_CAPTUREPOS 32
#define RME96_TB_CLEAR_PLAYBACK_IRQ 64
#define RME96_TB_CLEAR_CAPTURE_IRQ 128
#define RME96_RESUME_PLAYBACK	(RME96_TB_START_PLAYBACK)
#define RME96_RESUME_CAPTURE	(RME96_TB_START_CAPTURE)
#define RME96_RESUME_BOTH	(RME96_RESUME_PLAYBACK \
				| RME96_RESUME_CAPTURE)
#define RME96_START_PLAYBACK	(RME96_TB_START_PLAYBACK \
				| RME96_TB_RESET_PLAYPOS)
#define RME96_START_CAPTURE	(RME96_TB_START_CAPTURE \
				| RME96_TB_RESET_CAPTUREPOS)
#define RME96_START_BOTH	(RME96_START_PLAYBACK \
				| RME96_START_CAPTURE)
#define RME96_STOP_PLAYBACK	(RME96_TB_STOP_PLAYBACK \
				| RME96_TB_CLEAR_PLAYBACK_IRQ)
#define RME96_STOP_CAPTURE	(RME96_TB_STOP_CAPTURE \
				| RME96_TB_CLEAR_CAPTURE_IRQ)
#define RME96_STOP_BOTH		(RME96_STOP_PLAYBACK \
				| RME96_STOP_CAPTURE)

struct rme96 {
	spinlock_t    lock;
	int irq;
	unsigned long port;
	void __iomem *iobase;
	
	u32 wcreg;    /* cached write control register value */
	u32 wcreg_spdif;		/* S/PDIF setup */
	u32 wcreg_spdif_stream;		/* S/PDIF setup (temporary) */
	u32 rcreg;    /* cached read control register value */
	u32 areg;     /* cached additional register value */
	u16 vol[2]; /* cached volume of analog output */

	u8 rev; /* card revision number */

#ifdef CONFIG_PM_SLEEP
	u32 playback_pointer;
	u32 capture_pointer;
	void *playback_suspend_buffer;
	void *capture_suspend_buffer;
#endif

	struct snd_pcm_substream *playback_substream;
	struct snd_pcm_substream *capture_substream;

	int playback_frlog; /* log2 of framesize */
	int capture_frlog;
	
        size_t playback_periodsize; /* in bytes, zero if not used */
	size_t capture_periodsize; /* in bytes, zero if not used */

	struct snd_card *card;
	struct snd_pcm *spdif_pcm;
	struct snd_pcm *adat_pcm; 
	struct pci_dev     *pci;
	struct snd_kcontrol   *spdif_ctl;
};

static const struct pci_device_id snd_rme96_ids[] = {
	{ PCI_VDEVICE(XILINX, PCI_DEVICE_ID_RME_DIGI96), 0, },
	{ PCI_VDEVICE(XILINX, PCI_DEVICE_ID_RME_DIGI96_8), 0, },
	{ PCI_VDEVICE(XILINX, PCI_DEVICE_ID_RME_DIGI96_8_PRO), 0, },
	{ PCI_VDEVICE(XILINX, PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST), 0, },
	{ 0, }
};

MODULE_DEVICE_TABLE(pci, snd_rme96_ids);

#define RME96_ISPLAYING(rme96) ((rme96)->wcreg & RME96_WCR_START)
#define RME96_ISRECORDING(rme96) ((rme96)->wcreg & RME96_WCR_START_2)
#define	RME96_HAS_ANALOG_IN(rme96) ((rme96)->pci->device == PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST)
#define	RME96_HAS_ANALOG_OUT(rme96) ((rme96)->pci->device == PCI_DEVICE_ID_RME_DIGI96_8_PRO || \
				     (rme96)->pci->device == PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST)
#define	RME96_DAC_IS_1852(rme96) (RME96_HAS_ANALOG_OUT(rme96) && (rme96)->rev >= 4)
#define	RME96_DAC_IS_1855(rme96) (((rme96)->pci->device == PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST && (rme96)->rev < 4) || \
			          ((rme96)->pci->device == PCI_DEVICE_ID_RME_DIGI96_8_PRO && (rme96)->rev == 2))
#define	RME96_185X_MAX_OUT(rme96) ((1 << (RME96_DAC_IS_1852(rme96) ? RME96_AD1852_VOL_BITS : RME96_AD1855_VOL_BITS)) - 1)

static int
snd_rme96_playback_prepare(struct snd_pcm_substream *substream);

static int
snd_rme96_capture_prepare(struct snd_pcm_substream *substream);

static int
snd_rme96_playback_trigger(struct snd_pcm_substream *substream, 
			   int cmd);

static int
snd_rme96_capture_trigger(struct snd_pcm_substream *substream, 
			  int cmd);

static snd_pcm_uframes_t
snd_rme96_playback_pointer(struct snd_pcm_substream *substream);

static snd_pcm_uframes_t
snd_rme96_capture_pointer(struct snd_pcm_substream *substream);

static void snd_rme96_proc_init(struct rme96 *rme96);

static int
snd_rme96_create_switches(struct snd_card *card,
			  struct rme96 *rme96);

static int
snd_rme96_getinputtype(struct rme96 *rme96);

static inline unsigned int
snd_rme96_playback_ptr(struct rme96 *rme96)
{
	return (readl(rme96->iobase + RME96_IO_GET_PLAY_POS)
		& RME96_RCR_AUDIO_ADDR_MASK) >> rme96->playback_frlog;
}

static inline unsigned int
snd_rme96_capture_ptr(struct rme96 *rme96)
{
	return (readl(rme96->iobase + RME96_IO_GET_REC_POS)
		& RME96_RCR_AUDIO_ADDR_MASK) >> rme96->capture_frlog;
}

static int
snd_rme96_playback_silence(struct snd_pcm_substream *substream,
			   int channel, /* not used (interleaved data) */
			   snd_pcm_uframes_t pos,
			   snd_pcm_uframes_t count)
{
	struct rme96 *rme96 = snd_pcm_substream_chip(substream);
	count <<= rme96->playback_frlog;
	pos <<= rme96->playback_frlog;
	memset_io(rme96->iobase + RME96_IO_PLAY_BUFFER + pos,
		  0, count);
	return 0;
}

static int
snd_rme96_playback_copy(struct snd_pcm_substream *substream,
			int channel, /* not used (interleaved data) */
			snd_pcm_uframes_t pos,
			void __user *src,
			snd_pcm_uframes_t count)
{
	struct rme96 *rme96 = snd_pcm_substream_chip(substream);
	count <<= rme96->playback_frlog;
	pos <<= rme96->playback_frlog;
	return copy_from_user_toio(rme96->iobase + RME96_IO_PLAY_BUFFER + pos, src,
				   count);
}

static int
snd_rme96_capture_copy(struct snd_pcm_substream *substream,
		       int channel, /* not used (interleaved data) */
		       snd_pcm_uframes_t pos,
		       void __user *dst,
		       snd_pcm_uframes_t count)
{
	struct rme96 *rme96 = snd_pcm_substream_chip(substream);
	count <<= rme96->capture_frlog;
	pos <<= rme96->capture_frlog;
	return copy_to_user_fromio(dst, rme96->iobase + RME96_IO_REC_BUFFER + pos,
				   count);
}

/*
 * Digital output capabilities (S/PDIF)
 */
static struct snd_pcm_hardware snd_rme96_playback_spdif_info =
{
	.info =		     (SNDRV_PCM_INFO_MMAP_IOMEM |
			      SNDRV_PCM_INFO_MMAP_VALID |
			      SNDRV_PCM_INFO_SYNC_START |
			      SNDRV_PCM_INFO_RESUME |
			      SNDRV_PCM_INFO_INTERLEAVED |
			      SNDRV_PCM_INFO_PAUSE),
	.formats =	     (SNDRV_PCM_FMTBIT_S16_LE |
			      SNDRV_PCM_FMTBIT_S32_LE),
	.rates =	     (SNDRV_PCM_RATE_32000 |
			      SNDRV_PCM_RATE_44100 | 
			      SNDRV_PCM_RATE_48000 | 
			      SNDRV_PCM_RATE_64000 |
			      SNDRV_PCM_RATE_88200 | 
			      SNDRV_PCM_RATE_96000),
	.rate_min =	     32000,
	.rate_max =	     96000,
	.channels_min =	     2,
	.channels_max =	     2,
	.buffer_bytes_max =  RME96_BUFFER_SIZE,
	.period_bytes_min =  RME96_SMALL_BLOCK_SIZE,
	.period_bytes_max =  RME96_LARGE_BLOCK_SIZE,
	.periods_min =	     RME96_BUFFER_SIZE / RME96_LARGE_BLOCK_SIZE,
	.periods_max =	     RME96_BUFFER_SIZE / RME96_SMALL_BLOCK_SIZE,
	.fifo_size =	     0,
};

/*
 * Digital input capabilities (S/PDIF)
 */
static struct snd_pcm_hardware snd_rme96_capture_spdif_info =
{
	.info =		     (SNDRV_PCM_INFO_MMAP_IOMEM |
			      SNDRV_PCM_INFO_MMAP_VALID |
			      SNDRV_PCM_INFO_SYNC_START |
			      SNDRV_PCM_INFO_RESUME |
			      SNDRV_PCM_INFO_INTERLEAVED |
			      SNDRV_PCM_INFO_PAUSE),
	.formats =	     (SNDRV_PCM_FMTBIT_S16_LE |
			      SNDRV_PCM_FMTBIT_S32_LE),
	.rates =	     (SNDRV_PCM_RATE_32000 |
			      SNDRV_PCM_RATE_44100 | 
			      SNDRV_PCM_RATE_48000 | 
			      SNDRV_PCM_RATE_64000 |
			      SNDRV_PCM_RATE_88200 | 
			      SNDRV_PCM_RATE_96000),
	.rate_min =	     32000,
	.rate_max =	     96000,
	.channels_min =	     2,
	.channels_max =	     2,
	.buffer_bytes_max =  RME96_BUFFER_SIZE,
	.period_bytes_min =  RME96_SMALL_BLOCK_SIZE,
	.period_bytes_max =  RME96_LARGE_BLOCK_SIZE,
	.periods_min =	     RME96_BUFFER_SIZE / RME96_LARGE_BLOCK_SIZE,
	.periods_max =	     RME96_BUFFER_SIZE / RME96_SMALL_BLOCK_SIZE,
	.fifo_size =	     0,
};

/*
 * Digital output capabilities (ADAT)
 */
static struct snd_pcm_hardware snd_rme96_playback_adat_info =
{
	.info =		     (SNDRV_PCM_INFO_MMAP_IOMEM |
			      SNDRV_PCM_INFO_MMAP_VALID |
			      SNDRV_PCM_INFO_SYNC_START |
			      SNDRV_PCM_INFO_RESUME |
			      SNDRV_PCM_INFO_INTERLEAVED |
			      SNDRV_PCM_INFO_PAUSE),
	.formats =	     (SNDRV_PCM_FMTBIT_S16_LE |
			      SNDRV_PCM_FMTBIT_S32_LE),
	.rates =             (SNDRV_PCM_RATE_44100 | 
			      SNDRV_PCM_RATE_48000),
	.rate_min =          44100,
	.rate_max =          48000,
	.channels_min =      8,
	.channels_max =	     8,
	.buffer_bytes_max =  RME96_BUFFER_SIZE,
	.period_bytes_min =  RME96_SMALL_BLOCK_SIZE,
	.period_bytes_max =  RME96_LARGE_BLOCK_SIZE,
	.periods_min =	     RME96_BUFFER_SIZE / RME96_LARGE_BLOCK_SIZE,
	.periods_max =	     RME96_BUFFER_SIZE / RME96_SMALL_BLOCK_SIZE,
	.fifo_size =	     0,
};

/*
 * Digital input capabilities (ADAT)
 */
static struct snd_pcm_hardware snd_rme96_capture_adat_info =
{
	.info =		     (SNDRV_PCM_INFO_MMAP_IOMEM |
			      SNDRV_PCM_INFO_MMAP_VALID |
			      SNDRV_PCM_INFO_SYNC_START |
			      SNDRV_PCM_INFO_RESUME |
			      SNDRV_PCM_INFO_INTERLEAVED |
			      SNDRV_PCM_INFO_PAUSE),
	.formats =	     (SNDRV_PCM_FMTBIT_S16_LE |
			      SNDRV_PCM_FMTBIT_S32_LE),
	.rates =	     (SNDRV_PCM_RATE_44100 | 
			      SNDRV_PCM_RATE_48000),
	.rate_min =          44100,
	.rate_max =          48000,
	.channels_min =      8,
	.channels_max =	     8,
	.buffer_bytes_max =  RME96_BUFFER_SIZE,
	.period_bytes_min =  RME96_SMALL_BLOCK_SIZE,
	.period_bytes_max =  RME96_LARGE_BLOCK_SIZE,
	.periods_min =	     RME96_BUFFER_SIZE / RME96_LARGE_BLOCK_SIZE,
	.periods_max =	     RME96_BUFFER_SIZE / RME96_SMALL_BLOCK_SIZE,
	.fifo_size =         0,
};

/*
 * The CDATA, CCLK and CLATCH bits can be used to write to the SPI interface
 * of the AD1852 or AD1852 D/A converter on the board.  CDATA must be set up
 * on the falling edge of CCLK and be stable on the rising edge.  The rising
 * edge of CLATCH after the last data bit clocks in the whole data word.
 * A fast processor could probably drive the SPI interface faster than the
 * DAC can handle (3MHz for the 1855, unknown for the 1852).  The udelay(1)
 * limits the data rate to 500KHz and only causes a delay of 33 microsecs.
 *
 * NOTE: increased delay from 1 to 10, since there where problems setting
 * the volume.
 */
static void
snd_rme96_write_SPI(struct rme96 *rme96, u16 val)
{
	int i;

	for (i = 0; i < 16; i++) {
		if (val & 0x8000) {
			rme96->areg |= RME96_AR_CDATA;
		} else {
			rme96->areg &= ~RME96_AR_CDATA;
		}
		rme96->areg &= ~(RME96_AR_CCLK | RME96_AR_CLATCH);
		writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
		udelay(10);
		rme96->areg |= RME96_AR_CCLK;
		writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
		udelay(10);
		val <<= 1;
	}
	rme96->areg &= ~(RME96_AR_CCLK | RME96_AR_CDATA);
	rme96->areg |= RME96_AR_CLATCH;
	writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
	udelay(10);
	rme96->areg &= ~RME96_AR_CLATCH;
	writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
}

static void
snd_rme96_apply_dac_volume(struct rme96 *rme96)
{
	if (RME96_DAC_IS_1852(rme96)) {
		snd_rme96_write_SPI(rme96, (rme96->vol[0] << 2) | 0x0);
		snd_rme96_write_SPI(rme96, (rme96->vol[1] << 2) | 0x2);
	} else if (RME96_DAC_IS_1855(rme96)) {
		snd_rme96_write_SPI(rme96, (rme96->vol[0] & 0x3FF) | 0x000);
		snd_rme96_write_SPI(rme96, (rme96->vol[1] & 0x3FF) | 0x400);
	}
}

static void
snd_rme96_reset_dac(struct rme96 *rme96)
{
	writel(rme96->wcreg | RME96_WCR_PD,
	       rme96->iobase + RME96_IO_CONTROL_REGISTER);
	writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
}

static int
snd_rme96_getmontracks(struct rme96 *rme96)
{
	return ((rme96->wcreg >> RME96_WCR_BITPOS_MONITOR_0) & 1) +
		(((rme96->wcreg >> RME96_WCR_BITPOS_MONITOR_1) & 1) << 1);
}

static int
snd_rme96_setmontracks(struct rme96 *rme96,
		       int montracks)
{
	if (montracks & 1) {
		rme96->wcreg |= RME96_WCR_MONITOR_0;
	} else {
		rme96->wcreg &= ~RME96_WCR_MONITOR_0;
	}
	if (montracks & 2) {
		rme96->wcreg |= RME96_WCR_MONITOR_1;
	} else {
		rme96->wcreg &= ~RME96_WCR_MONITOR_1;
	}
	writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
	return 0;
}

static int
snd_rme96_getattenuation(struct rme96 *rme96)
{
	return ((rme96->wcreg >> RME96_WCR_BITPOS_GAIN_0) & 1) +
		(((rme96->wcreg >> RME96_WCR_BITPOS_GAIN_1) & 1) << 1);
}

static int
snd_rme96_setattenuation(struct rme96 *rme96,
			 int attenuation)
{
	switch (attenuation) {
	case 0:
		rme96->wcreg = (rme96->wcreg & ~RME96_WCR_GAIN_0) &
			~RME96_WCR_GAIN_1;
		break;
	case 1:
		rme96->wcreg = (rme96->wcreg | RME96_WCR_GAIN_0) &
			~RME96_WCR_GAIN_1;
		break;
	case 2:
		rme96->wcreg = (rme96->wcreg & ~RME96_WCR_GAIN_0) |
			RME96_WCR_GAIN_1;
		break;
	case 3:
		rme96->wcreg = (rme96->wcreg | RME96_WCR_GAIN_0) |
			RME96_WCR_GAIN_1;
		break;
	default:
		return -EINVAL;
	}
	writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
	return 0;
}

static int
snd_rme96_capture_getrate(struct rme96 *rme96,
			  int *is_adat)
{	
	int n, rate;

	*is_adat = 0;
	if (rme96->areg & RME96_AR_ANALOG) {
		/* Analog input, overrides S/PDIF setting */
		n = ((rme96->areg >> RME96_AR_BITPOS_F0) & 1) +
			(((rme96->areg >> RME96_AR_BITPOS_F1) & 1) << 1);
		switch (n) {
		case 1:
			rate = 32000;
			break;
		case 2:
			rate = 44100;
			break;
		case 3:
			rate = 48000;
			break;
		default:
			return -1;
		}
		return (rme96->areg & RME96_AR_BITPOS_F2) ? rate << 1 : rate;
	}

	rme96->rcreg = readl(rme96->iobase + RME96_IO_CONTROL_REGISTER);
	if (rme96->rcreg & RME96_RCR_LOCK) {
		/* ADAT rate */
		*is_adat = 1;
		if (rme96->rcreg & RME96_RCR_T_OUT) {
			return 48000;
		}
		return 44100;
	}

	if (rme96->rcreg & RME96_RCR_VERF) {
		return -1;
	}
	
	/* S/PDIF rate */
	n = ((rme96->rcreg >> RME96_RCR_BITPOS_F0) & 1) +
		(((rme96->rcreg >> RME96_RCR_BITPOS_F1) & 1) << 1) +
		(((rme96->rcreg >> RME96_RCR_BITPOS_F2) & 1) << 2);
	
	switch (n) {
	case 0:		
		if (rme96->rcreg & RME96_RCR_T_OUT) {
			return 64000;
		}
		return -1;
	case 3: return 96000;
	case 4: return 88200;
	case 5: return 48000;
	case 6: return 44100;
	case 7: return 32000;
	default:
		break;
	}
	return -1;
}

static int
snd_rme96_playback_getrate(struct rme96 *rme96)
{
	int rate, dummy;

	if (!(rme96->wcreg & RME96_WCR_MASTER) &&
            snd_rme96_getinputtype(rme96) != RME96_INPUT_ANALOG &&
	    (rate = snd_rme96_capture_getrate(rme96, &dummy)) > 0)
	{
	        /* slave clock */
	        return rate;
	}
	rate = ((rme96->wcreg >> RME96_WCR_BITPOS_FREQ_0) & 1) +
		(((rme96->wcreg >> RME96_WCR_BITPOS_FREQ_1) & 1) << 1);
	switch (rate) {
	case 1:
		rate = 32000;
		break;
	case 2:
		rate = 44100;
		break;
	case 3:
		rate = 48000;
		break;
	default:
		return -1;
	}
	return (rme96->wcreg & RME96_WCR_DS) ? rate << 1 : rate;
}

static int
snd_rme96_playback_setrate(struct rme96 *rme96,
			   int rate)
{
	int ds;

	ds = rme96->wcreg & RME96_WCR_DS;
	switch (rate) {
	case 32000:
		rme96->wcreg &= ~RME96_WCR_DS;
		rme96->wcreg = (rme96->wcreg | RME96_WCR_FREQ_0) &
			~RME96_WCR_FREQ_1;
		break;
	case 44100:
		rme96->wcreg &= ~RME96_WCR_DS;
		rme96->wcreg = (rme96->wcreg | RME96_WCR_FREQ_1) &
			~RME96_WCR_FREQ_0;
		break;
	case 48000:
		rme96->wcreg &= ~RME96_WCR_DS;
		rme96->wcreg = (rme96->wcreg | RME96_WCR_FREQ_0) |
			RME96_WCR_FREQ_1;
		break;
	case 64000:
		rme96->wcreg |= RME96_WCR_DS;
		rme96->wcreg = (rme96->wcreg | RME96_WCR_FREQ_0) &
			~RME96_WCR_FREQ_1;
		break;
	case 88200:
		rme96->wcreg |= RME96_WCR_DS;
		rme96->wcreg = (rme96->wcreg | RME96_WCR_FREQ_1) &
			~RME96_WCR_FREQ_0;
		break;
	case 96000:
		rme96->wcreg |= RME96_WCR_DS;
		rme96->wcreg = (rme96->wcreg | RME96_WCR_FREQ_0) |
			RME96_WCR_FREQ_1;
		break;
	default:
		return -EINVAL;
	}
	if ((!ds && rme96->wcreg & RME96_WCR_DS) ||
	    (ds && !(rme96->wcreg & RME96_WCR_DS)))
	{
		/* change to/from double-speed: reset the DAC (if available) */
		snd_rme96_reset_dac(rme96);
	} else {
		writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
	}
	return 0;
}

static int
snd_rme96_capture_analog_setrate(struct rme96 *rme96,
				 int rate)
{
	switch (rate) {
	case 32000:
		rme96->areg = ((rme96->areg | RME96_AR_FREQPAD_0) &
			       ~RME96_AR_FREQPAD_1) & ~RME96_AR_FREQPAD_2;
		break;
	case 44100:
		rme96->areg = ((rme96->areg & ~RME96_AR_FREQPAD_0) |
			       RME96_AR_FREQPAD_1) & ~RME96_AR_FREQPAD_2;
		break;
	case 48000:
		rme96->areg = ((rme96->areg | RME96_AR_FREQPAD_0) |
			       RME96_AR_FREQPAD_1) & ~RME96_AR_FREQPAD_2;
		break;
	case 64000:
		if (rme96->rev < 4) {
			return -EINVAL;
		}
		rme96->areg = ((rme96->areg | RME96_AR_FREQPAD_0) &
			       ~RME96_AR_FREQPAD_1) | RME96_AR_FREQPAD_2;
		break;
	case 88200:
		if (rme96->rev < 4) {
			return -EINVAL;
		}
		rme96->areg = ((rme96->areg & ~RME96_AR_FREQPAD_0) |
			       RME96_AR_FREQPAD_1) | RME96_AR_FREQPAD_2;
		break;
	case 96000:
		rme96->areg = ((rme96->areg | RME96_AR_FREQPAD_0) |
			       RME96_AR_FREQPAD_1) | RME96_AR_FREQPAD_2;
		break;
	default:
		return -EINVAL;
	}
	writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
	return 0;
}

static int
snd_rme96_setclockmode(struct rme96 *rme96,
		       int mode)
{
	switch (mode) {
	case RME96_CLOCKMODE_SLAVE:
	        /* AutoSync */ 
		rme96->wcreg &= ~RME96_WCR_MASTER;
		rme96->areg &= ~RME96_AR_WSEL;
		break;
	case RME96_CLOCKMODE_MASTER:
	        /* Internal */
		rme96->wcreg |= RME96_WCR_MASTER;
		rme96->areg &= ~RME96_AR_WSEL;
		break;
	case RME96_CLOCKMODE_WORDCLOCK:
		/* Word clock is a master mode */
		rme96->wcreg |= RME96_WCR_MASTER; 
		rme96->areg |= RME96_AR_WSEL;
		break;
	default:
		return -EINVAL;
	}
	writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
	writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
	return 0;
}

static int
snd_rme96_getclockmode(struct rme96 *rme96)
{
	if (rme96->areg & RME96_AR_WSEL) {
		return RME96_CLOCKMODE_WORDCLOCK;
	}
	return (rme96->wcreg & RME96_WCR_MASTER) ? RME96_CLOCKMODE_MASTER :
		RME96_CLOCKMODE_SLAVE;
}

static int
snd_rme96_setinputtype(struct rme96 *rme96,
		       int type)
{
	int n;

	switch (type) {
	case RME96_INPUT_OPTICAL:
		rme96->wcreg = (rme96->wcreg & ~RME96_WCR_INP_0) &
			~RME96_WCR_INP_1;
		break;
	case RME96_INPUT_COAXIAL:
		rme96->wcreg = (rme96->wcreg | RME96_WCR_INP_0) &
			~RME96_WCR_INP_1;
		break;
	case RME96_INPUT_INTERNAL:
		rme96->wcreg = (rme96->wcreg & ~RME96_WCR_INP_0) |
			RME96_WCR_INP_1;
		break;
	case RME96_INPUT_XLR:
		if ((rme96->pci->device != PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST &&
		     rme96->pci->device != PCI_DEVICE_ID_RME_DIGI96_8_PRO) ||
		    (rme96->pci->device == PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST &&
		     rme96->rev > 4))
		{
			/* Only Digi96/8 PRO and Digi96/8 PAD supports XLR */
			return -EINVAL;
		}
		rme96->wcreg = (rme96->wcreg | RME96_WCR_INP_0) |
			RME96_WCR_INP_1;
		break;
	case RME96_INPUT_ANALOG:
		if (!RME96_HAS_ANALOG_IN(rme96)) {
			return -EINVAL;
		}
		rme96->areg |= RME96_AR_ANALOG;
		writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
		if (rme96->rev < 4) {
			/*
			 * Revision less than 004 does not support 64 and
			 * 88.2 kHz
			 */
			if (snd_rme96_capture_getrate(rme96, &n) == 88200) {
				snd_rme96_capture_analog_setrate(rme96, 44100);
			}
			if (snd_rme96_capture_getrate(rme96, &n) == 64000) {
				snd_rme96_capture_analog_setrate(rme96, 32000);
			}
		}
		return 0;
	default:
		return -EINVAL;
	}
	if (type != RME96_INPUT_ANALOG && RME96_HAS_ANALOG_IN(rme96)) {
		rme96->areg &= ~RME96_AR_ANALOG;
		writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
	}
	writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
	return 0;
}

static int
snd_rme96_getinputtype(struct rme96 *rme96)
{
	if (rme96->areg & RME96_AR_ANALOG) {
		return RME96_INPUT_ANALOG;
	}
	return ((rme96->wcreg >> RME96_WCR_BITPOS_INP_0) & 1) +
		(((rme96->wcreg >> RME96_WCR_BITPOS_INP_1) & 1) << 1);
}

static void
snd_rme96_setframelog(struct rme96 *rme96,
		      int n_channels,
		      int is_playback)
{
	int frlog;
	
	if (n_channels == 2) {
		frlog = 1;
	} else {
		/* assume 8 channels */
		frlog = 3;
	}
	if (is_playback) {
		frlog += (rme96->wcreg & RME96_WCR_MODE24) ? 2 : 1;
		rme96->playback_frlog = frlog;
	} else {
		frlog += (rme96->wcreg & RME96_WCR_MODE24_2) ? 2 : 1;
		rme96->capture_frlog = frlog;
	}
}

static int
snd_rme96_playback_setformat(struct rme96 *rme96,
			     int format)
{
	switch (format) {
	case SNDRV_PCM_FORMAT_S16_LE:
		rme96->wcreg &= ~RME96_WCR_MODE24;
		break;
	case SNDRV_PCM_FORMAT_S32_LE:
		rme96->wcreg |= RME96_WCR_MODE24;
		break;
	default:
		return -EINVAL;
	}
	writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
	return 0;
}

static int
snd_rme96_capture_setformat(struct rme96 *rme96,
			    int format)
{
	switch (format) {
	case SNDRV_PCM_FORMAT_S16_LE:
		rme96->wcreg &= ~RME96_WCR_MODE24_2;
		break;
	case SNDRV_PCM_FORMAT_S32_LE:
		rme96->wcreg |= RME96_WCR_MODE24_2;
		break;
	default:
		return -EINVAL;
	}
	writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
	return 0;
}

static void
snd_rme96_set_period_properties(struct rme96 *rme96,
				size_t period_bytes)
{
	switch (period_bytes) {
	case RME96_LARGE_BLOCK_SIZE:
		rme96->wcreg &= ~RME96_WCR_ISEL;
		break;
	case RME96_SMALL_BLOCK_SIZE:
		rme96->wcreg |= RME96_WCR_ISEL;
		break;
	default:
		snd_BUG();
		break;
	}
	rme96->wcreg &= ~RME96_WCR_IDIS;
	writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
}

static int
snd_rme96_playback_hw_params(struct snd_pcm_substream *substream,
			     struct snd_pcm_hw_params *params)
{
	struct rme96 *rme96 = snd_pcm_substream_chip(substream);
	struct snd_pcm_runtime *runtime = substream->runtime;
	int err, rate, dummy;

	runtime->dma_area = (void __force *)(rme96->iobase +
					     RME96_IO_PLAY_BUFFER);
	runtime->dma_addr = rme96->port + RME96_IO_PLAY_BUFFER;
	runtime->dma_bytes = RME96_BUFFER_SIZE;

	spin_lock_irq(&rme96->lock);
	if (!(rme96->wcreg & RME96_WCR_MASTER) &&
            snd_rme96_getinputtype(rme96) != RME96_INPUT_ANALOG &&
	    (rate = snd_rme96_capture_getrate(rme96, &dummy)) > 0)
	{
                /* slave clock */
                if ((int)params_rate(params) != rate) {
			spin_unlock_irq(&rme96->lock);
			return -EIO;                    
                }
	} else if ((err = snd_rme96_playback_setrate(rme96, params_rate(params))) < 0) {
		spin_unlock_irq(&rme96->lock);
		return err;
	}
	if ((err = snd_rme96_playback_setformat(rme96, params_format(params))) < 0) {
		spin_unlock_irq(&rme96->lock);
		return err;
	}
	snd_rme96_setframelog(rme96, params_channels(params), 1);
	if (rme96->capture_periodsize != 0) {
		if (params_period_size(params) << rme96->playback_frlog !=
		    rme96->capture_periodsize)
		{
			spin_unlock_irq(&rme96->lock);
			return -EBUSY;
		}
	}
	rme96->playback_periodsize =
		params_period_size(params) << rme96->playback_frlog;
	snd_rme96_set_period_properties(rme96, rme96->playback_periodsize);
	/* S/PDIF setup */
	if ((rme96->wcreg & RME96_WCR_ADAT) == 0) {
		rme96->wcreg &= ~(RME96_WCR_PRO | RME96_WCR_DOLBY | RME96_WCR_EMP);
		writel(rme96->wcreg |= rme96->wcreg_spdif_stream, rme96->iobase + RME96_IO_CONTROL_REGISTER);
	}
	spin_unlock_irq(&rme96->lock);
		
	return 0;
}

static int
snd_rme96_capture_hw_params(struct snd_pcm_substream *substream,
			    struct snd_pcm_hw_params *params)
{
	struct rme96 *rme96 = snd_pcm_substream_chip(substream);
	struct snd_pcm_runtime *runtime = substream->runtime;
	int err, isadat, rate;
	
	runtime->dma_area = (void __force *)(rme96->iobase +
					     RME96_IO_REC_BUFFER);
	runtime->dma_addr = rme96->port + RME96_IO_REC_BUFFER;
	runtime->dma_bytes = RME96_BUFFER_SIZE;

	spin_lock_irq(&rme96->lock);
	if ((err = snd_rme96_capture_setformat(rme96, params_format(params))) < 0) {
		spin_unlock_irq(&rme96->lock);
		return err;
	}
	if (snd_rme96_getinputtype(rme96) == RME96_INPUT_ANALOG) {
		if ((err = snd_rme96_capture_analog_setrate(rme96,
							    params_rate(params))) < 0)
		{
			spin_unlock_irq(&rme96->lock);
			return err;
		}
	} else if ((rate = snd_rme96_capture_getrate(rme96, &isadat)) > 0) {
                if ((int)params_rate(params) != rate) {
			spin_unlock_irq(&rme96->lock);
			return -EIO;                    
                }
                if ((isadat && runtime->hw.channels_min == 2) ||
                    (!isadat && runtime->hw.channels_min == 8))
                {
			spin_unlock_irq(&rme96->lock);
			return -EIO;
                }
        }
	snd_rme96_setframelog(rme96, params_channels(params), 0);
	if (rme96->playback_periodsize != 0) {
		if (params_period_size(params) << rme96->capture_frlog !=
		    rme96->playback_periodsize)
		{
			spin_unlock_irq(&rme96->lock);
			return -EBUSY;
		}
	}
	rme96->capture_periodsize =
		params_period_size(params) << rme96->capture_frlog;
	snd_rme96_set_period_properties(rme96, rme96->capture_periodsize);
	spin_unlock_irq(&rme96->lock);

	return 0;
}

static void
snd_rme96_trigger(struct rme96 *rme96,
		  int op)
{
	if (op & RME96_TB_RESET_PLAYPOS)
		writel(0, rme96->iobase + RME96_IO_RESET_PLAY_POS);
	if (op & RME96_TB_RESET_CAPTUREPOS)
		writel(0, rme96->iobase + RME96_IO_RESET_REC_POS);
	if (op & RME96_TB_CLEAR_PLAYBACK_IRQ) {
		rme96->rcreg = readl(rme96->iobase + RME96_IO_CONTROL_REGISTER);
		if (rme96->rcreg & RME96_RCR_IRQ)
			writel(0, rme96->iobase + RME96_IO_CONFIRM_PLAY_IRQ);
	}
	if (op & RME96_TB_CLEAR_CAPTURE_IRQ) {
		rme96->rcreg = readl(rme96->iobase + RME96_IO_CONTROL_REGISTER);
		if (rme96->rcreg & RME96_RCR_IRQ_2)
			writel(0, rme96->iobase + RME96_IO_CONFIRM_REC_IRQ);
	}
	if (op & RME96_TB_START_PLAYBACK)
		rme96->wcreg |= RME96_WCR_START;
	if (op & RME96_TB_STOP_PLAYBACK)
		rme96->wcreg &= ~RME96_WCR_START;
	if (op & RME96_TB_START_CAPTURE)
		rme96->wcreg |= RME96_WCR_START_2;
	if (op & RME96_TB_STOP_CAPTURE)
		rme96->wcreg &= ~RME96_WCR_START_2;
	writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
}



static irqreturn_t
snd_rme96_interrupt(int irq,
		    void *dev_id)
{
	struct rme96 *rme96 = (struct rme96 *)dev_id;

	rme96->rcreg = readl(rme96->iobase + RME96_IO_CONTROL_REGISTER);
	/* fastpath out, to ease interrupt sharing */
	if (!((rme96->rcreg & RME96_RCR_IRQ) ||
	      (rme96->rcreg & RME96_RCR_IRQ_2)))
	{
		return IRQ_NONE;
	}
	
	if (rme96->rcreg & RME96_RCR_IRQ) {
		/* playback */
                snd_pcm_period_elapsed(rme96->playback_substream);
		writel(0, rme96->iobase + RME96_IO_CONFIRM_PLAY_IRQ);
	}
	if (rme96->rcreg & RME96_RCR_IRQ_2) {
		/* capture */
		snd_pcm_period_elapsed(rme96->capture_substream);		
		writel(0, rme96->iobase + RME96_IO_CONFIRM_REC_IRQ);
	}
	return IRQ_HANDLED;
}

static unsigned int period_bytes[] = { RME96_SMALL_BLOCK_SIZE, RME96_LARGE_BLOCK_SIZE };

static struct snd_pcm_hw_constraint_list hw_constraints_period_bytes = {
	.count = ARRAY_SIZE(period_bytes),
	.list = period_bytes,
	.mask = 0
};

static void
rme96_set_buffer_size_constraint(struct rme96 *rme96,
				 struct snd_pcm_runtime *runtime)
{
	unsigned int size;

	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
				     RME96_BUFFER_SIZE, RME96_BUFFER_SIZE);
	if ((size = rme96->playback_periodsize) != 0 ||
	    (size = rme96->capture_periodsize) != 0)
		snd_pcm_hw_constraint_minmax(runtime,
					     SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
					     size, size);
	else
		snd_pcm_hw_constraint_list(runtime, 0,
					   SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
					   &hw_constraints_period_bytes);
}

static int
snd_rme96_playback_spdif_open(struct snd_pcm_substream *substream)
{
        int rate, dummy;
	struct rme96 *rme96 = snd_pcm_substream_chip(substream);
	struct snd_pcm_runtime *runtime = substream->runtime;

	snd_pcm_set_sync(substream);
	spin_lock_irq(&rme96->lock);	
        if (rme96->playback_substream != NULL) {
		spin_unlock_irq(&rme96->lock);
                return -EBUSY;
        }
	rme96->wcreg &= ~RME96_WCR_ADAT;
	writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
	rme96->playback_substream = substream;
	spin_unlock_irq(&rme96->lock);

	runtime->hw = snd_rme96_playback_spdif_info;
	if (!(rme96->wcreg & RME96_WCR_MASTER) &&
            snd_rme96_getinputtype(rme96) != RME96_INPUT_ANALOG &&
	    (rate = snd_rme96_capture_getrate(rme96, &dummy)) > 0)
	{
                /* slave clock */
                runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
                runtime->hw.rate_min = rate;
                runtime->hw.rate_max = rate;
	}        
	rme96_set_buffer_size_constraint(rme96, runtime);

	rme96->wcreg_spdif_stream = rme96->wcreg_spdif;
	rme96->spdif_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
	snd_ctl_notify(rme96->card, SNDRV_CTL_EVENT_MASK_VALUE |
		       SNDRV_CTL_EVENT_MASK_INFO, &rme96->spdif_ctl->id);
	return 0;
}

static int
snd_rme96_capture_spdif_open(struct snd_pcm_substream *substream)
{
        int isadat, rate;
	struct rme96 *rme96 = snd_pcm_substream_chip(substream);
	struct snd_pcm_runtime *runtime = substream->runtime;

	snd_pcm_set_sync(substream);
	runtime->hw = snd_rme96_capture_spdif_info;
        if (snd_rme96_getinputtype(rme96) != RME96_INPUT_ANALOG &&
            (rate = snd_rme96_capture_getrate(rme96, &isadat)) > 0)
        {
                if (isadat) {
                        return -EIO;
                }
                runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
                runtime->hw.rate_min = rate;
                runtime->hw.rate_max = rate;
        }
        
	spin_lock_irq(&rme96->lock);
        if (rme96->capture_substream != NULL) {
		spin_unlock_irq(&rme96->lock);
                return -EBUSY;
        }
	rme96->capture_substream = substream;
	spin_unlock_irq(&rme96->lock);
	
	rme96_set_buffer_size_constraint(rme96, runtime);
	return 0;
}

static int
snd_rme96_playback_adat_open(struct snd_pcm_substream *substream)
{
        int rate, dummy;
	struct rme96 *rme96 = snd_pcm_substream_chip(substream);
	struct snd_pcm_runtime *runtime = substream->runtime;        
	
	snd_pcm_set_sync(substream);
	spin_lock_irq(&rme96->lock);	
        if (rme96->playback_substream != NULL) {
		spin_unlock_irq(&rme96->lock);
                return -EBUSY;
        }
	rme96->wcreg |= RME96_WCR_ADAT;
	writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
	rme96->playback_substream = substream;
	spin_unlock_irq(&rme96->lock);
	
	runtime->hw = snd_rme96_playback_adat_info;
	if (!(rme96->wcreg & RME96_WCR_MASTER) &&
            snd_rme96_getinputtype(rme96) != RME96_INPUT_ANALOG &&
	    (rate = snd_rme96_capture_getrate(rme96, &dummy)) > 0)
	{
                /* slave clock */
                runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
                runtime->hw.rate_min = rate;
                runtime->hw.rate_max = rate;
	}        
	rme96_set_buffer_size_constraint(rme96, runtime);
	return 0;
}

static int
snd_rme96_capture_adat_open(struct snd_pcm_substream *substream)
{
        int isadat, rate;
	struct rme96 *rme96 = snd_pcm_substream_chip(substream);
	struct snd_pcm_runtime *runtime = substream->runtime;

	snd_pcm_set_sync(substream);
	runtime->hw = snd_rme96_capture_adat_info;
        if (snd_rme96_getinputtype(rme96) == RME96_INPUT_ANALOG) {
                /* makes no sense to use analog input. Note that analog
                   expension cards AEB4/8-I are RME96_INPUT_INTERNAL */
                return -EIO;
        }
        if ((rate = snd_rme96_capture_getrate(rme96, &isadat)) > 0) {
                if (!isadat) {
                        return -EIO;
                }
                runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
                runtime->hw.rate_min = rate;
                runtime->hw.rate_max = rate;
        }
        
	spin_lock_irq(&rme96->lock);	
        if (rme96->capture_substream != NULL) {
		spin_unlock_irq(&rme96->lock);
                return -EBUSY;
        }
	rme96->capture_substream = substream;
	spin_unlock_irq(&rme96->lock);

	rme96_set_buffer_size_constraint(rme96, runtime);
	return 0;
}

static int
snd_rme96_playback_close(struct snd_pcm_substream *substream)
{
	struct rme96 *rme96 = snd_pcm_substream_chip(substream);
	int spdif = 0;

	spin_lock_irq(&rme96->lock);	
	if (RME96_ISPLAYING(rme96)) {
		snd_rme96_trigger(rme96, RME96_STOP_PLAYBACK);
	}
	rme96->playback_substream = NULL;
	rme96->playback_periodsize = 0;
	spdif = (rme96->wcreg & RME96_WCR_ADAT) == 0;
	spin_unlock_irq(&rme96->lock);
	if (spdif) {
		rme96->spdif_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
		snd_ctl_notify(rme96->card, SNDRV_CTL_EVENT_MASK_VALUE |
			       SNDRV_CTL_EVENT_MASK_INFO, &rme96->spdif_ctl->id);
	}
	return 0;
}

static int
snd_rme96_capture_close(struct snd_pcm_substream *substream)
{
	struct rme96 *rme96 = snd_pcm_substream_chip(substream);
	
	spin_lock_irq(&rme96->lock);	
	if (RME96_ISRECORDING(rme96)) {
		snd_rme96_trigger(rme96, RME96_STOP_CAPTURE);
	}
	rme96->capture_substream = NULL;
	rme96->capture_periodsize = 0;
	spin_unlock_irq(&rme96->lock);
	return 0;
}

static int
snd_rme96_playback_prepare(struct snd_pcm_substream *substream)
{
	struct rme96 *rme96 = snd_pcm_substream_chip(substream);
	
	spin_lock_irq(&rme96->lock);	
	if (RME96_ISPLAYING(rme96)) {
		snd_rme96_trigger(rme96, RME96_STOP_PLAYBACK);
	}
	writel(0, rme96->iobase + RME96_IO_RESET_PLAY_POS);
	spin_unlock_irq(&rme96->lock);
	return 0;
}

static int
snd_rme96_capture_prepare(struct snd_pcm_substream *substream)
{
	struct rme96 *rme96 = snd_pcm_substream_chip(substream);
	
	spin_lock_irq(&rme96->lock);	
	if (RME96_ISRECORDING(rme96)) {
		snd_rme96_trigger(rme96, RME96_STOP_CAPTURE);
	}
	writel(0, rme96->iobase + RME96_IO_RESET_REC_POS);
	spin_unlock_irq(&rme96->lock);
	return 0;
}

static int
snd_rme96_playback_trigger(struct snd_pcm_substream *substream, 
			   int cmd)
{
	struct rme96 *rme96 = snd_pcm_substream_chip(substream);
	struct snd_pcm_substream *s;
	bool sync;

	snd_pcm_group_for_each_entry(s, substream) {
		if (snd_pcm_substream_chip(s) == rme96)
			snd_pcm_trigger_done(s, substream);
	}

	sync = (rme96->playback_substream && rme96->capture_substream) &&
	       (rme96->playback_substream->group ==
		rme96->capture_substream->group);

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
		if (!RME96_ISPLAYING(rme96)) {
			if (substream != rme96->playback_substream)
				return -EBUSY;
			snd_rme96_trigger(rme96, sync ? RME96_START_BOTH
						 : RME96_START_PLAYBACK);
		}
		break;

	case SNDRV_PCM_TRIGGER_SUSPEND:
	case SNDRV_PCM_TRIGGER_STOP:
		if (RME96_ISPLAYING(rme96)) {
			if (substream != rme96->playback_substream)
				return -EBUSY;
			snd_rme96_trigger(rme96, sync ? RME96_STOP_BOTH
						 :  RME96_STOP_PLAYBACK);
		}
		break;

	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		if (RME96_ISPLAYING(rme96))
			snd_rme96_trigger(rme96, sync ? RME96_STOP_BOTH
						 : RME96_STOP_PLAYBACK);
		break;

	case SNDRV_PCM_TRIGGER_RESUME:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
		if (!RME96_ISPLAYING(rme96))
			snd_rme96_trigger(rme96, sync ? RME96_RESUME_BOTH
						 : RME96_RESUME_PLAYBACK);
		break;

	default:
		return -EINVAL;
	}

	return 0;
}

static int
snd_rme96_capture_trigger(struct snd_pcm_substream *substream, 
			  int cmd)
{
	struct rme96 *rme96 = snd_pcm_substream_chip(substream);
	struct snd_pcm_substream *s;
	bool sync;

	snd_pcm_group_for_each_entry(s, substream) {
		if (snd_pcm_substream_chip(s) == rme96)
			snd_pcm_trigger_done(s, substream);
	}

	sync = (rme96->playback_substream && rme96->capture_substream) &&
	       (rme96->playback_substream->group ==
		rme96->capture_substream->group);

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
		if (!RME96_ISRECORDING(rme96)) {
			if (substream != rme96->capture_substream)
				return -EBUSY;
			snd_rme96_trigger(rme96, sync ? RME96_START_BOTH
						 : RME96_START_CAPTURE);
		}
		break;

	case SNDRV_PCM_TRIGGER_SUSPEND:
	case SNDRV_PCM_TRIGGER_STOP:
		if (RME96_ISRECORDING(rme96)) {
			if (substream != rme96->capture_substream)
				return -EBUSY;
			snd_rme96_trigger(rme96, sync ? RME96_STOP_BOTH
						 : RME96_STOP_CAPTURE);
		}
		break;

	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		if (RME96_ISRECORDING(rme96))
			snd_rme96_trigger(rme96, sync ? RME96_STOP_BOTH
						 : RME96_STOP_CAPTURE);
		break;

	case SNDRV_PCM_TRIGGER_RESUME:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
		if (!RME96_ISRECORDING(rme96))
			snd_rme96_trigger(rme96, sync ? RME96_RESUME_BOTH
						 : RME96_RESUME_CAPTURE);
		break;

	default:
		return -EINVAL;
	}

	return 0;
}

static snd_pcm_uframes_t
snd_rme96_playback_pointer(struct snd_pcm_substream *substream)
{
	struct rme96 *rme96 = snd_pcm_substream_chip(substream);
	return snd_rme96_playback_ptr(rme96);
}

static snd_pcm_uframes_t
snd_rme96_capture_pointer(struct snd_pcm_substream *substream)
{
	struct rme96 *rme96 = snd_pcm_substream_chip(substream);
	return snd_rme96_capture_ptr(rme96);
}

static struct snd_pcm_ops snd_rme96_playback_spdif_ops = {
	.open =		snd_rme96_playback_spdif_open,
	.close =	snd_rme96_playback_close,
	.ioctl =	snd_pcm_lib_ioctl,
	.hw_params =	snd_rme96_playback_hw_params,
	.prepare =	snd_rme96_playback_prepare,
	.trigger =	snd_rme96_playback_trigger,
	.pointer =	snd_rme96_playback_pointer,
	.copy =		snd_rme96_playback_copy,
	.silence =	snd_rme96_playback_silence,
	.mmap =		snd_pcm_lib_mmap_iomem,
};

static struct snd_pcm_ops snd_rme96_capture_spdif_ops = {
	.open =		snd_rme96_capture_spdif_open,
	.close =	snd_rme96_capture_close,
	.ioctl =	snd_pcm_lib_ioctl,
	.hw_params =	snd_rme96_capture_hw_params,
	.prepare =	snd_rme96_capture_prepare,
	.trigger =	snd_rme96_capture_trigger,
	.pointer =	snd_rme96_capture_pointer,
	.copy =		snd_rme96_capture_copy,
	.mmap =		snd_pcm_lib_mmap_iomem,
};

static struct snd_pcm_ops snd_rme96_playback_adat_ops = {
	.open =		snd_rme96_playback_adat_open,
	.close =	snd_rme96_playback_close,
	.ioctl =	snd_pcm_lib_ioctl,
	.hw_params =	snd_rme96_playback_hw_params,
	.prepare =	snd_rme96_playback_prepare,
	.trigger =	snd_rme96_playback_trigger,
	.pointer =	snd_rme96_playback_pointer,
	.copy =		snd_rme96_playback_copy,
	.silence =	snd_rme96_playback_silence,
	.mmap =		snd_pcm_lib_mmap_iomem,
};

static struct snd_pcm_ops snd_rme96_capture_adat_ops = {
	.open =		snd_rme96_capture_adat_open,
	.close =	snd_rme96_capture_close,
	.ioctl =	snd_pcm_lib_ioctl,
	.hw_params =	snd_rme96_capture_hw_params,
	.prepare =	snd_rme96_capture_prepare,
	.trigger =	snd_rme96_capture_trigger,
	.pointer =	snd_rme96_capture_pointer,
	.copy =		snd_rme96_capture_copy,
	.mmap =		snd_pcm_lib_mmap_iomem,
};

static void
snd_rme96_free(void *private_data)
{
	struct rme96 *rme96 = (struct rme96 *)private_data;

	if (rme96 == NULL) {
	        return;
	}
	if (rme96->irq >= 0) {
		snd_rme96_trigger(rme96, RME96_STOP_BOTH);
		rme96->areg &= ~RME96_AR_DAC_EN;
		writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
		free_irq(rme96->irq, (void *)rme96);
		rme96->irq = -1;
	}
	if (rme96->iobase) {
		iounmap(rme96->iobase);
		rme96->iobase = NULL;
	}
	if (rme96->port) {
		pci_release_regions(rme96->pci);
		rme96->port = 0;
	}
#ifdef CONFIG_PM_SLEEP
	vfree(rme96->playback_suspend_buffer);
	vfree(rme96->capture_suspend_buffer);
#endif
	pci_disable_device(rme96->pci);
}

static void
snd_rme96_free_spdif_pcm(struct snd_pcm *pcm)
{
	struct rme96 *rme96 = pcm->private_data;
	rme96->spdif_pcm = NULL;
}

static void
snd_rme96_free_adat_pcm(struct snd_pcm *pcm)
{
	struct rme96 *rme96 = pcm->private_data;
	rme96->adat_pcm = NULL;
}

static int
snd_rme96_create(struct rme96 *rme96)
{
	struct pci_dev *pci = rme96->pci;
	int err;

	rme96->irq = -1;
	spin_lock_init(&rme96->lock);

	if ((err = pci_enable_device(pci)) < 0)
		return err;

	if ((err = pci_request_regions(pci, "RME96")) < 0)
		return err;
	rme96->port = pci_resource_start(rme96->pci, 0);

	rme96->iobase = ioremap_nocache(rme96->port, RME96_IO_SIZE);
	if (!rme96->iobase) {
		dev_err(rme96->card->dev,
			"unable to remap memory region 0x%lx-0x%lx\n",
			rme96->port, rme96->port + RME96_IO_SIZE - 1);
		return -ENOMEM;
	}

	if (request_irq(pci->irq, snd_rme96_interrupt, IRQF_SHARED,
			KBUILD_MODNAME, rme96)) {
		dev_err(rme96->card->dev, "unable to grab IRQ %d\n", pci->irq);
		return -EBUSY;
	}
	rme96->irq = pci->irq;

	/* read the card's revision number */
	pci_read_config_byte(pci, 8, &rme96->rev);	
	
	/* set up ALSA pcm device for S/PDIF */
	if ((err = snd_pcm_new(rme96->card, "Digi96 IEC958", 0,
			       1, 1, &rme96->spdif_pcm)) < 0)
	{
		return err;
	}
	rme96->spdif_pcm->private_data = rme96;
	rme96->spdif_pcm->private_free = snd_rme96_free_spdif_pcm;
	strcpy(rme96->spdif_pcm->name, "Digi96 IEC958");
	snd_pcm_set_ops(rme96->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_rme96_playback_spdif_ops);
	snd_pcm_set_ops(rme96->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_rme96_capture_spdif_ops);

	rme96->spdif_pcm->info_flags = 0;

	/* set up ALSA pcm device for ADAT */
	if (pci->device == PCI_DEVICE_ID_RME_DIGI96) {
		/* ADAT is not available on the base model */
		rme96->adat_pcm = NULL;
	} else {
		if ((err = snd_pcm_new(rme96->card, "Digi96 ADAT", 1,
				       1, 1, &rme96->adat_pcm)) < 0)
		{
			return err;
		}		
		rme96->adat_pcm->private_data = rme96;
		rme96->adat_pcm->private_free = snd_rme96_free_adat_pcm;
		strcpy(rme96->adat_pcm->name, "Digi96 ADAT");
		snd_pcm_set_ops(rme96->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_rme96_playback_adat_ops);
		snd_pcm_set_ops(rme96->adat_pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_rme96_capture_adat_ops);
		
		rme96->adat_pcm->info_flags = 0;
	}

	rme96->playback_periodsize = 0;
	rme96->capture_periodsize = 0;
	
	/* make sure playback/capture is stopped, if by some reason active */
	snd_rme96_trigger(rme96, RME96_STOP_BOTH);
	
	/* set default values in registers */
	rme96->wcreg =
		RME96_WCR_FREQ_1 | /* set 44.1 kHz playback */
		RME96_WCR_SEL |    /* normal playback */
		RME96_WCR_MASTER | /* set to master clock mode */
		RME96_WCR_INP_0;   /* set coaxial input */

	rme96->areg = RME96_AR_FREQPAD_1; /* set 44.1 kHz analog capture */

	writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
	writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
	
	/* reset the ADC */
	writel(rme96->areg | RME96_AR_PD2,
	       rme96->iobase + RME96_IO_ADDITIONAL_REG);
	writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);	

	/* reset and enable the DAC (order is important). */
	snd_rme96_reset_dac(rme96);
	rme96->areg |= RME96_AR_DAC_EN;
	writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);

	/* reset playback and record buffer pointers */
	writel(0, rme96->iobase + RME96_IO_RESET_PLAY_POS);
	writel(0, rme96->iobase + RME96_IO_RESET_REC_POS);

	/* reset volume */
	rme96->vol[0] = rme96->vol[1] = 0;
	if (RME96_HAS_ANALOG_OUT(rme96)) {
		snd_rme96_apply_dac_volume(rme96);
	}
	
	/* init switch interface */
	if ((err = snd_rme96_create_switches(rme96->card, rme96)) < 0) {
		return err;
	}

        /* init proc interface */
	snd_rme96_proc_init(rme96);
	
	return 0;
}

/*
 * proc interface
 */

static void 
snd_rme96_proc_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer)
{
	int n;
	struct rme96 *rme96 = entry->private_data;
	
	rme96->rcreg = readl(rme96->iobase + RME96_IO_CONTROL_REGISTER);

	snd_iprintf(buffer, rme96->card->longname);
	snd_iprintf(buffer, " (index #%d)\n", rme96->card->number + 1);

	snd_iprintf(buffer, "\nGeneral settings\n");
	if (rme96->wcreg & RME96_WCR_IDIS) {
		snd_iprintf(buffer, "  period size: N/A (interrupts "
			    "disabled)\n");
	} else if (rme96->wcreg & RME96_WCR_ISEL) {
		snd_iprintf(buffer, "  period size: 2048 bytes\n");
	} else {
		snd_iprintf(buffer, "  period size: 8192 bytes\n");
	}	
	snd_iprintf(buffer, "\nInput settings\n");
	switch (snd_rme96_getinputtype(rme96)) {
	case RME96_INPUT_OPTICAL:
		snd_iprintf(buffer, "  input: optical");
		break;
	case RME96_INPUT_COAXIAL:
		snd_iprintf(buffer, "  input: coaxial");
		break;
	case RME96_INPUT_INTERNAL:
		snd_iprintf(buffer, "  input: internal");
		break;
	case RME96_INPUT_XLR:
		snd_iprintf(buffer, "  input: XLR");
		break;
	case RME96_INPUT_ANALOG:
		snd_iprintf(buffer, "  input: analog");
		break;
	}
	if (snd_rme96_capture_getrate(rme96, &n) < 0) {
		snd_iprintf(buffer, "\n  sample rate: no valid signal\n");
	} else {
		if (n) {
			snd_iprintf(buffer, " (8 channels)\n");
		} else {
			snd_iprintf(buffer, " (2 channels)\n");
		}
		snd_iprintf(buffer, "  sample rate: %d Hz\n",
			    snd_rme96_capture_getrate(rme96, &n));
	}
	if (rme96->wcreg & RME96_WCR_MODE24_2) {
		snd_iprintf(buffer, "  sample format: 24 bit\n");
	} else {
		snd_iprintf(buffer, "  sample format: 16 bit\n");
	}
	
	snd_iprintf(buffer, "\nOutput settings\n");
	if (rme96->wcreg & RME96_WCR_SEL) {
		snd_iprintf(buffer, "  output signal: normal playback\n");
	} else {
		snd_iprintf(buffer, "  output signal: same as input\n");
	}
	snd_iprintf(buffer, "  sample rate: %d Hz\n",
		    snd_rme96_playback_getrate(rme96));
	if (rme96->wcreg & RME96_WCR_MODE24) {
		snd_iprintf(buffer, "  sample format: 24 bit\n");
	} else {
		snd_iprintf(buffer, "  sample format: 16 bit\n");
	}
	if (rme96->areg & RME96_AR_WSEL) {
		snd_iprintf(buffer, "  sample clock source: word clock\n");
	} else if (rme96->wcreg & RME96_WCR_MASTER) {
		snd_iprintf(buffer, "  sample clock source: internal\n");
	} else if (snd_rme96_getinputtype(rme96) == RME96_INPUT_ANALOG) {
		snd_iprintf(buffer, "  sample clock source: autosync (internal anyway due to analog input setting)\n");
	} else if (snd_rme96_capture_getrate(rme96, &n) < 0) {
		snd_iprintf(buffer, "  sample clock source: autosync (internal anyway due to no valid signal)\n");
	} else {
		snd_iprintf(buffer, "  sample clock source: autosync\n");
	}
	if (rme96->wcreg & RME96_WCR_PRO) {
		snd_iprintf(buffer, "  format: AES/EBU (professional)\n");
	} else {
		snd_iprintf(buffer, "  format: IEC958 (consumer)\n");
	}
	if (rme96->wcreg & RME96_WCR_EMP) {
		snd_iprintf(buffer, "  emphasis: on\n");
	} else {
		snd_iprintf(buffer, "  emphasis: off\n");
	}
	if (rme96->wcreg & RME96_WCR_DOLBY) {
		snd_iprintf(buffer, "  non-audio (dolby): on\n");
	} else {
		snd_iprintf(buffer, "  non-audio (dolby): off\n");
	}
	if (RME96_HAS_ANALOG_IN(rme96)) {
		snd_iprintf(buffer, "\nAnalog output settings\n");
		switch (snd_rme96_getmontracks(rme96)) {
		case RME96_MONITOR_TRACKS_1_2:
			snd_iprintf(buffer, "  monitored ADAT tracks: 1+2\n");
			break;
		case RME96_MONITOR_TRACKS_3_4:
			snd_iprintf(buffer, "  monitored ADAT tracks: 3+4\n");
			break;
		case RME96_MONITOR_TRACKS_5_6:
			snd_iprintf(buffer, "  monitored ADAT tracks: 5+6\n");
			break;
		case RME96_MONITOR_TRACKS_7_8:
			snd_iprintf(buffer, "  monitored ADAT tracks: 7+8\n");
			break;
		}
		switch (snd_rme96_getattenuation(rme96)) {
		case RME96_ATTENUATION_0:
			snd_iprintf(buffer, "  attenuation: 0 dB\n");
			break;
		case RME96_ATTENUATION_6:
			snd_iprintf(buffer, "  attenuation: -6 dB\n");
			break;
		case RME96_ATTENUATION_12:
			snd_iprintf(buffer, "  attenuation: -12 dB\n");
			break;
		case RME96_ATTENUATION_18:
			snd_iprintf(buffer, "  attenuation: -18 dB\n");
			break;
		}
		snd_iprintf(buffer, "  volume left: %u\n", rme96->vol[0]);
		snd_iprintf(buffer, "  volume right: %u\n", rme96->vol[1]);
	}
}

static void snd_rme96_proc_init(struct rme96 *rme96)
{
	struct snd_info_entry *entry;

	if (! snd_card_proc_new(rme96->card, "rme96", &entry))
		snd_info_set_text_ops(entry, rme96, snd_rme96_proc_read);
}

/*
 * control interface
 */

#define snd_rme96_info_loopback_control		snd_ctl_boolean_mono_info

static int
snd_rme96_get_loopback_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
	struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
	
	spin_lock_irq(&rme96->lock);
	ucontrol->value.integer.value[0] = rme96->wcreg & RME96_WCR_SEL ? 0 : 1;
	spin_unlock_irq(&rme96->lock);
	return 0;
}
static int
snd_rme96_put_loopback_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
	struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
	unsigned int val;
	int change;
	
	val = ucontrol->value.integer.value[0] ? 0 : RME96_WCR_SEL;
	spin_lock_irq(&rme96->lock);
	val = (rme96->wcreg & ~RME96_WCR_SEL) | val;
	change = val != rme96->wcreg;
	rme96->wcreg = val;
	writel(val, rme96->iobase + RME96_IO_CONTROL_REGISTER);
	spin_unlock_irq(&rme96->lock);
	return change;
}

static int
snd_rme96_info_inputtype_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
	static char *_texts[5] = { "Optical", "Coaxial", "Internal", "XLR", "Analog" };
	struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
	char *texts[5] = { _texts[0], _texts[1], _texts[2], _texts[3], _texts[4] };
	
	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
	uinfo->count = 1;
	switch (rme96->pci->device) {
	case PCI_DEVICE_ID_RME_DIGI96:
	case PCI_DEVICE_ID_RME_DIGI96_8:
		uinfo->value.enumerated.items = 3;
		break;
	case PCI_DEVICE_ID_RME_DIGI96_8_PRO:
		uinfo->value.enumerated.items = 4;
		break;
	case PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST:
		if (rme96->rev > 4) {
			/* PST */
			uinfo->value.enumerated.items = 4;
			texts[3] = _texts[4]; /* Analog instead of XLR */
		} else {
			/* PAD */
			uinfo->value.enumerated.items = 5;
		}
		break;
	default:
		snd_BUG();
		break;
	}
	if (uinfo->value.enumerated.item > uinfo->value.enumerated.items - 1) {
		uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
	}
	strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
	return 0;
}
static int
snd_rme96_get_inputtype_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
	struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
	unsigned int items = 3;
	
	spin_lock_irq(&rme96->lock);
	ucontrol->value.enumerated.item[0] = snd_rme96_getinputtype(rme96);
	
	switch (rme96->pci->device) {
	case PCI_DEVICE_ID_RME_DIGI96:
	case PCI_DEVICE_ID_RME_DIGI96_8:
		items = 3;
		break;
	case PCI_DEVICE_ID_RME_DIGI96_8_PRO:
		items = 4;
		break;
	case PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST:
		if (rme96->rev > 4) {
			/* for handling PST case, (INPUT_ANALOG is moved to INPUT_XLR */
			if (ucontrol->value.enumerated.item[0] == RME96_INPUT_ANALOG) {
				ucontrol->value.enumerated.item[0] = RME96_INPUT_XLR;
			}
			items = 4;
		} else {
			items = 5;
		}
		break;
	default:
		snd_BUG();
		break;
	}
	if (ucontrol->value.enumerated.item[0] >= items) {
		ucontrol->value.enumerated.item[0] = items - 1;
	}
	
	spin_unlock_irq(&rme96->lock);
	return 0;
}
static int
snd_rme96_put_inputtype_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
	struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
	unsigned int val;
	int change, items = 3;
	
	switch (rme96->pci->device) {
	case PCI_DEVICE_ID_RME_DIGI96:
	case PCI_DEVICE_ID_RME_DIGI96_8:
		items = 3;
		break;
	case PCI_DEVICE_ID_RME_DIGI96_8_PRO:
		items = 4;
		break;
	case PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST:
		if (rme96->rev > 4) {
			items = 4;
		} else {
			items = 5;
		}
		break;
	default:
		snd_BUG();
		break;
	}
	val = ucontrol->value.enumerated.item[0] % items;
	
	/* special case for PST */
	if (rme96->pci->device == PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST && rme96->rev > 4) {
		if (val == RME96_INPUT_XLR) {
			val = RME96_INPUT_ANALOG;
		}
	}
	
	spin_lock_irq(&rme96->lock);
	change = (int)val != snd_rme96_getinputtype(rme96);
	snd_rme96_setinputtype(rme96, val);
	spin_unlock_irq(&rme96->lock);
	return change;
}

static int
snd_rme96_info_clockmode_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
	static char *texts[3] = { "AutoSync", "Internal", "Word" };
	
	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
	uinfo->count = 1;
	uinfo->value.enumerated.items = 3;
	if (uinfo->value.enumerated.item > 2) {
		uinfo->value.enumerated.item = 2;
	}
	strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
	return 0;
}
static int
snd_rme96_get_clockmode_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
	struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
	
	spin_lock_irq(&rme96->lock);
	ucontrol->value.enumerated.item[0] = snd_rme96_getclockmode(rme96);
	spin_unlock_irq(&rme96->lock);
	return 0;
}
static int
snd_rme96_put_clockmode_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
	struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
	unsigned int val;
	int change;
	
	val = ucontrol->value.enumerated.item[0] % 3;
	spin_lock_irq(&rme96->lock);
	change = (int)val != snd_rme96_getclockmode(rme96);
	snd_rme96_setclockmode(rme96, val);
	spin_unlock_irq(&rme96->lock);
	return change;
}

static int
snd_rme96_info_attenuation_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
	static char *texts[4] = { "0 dB", "-6 dB", "-12 dB", "-18 dB" };
	
	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
	uinfo->count = 1;
	uinfo->value.enumerated.items = 4;
	if (uinfo->value.enumerated.item > 3) {
		uinfo->value.enumerated.item = 3;
	}
	strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
	return 0;
}
static int
snd_rme96_get_attenuation_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
	struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
	
	spin_lock_irq(&rme96->lock);
	ucontrol->value.enumerated.item[0] = snd_rme96_getattenuation(rme96);
	spin_unlock_irq(&rme96->lock);
	return 0;
}
static int
snd_rme96_put_attenuation_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
	struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
	unsigned int val;
	int change;
	
	val = ucontrol->value.enumerated.item[0] % 4;
	spin_lock_irq(&rme96->lock);

	change = (int)val != snd_rme96_getattenuation(rme96);
	snd_rme96_setattenuation(rme96, val);
	spin_unlock_irq(&rme96->lock);
	return change;
}

static int
snd_rme96_info_montracks_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
	static char *texts[4] = { "1+2", "3+4", "5+6", "7+8" };
	
	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
	uinfo->count = 1;
	uinfo->value.enumerated.items = 4;
	if (uinfo->value.enumerated.item > 3) {
		uinfo->value.enumerated.item = 3;
	}
	strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
	return 0;
}
static int
snd_rme96_get_montracks_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
	struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
	
	spin_lock_irq(&rme96->lock);
	ucontrol->value.enumerated.item[0] = snd_rme96_getmontracks(rme96);
	spin_unlock_irq(&rme96->lock);
	return 0;
}
static int
snd_rme96_put_montracks_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
	struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
	unsigned int val;
	int change;
	
	val = ucontrol->value.enumerated.item[0] % 4;
	spin_lock_irq(&rme96->lock);
	change = (int)val != snd_rme96_getmontracks(rme96);
	snd_rme96_setmontracks(rme96, val);
	spin_unlock_irq(&rme96->lock);
	return change;
}

static u32 snd_rme96_convert_from_aes(struct snd_aes_iec958 *aes)
{
	u32 val = 0;
	val |= (aes->status[0] & IEC958_AES0_PROFESSIONAL) ? RME96_WCR_PRO : 0;
	val |= (aes->status[0] & IEC958_AES0_NONAUDIO) ? RME96_WCR_DOLBY : 0;
	if (val & RME96_WCR_PRO)
		val |= (aes->status[0] & IEC958_AES0_PRO_EMPHASIS_5015) ? RME96_WCR_EMP : 0;
	else
		val |= (aes->status[0] & IEC958_AES0_CON_EMPHASIS_5015) ? RME96_WCR_EMP : 0;
	return val;
}

static void snd_rme96_convert_to_aes(struct snd_aes_iec958 *aes, u32 val)
{
	aes->status[0] = ((val & RME96_WCR_PRO) ? IEC958_AES0_PROFESSIONAL : 0) |
			 ((val & RME96_WCR_DOLBY) ? IEC958_AES0_NONAUDIO : 0);
	if (val & RME96_WCR_PRO)
		aes->status[0] |= (val & RME96_WCR_EMP) ? IEC958_AES0_PRO_EMPHASIS_5015 : 0;
	else
		aes->status[0] |= (val & RME96_WCR_EMP) ? IEC958_AES0_CON_EMPHASIS_5015 : 0;
}

static int snd_rme96_control_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
	uinfo->count = 1;
	return 0;
}

static int snd_rme96_control_spdif_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
	struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
	
	snd_rme96_convert_to_aes(&ucontrol->value.iec958, rme96->wcreg_spdif);
	return 0;
}

static int snd_rme96_control_spdif_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
	struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
	int change;
	u32 val;
	
	val = snd_rme96_convert_from_aes(&ucontrol->value.iec958);
	spin_lock_irq(&rme96->lock);
	change = val != rme96->wcreg_spdif;
	rme96->wcreg_spdif = val;
	spin_unlock_irq(&rme96->lock);
	return change;
}

static int snd_rme96_control_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
	uinfo->count = 1;
	return 0;
}

static int snd_rme96_control_spdif_stream_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
	struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
	
	snd_rme96_convert_to_aes(&ucontrol->value.iec958, rme96->wcreg_spdif_stream);
	return 0;
}

static int snd_rme96_control_spdif_stream_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
	struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
	int change;
	u32 val;
	
	val = snd_rme96_convert_from_aes(&ucontrol->value.iec958);
	spin_lock_irq(&rme96->lock);
	change = val != rme96->wcreg_spdif_stream;
	rme96->wcreg_spdif_stream = val;
	rme96->wcreg &= ~(RME96_WCR_PRO | RME96_WCR_DOLBY | RME96_WCR_EMP);
	rme96->wcreg |= val;
	writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
	spin_unlock_irq(&rme96->lock);
	return change;
}

static int snd_rme96_control_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
	uinfo->count = 1;
	return 0;
}

static int snd_rme96_control_spdif_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
	ucontrol->value.iec958.status[0] = kcontrol->private_value;
	return 0;
}

static int
snd_rme96_dac_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
	struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
	
        uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
        uinfo->count = 2;
        uinfo->value.integer.min = 0;
	uinfo->value.integer.max = RME96_185X_MAX_OUT(rme96);
        return 0;
}

static int
snd_rme96_dac_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *u)
{
	struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);

	spin_lock_irq(&rme96->lock);
        u->value.integer.value[0] = rme96->vol[0];
        u->value.integer.value[1] = rme96->vol[1];
	spin_unlock_irq(&rme96->lock);

        return 0;
}

static int
snd_rme96_dac_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *u)
{
	struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
        int change = 0;
	unsigned int vol, maxvol;


	if (!RME96_HAS_ANALOG_OUT(rme96))
		return -EINVAL;
	maxvol = RME96_185X_MAX_OUT(rme96);
	spin_lock_irq(&rme96->lock);
	vol = u->value.integer.value[0];
	if (vol != rme96->vol[0] && vol <= maxvol) {
		rme96->vol[0] = vol;
		change = 1;
	}
	vol = u->value.integer.value[1];
	if (vol != rme96->vol[1] && vol <= maxvol) {
		rme96->vol[1] = vol;
		change = 1;
	}
	if (change)
		snd_rme96_apply_dac_volume(rme96);
	spin_unlock_irq(&rme96->lock);

        return change;
}

static struct snd_kcontrol_new snd_rme96_controls[] = {
{
	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
	.info =		snd_rme96_control_spdif_info,
	.get =		snd_rme96_control_spdif_get,
	.put =		snd_rme96_control_spdif_put
},
{
	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
	.info =		snd_rme96_control_spdif_stream_info,
	.get =		snd_rme96_control_spdif_stream_get,
	.put =		snd_rme96_control_spdif_stream_put
},
{
	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
	.info =		snd_rme96_control_spdif_mask_info,
	.get =		snd_rme96_control_spdif_mask_get,
	.private_value = IEC958_AES0_NONAUDIO |
			IEC958_AES0_PROFESSIONAL |
			IEC958_AES0_CON_EMPHASIS
},
{
	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
	.info =		snd_rme96_control_spdif_mask_info,
	.get =		snd_rme96_control_spdif_mask_get,
	.private_value = IEC958_AES0_NONAUDIO |
			IEC958_AES0_PROFESSIONAL |
			IEC958_AES0_PRO_EMPHASIS
},
{
        .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
	.name =         "Input Connector",
	.info =         snd_rme96_info_inputtype_control, 
	.get =          snd_rme96_get_inputtype_control,
	.put =          snd_rme96_put_inputtype_control 
},
{
        .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
	.name =         "Loopback Input",
	.info =         snd_rme96_info_loopback_control,
	.get =          snd_rme96_get_loopback_control,
	.put =          snd_rme96_put_loopback_control
},
{
        .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
	.name =         "Sample Clock Source",
	.info =         snd_rme96_info_clockmode_control, 
	.get =          snd_rme96_get_clockmode_control,
	.put =          snd_rme96_put_clockmode_control
},
{
        .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
	.name =         "Monitor Tracks",
	.info =         snd_rme96_info_montracks_control, 
	.get =          snd_rme96_get_montracks_control,
	.put =          snd_rme96_put_montracks_control
},
{
        .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
	.name =         "Attenuation",
	.info =         snd_rme96_info_attenuation_control, 
	.get =          snd_rme96_get_attenuation_control,
	.put =          snd_rme96_put_attenuation_control
},
{
        .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
	.name =         "DAC Playback Volume",
	.info =         snd_rme96_dac_volume_info,
	.get =          snd_rme96_dac_volume_get,
	.put =          snd_rme96_dac_volume_put
}
};

static int
snd_rme96_create_switches(struct snd_card *card,
			  struct rme96 *rme96)
{
	int idx, err;
	struct snd_kcontrol *kctl;

	for (idx = 0; idx < 7; idx++) {
		if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_rme96_controls[idx], rme96))) < 0)
			return err;
		if (idx == 1)	/* IEC958 (S/PDIF) Stream */
			rme96->spdif_ctl = kctl;
	}

	if (RME96_HAS_ANALOG_OUT(rme96)) {
		for (idx = 7; idx < 10; idx++)
			if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_rme96_controls[idx], rme96))) < 0)
				return err;
	}
	
	return 0;
}

/*
 * Card initialisation
 */

#ifdef CONFIG_PM_SLEEP

static int rme96_suspend(struct device *dev)
{
	struct pci_dev *pci = to_pci_dev(dev);
	struct snd_card *card = dev_get_drvdata(dev);
	struct rme96 *rme96 = card->private_data;

	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
	snd_pcm_suspend(rme96->playback_substream);
	snd_pcm_suspend(rme96->capture_substream);

	/* save capture & playback pointers */
	rme96->playback_pointer = readl(rme96->iobase + RME96_IO_GET_PLAY_POS)
				  & RME96_RCR_AUDIO_ADDR_MASK;
	rme96->capture_pointer = readl(rme96->iobase + RME96_IO_GET_REC_POS)
				 & RME96_RCR_AUDIO_ADDR_MASK;

	/* save playback and capture buffers */
	memcpy_fromio(rme96->playback_suspend_buffer,
		      rme96->iobase + RME96_IO_PLAY_BUFFER, RME96_BUFFER_SIZE);
	memcpy_fromio(rme96->capture_suspend_buffer,
		      rme96->iobase + RME96_IO_REC_BUFFER, RME96_BUFFER_SIZE);

	/* disable the DAC  */
	rme96->areg &= ~RME96_AR_DAC_EN;
	writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);

	pci_disable_device(pci);
	pci_save_state(pci);

	return 0;
}

static int rme96_resume(struct device *dev)
{
	struct pci_dev *pci = to_pci_dev(dev);
	struct snd_card *card = dev_get_drvdata(dev);
	struct rme96 *rme96 = card->private_data;

	pci_restore_state(pci);
	if (pci_enable_device(pci) < 0) {
		dev_err(dev, "pci_enable_device failed, disabling device\n");
		snd_card_disconnect(card);
		return -EIO;
	}

	/* reset playback and record buffer pointers */
	writel(0, rme96->iobase + RME96_IO_SET_PLAY_POS
		  + rme96->playback_pointer);
	writel(0, rme96->iobase + RME96_IO_SET_REC_POS
		  + rme96->capture_pointer);

	/* restore playback and capture buffers */
	memcpy_toio(rme96->iobase + RME96_IO_PLAY_BUFFER,
		    rme96->playback_suspend_buffer, RME96_BUFFER_SIZE);
	memcpy_toio(rme96->iobase + RME96_IO_REC_BUFFER,
		    rme96->capture_suspend_buffer, RME96_BUFFER_SIZE);

	/* reset the ADC */
	writel(rme96->areg | RME96_AR_PD2,
	       rme96->iobase + RME96_IO_ADDITIONAL_REG);
	writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);

	/* reset and enable DAC, restore analog volume */
	snd_rme96_reset_dac(rme96);
	rme96->areg |= RME96_AR_DAC_EN;
	writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
	if (RME96_HAS_ANALOG_OUT(rme96)) {
		usleep_range(3000, 10000);
		snd_rme96_apply_dac_volume(rme96);
	}

	snd_power_change_state(card, SNDRV_CTL_POWER_D0);

	return 0;
}

static SIMPLE_DEV_PM_OPS(rme96_pm, rme96_suspend, rme96_resume);
#define RME96_PM_OPS	&rme96_pm
#else
#define RME96_PM_OPS	NULL
#endif /* CONFIG_PM_SLEEP */

static void snd_rme96_card_free(struct snd_card *card)
{
	snd_rme96_free(card->private_data);
}

static int
snd_rme96_probe(struct pci_dev *pci,
		const struct pci_device_id *pci_id)
{
	static int dev;
	struct rme96 *rme96;
	struct snd_card *card;
	int err;
	u8 val;

	if (dev >= SNDRV_CARDS) {
		return -ENODEV;
	}
	if (!enable[dev]) {
		dev++;
		return -ENOENT;
	}
	err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
			   sizeof(struct rme96), &card);
	if (err < 0)
		return err;
	card->private_free = snd_rme96_card_free;
	rme96 = card->private_data;
	rme96->card = card;
	rme96->pci = pci;
	if ((err = snd_rme96_create(rme96)) < 0) {
		snd_card_free(card);
		return err;
	}
	
#ifdef CONFIG_PM_SLEEP
	rme96->playback_suspend_buffer = vmalloc(RME96_BUFFER_SIZE);
	if (!rme96->playback_suspend_buffer) {
		dev_err(card->dev,
			   "Failed to allocate playback suspend buffer!\n");
		snd_card_free(card);
		return -ENOMEM;
	}
	rme96->capture_suspend_buffer = vmalloc(RME96_BUFFER_SIZE);
	if (!rme96->capture_suspend_buffer) {
		dev_err(card->dev,
			   "Failed to allocate capture suspend buffer!\n");
		snd_card_free(card);
		return -ENOMEM;
	}
#endif

	strcpy(card->driver, "Digi96");
	switch (rme96->pci->device) {
	case PCI_DEVICE_ID_RME_DIGI96:
		strcpy(card->shortname, "RME Digi96");
		break;
	case PCI_DEVICE_ID_RME_DIGI96_8:
		strcpy(card->shortname, "RME Digi96/8");
		break;
	case PCI_DEVICE_ID_RME_DIGI96_8_PRO:
		strcpy(card->shortname, "RME Digi96/8 PRO");
		break;
	case PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST:
		pci_read_config_byte(rme96->pci, 8, &val);
		if (val < 5) {
			strcpy(card->shortname, "RME Digi96/8 PAD");
		} else {
			strcpy(card->shortname, "RME Digi96/8 PST");
		}
		break;
	}
	sprintf(card->longname, "%s at 0x%lx, irq %d", card->shortname,
		rme96->port, rme96->irq);
	
	if ((err = snd_card_register(card)) < 0) {
		snd_card_free(card);
		return err;	
	}
	pci_set_drvdata(pci, card);
	dev++;
	return 0;
}

static void snd_rme96_remove(struct pci_dev *pci)
{
	snd_card_free(pci_get_drvdata(pci));
}

static struct pci_driver rme96_driver = {
	.name = KBUILD_MODNAME,
	.id_table = snd_rme96_ids,
	.probe = snd_rme96_probe,
	.remove = snd_rme96_remove,
	.driver = {
		.pm = RME96_PM_OPS,
	},
};

module_pci_driver(rme96_driver);